Overview
ETH Balance
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
Latest 11 from a total of 11 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Set Facet For Se... | 127596607 | 103 days ago | IN | 0 ETH | 0.000000755117 | ||||
Set Facet For Se... | 124395126 | 177 days ago | IN | 0 ETH | 0.000000014021 | ||||
Set Facet For Se... | 123961784 | 187 days ago | IN | 0 ETH | 0.000000042066 | ||||
Set Facet For Se... | 123797388 | 191 days ago | IN | 0 ETH | 0.000000172502 | ||||
Transfer Ownersh... | 123797348 | 191 days ago | IN | 0 ETH | 0.000000093515 | ||||
Set Facet For Se... | 123335012 | 202 days ago | IN | 0 ETH | 0.000000216837 | ||||
Set Facet For Se... | 120069789 | 278 days ago | IN | 0 ETH | 0.000000729841 | ||||
Set Facet For Se... | 116115165 | 369 days ago | IN | 0 ETH | 0.000472112438 | ||||
Set Facet For Se... | 111564265 | 474 days ago | IN | 0 ETH | 0.000046063143 | ||||
Set Default Appr... | 108062872 | 556 days ago | IN | 0 ETH | 0.000031391478 | ||||
Set Facet For Se... | 108062862 | 556 days ago | IN | 0 ETH | 0.000251852259 |
View more zero value Internal Transactions in Advanced View mode
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "@openzeppelin/contracts/proxy/Proxy.sol"; import "../../interfaces/IPRouterStatic.sol"; import "./base/StorageLayout.sol"; // solhint-disable no-empty-blocks contract PendleRouterStatic is Proxy, StorageLayout { constructor(address actionStorage) { owner = msg.sender; selectorToFacet[IPMiniDiamond.setFacetForSelectors.selector] = actionStorage; } function _implementation() internal view override returns (address res) { res = selectorToFacet[msg.sig]; require(res != address(0), "selector not found"); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (proxy/Proxy.sol) pragma solidity ^0.8.0; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback function * and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _beforeFallback(); _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if call data * is empty. */ receive() external payable virtual { _fallback(); } /** * @dev Hook that is called before falling back to the implementation. Can happen as part of a manual `_fallback` * call, or as part of the Solidity `fallback` or `receive` functions. * * If overridden should call `super._beforeFallback()`. */ function _beforeFallback() internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20Permit { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; import "../extensions/draft-IERC20Permit.sol"; import "../../../utils/Address.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20 token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function safeIncreaseAllowance( IERC20 token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } function safeDecreaseAllowance( IERC20 token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require(oldAllowance >= value, "SafeERC20: decreased allowance below zero"); uint256 newAllowance = oldAllowance - value; _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance)); } } function safePermit( IERC20Permit token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require(nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed"); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20 token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed"); if (returndata.length > 0) { // Return data is optional require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed"); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../libraries/TokenHelper.sol"; import "../libraries/math/Math.sol"; import "../libraries/Errors.sol"; struct BulkSellerState { uint256 rateTokenToSy; uint256 rateSyToToken; uint256 totalToken; uint256 totalSy; uint256 feeRate; } library BulkSellerMathCore { using Math for uint256; function swapExactTokenForSy( BulkSellerState memory state, uint256 netTokenIn ) internal pure returns (uint256 netSyOut) { netSyOut = calcSwapExactTokenForSy(state, netTokenIn); state.totalToken += netTokenIn; state.totalSy -= netSyOut; } function swapExactSyForToken( BulkSellerState memory state, uint256 netSyIn ) internal pure returns (uint256 netTokenOut) { netTokenOut = calcSwapExactSyForToken(state, netSyIn); state.totalSy += netSyIn; state.totalToken -= netTokenOut; } function calcSwapExactTokenForSy( BulkSellerState memory state, uint256 netTokenIn ) internal pure returns (uint256 netSyOut) { uint256 postFeeRate = state.rateTokenToSy.mulDown(Math.ONE - state.feeRate); assert(postFeeRate != 0); netSyOut = netTokenIn.mulDown(postFeeRate); if (netSyOut > state.totalSy) revert Errors.BulkInsufficientSyForTrade(state.totalSy, netSyOut); } function calcSwapExactSyForToken( BulkSellerState memory state, uint256 netSyIn ) internal pure returns (uint256 netTokenOut) { uint256 postFeeRate = state.rateSyToToken.mulDown(Math.ONE - state.feeRate); assert(postFeeRate != 0); netTokenOut = netSyIn.mulDown(postFeeRate); if (netTokenOut > state.totalToken) revert Errors.BulkInsufficientTokenForTrade(state.totalToken, netTokenOut); } function getTokenProp(BulkSellerState memory state) internal pure returns (uint256) { uint256 totalToken = state.totalToken; uint256 totalTokenFromSy = state.totalSy.mulDown(state.rateSyToToken); return totalToken.divDown(totalToken + totalTokenFromSy); } function getReBalanceParams( BulkSellerState memory state, uint256 targetTokenProp ) internal pure returns (uint256 netTokenToDeposit, uint256 netSyToRedeem) { uint256 currentTokenProp = getTokenProp(state); if (currentTokenProp > targetTokenProp) { netTokenToDeposit = state .totalToken .mulDown(currentTokenProp - targetTokenProp) .divDown(currentTokenProp); } else { uint256 currentSyProp = Math.ONE - currentTokenProp; netSyToRedeem = state.totalSy.mulDown(targetTokenProp - currentTokenProp).divDown( currentSyProp ); } } function reBalanceTokenToSy( BulkSellerState memory state, uint256 netTokenToDeposit, uint256 netSyFromToken, uint256 maxDiff ) internal pure { uint256 rate = netSyFromToken.divDown(netTokenToDeposit); if (!Math.isAApproxB(rate, state.rateTokenToSy, maxDiff)) revert Errors.BulkBadRateTokenToSy(rate, state.rateTokenToSy, maxDiff); state.totalToken -= netTokenToDeposit; state.totalSy += netSyFromToken; } function reBalanceSyToToken( BulkSellerState memory state, uint256 netSyToRedeem, uint256 netTokenFromSy, uint256 maxDiff ) internal pure { uint256 rate = netTokenFromSy.divDown(netSyToRedeem); if (!Math.isAApproxB(rate, state.rateSyToToken, maxDiff)) revert Errors.BulkBadRateSyToToken(rate, state.rateSyToToken, maxDiff); state.totalToken += netTokenFromSy; state.totalSy -= netSyToRedeem; } function setRate( BulkSellerState memory state, uint256 rateSyToToken, uint256 rateTokenToSy, uint256 maxDiff ) internal pure { if ( state.rateTokenToSy != 0 && !Math.isAApproxB(rateTokenToSy, state.rateTokenToSy, maxDiff) ) { revert Errors.BulkBadRateTokenToSy(rateTokenToSy, state.rateTokenToSy, maxDiff); } if ( state.rateSyToToken != 0 && !Math.isAApproxB(rateSyToToken, state.rateSyToToken, maxDiff) ) { revert Errors.BulkBadRateSyToToken(rateSyToToken, state.rateSyToToken, maxDiff); } state.rateTokenToSy = rateTokenToSy; state.rateSyToToken = rateSyToToken; } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; library Errors { // BulkSeller error BulkInsufficientSyForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInsufficientTokenForTrade(uint256 currentAmount, uint256 requiredAmount); error BulkInSufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error BulkInSufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error BulkInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error BulkNotMaintainer(); error BulkNotAdmin(); error BulkSellerAlreadyExisted(address token, address SY, address bulk); error BulkSellerInvalidToken(address token, address SY); error BulkBadRateTokenToSy(uint256 actualRate, uint256 currentRate, uint256 eps); error BulkBadRateSyToToken(uint256 actualRate, uint256 currentRate, uint256 eps); // APPROX error ApproxFail(); error ApproxParamsInvalid(uint256 guessMin, uint256 guessMax, uint256 eps); error ApproxBinarySearchInputInvalid( uint256 approxGuessMin, uint256 approxGuessMax, uint256 minGuessMin, uint256 maxGuessMax ); // MARKET + MARKET MATH CORE error MarketExpired(); error MarketZeroAmountsInput(); error MarketZeroAmountsOutput(); error MarketZeroLnImpliedRate(); error MarketInsufficientPtForTrade(int256 currentAmount, int256 requiredAmount); error MarketInsufficientPtReceived(uint256 actualBalance, uint256 requiredBalance); error MarketInsufficientSyReceived(uint256 actualBalance, uint256 requiredBalance); error MarketZeroTotalPtOrTotalAsset(int256 totalPt, int256 totalAsset); error MarketExchangeRateBelowOne(int256 exchangeRate); error MarketProportionMustNotEqualOne(); error MarketRateScalarBelowZero(int256 rateScalar); error MarketScalarRootBelowZero(int256 scalarRoot); error MarketProportionTooHigh(int256 proportion, int256 maxProportion); error OracleUninitialized(); error OracleTargetTooOld(uint32 target, uint32 oldest); error OracleZeroCardinality(); error MarketFactoryExpiredPt(); error MarketFactoryInvalidPt(); error MarketFactoryMarketExists(); error MarketFactoryLnFeeRateRootTooHigh(uint80 lnFeeRateRoot, uint256 maxLnFeeRateRoot); error MarketFactoryReserveFeePercentTooHigh( uint8 reserveFeePercent, uint8 maxReserveFeePercent ); error MarketFactoryZeroTreasury(); error MarketFactoryInitialAnchorTooLow(int256 initialAnchor, int256 minInitialAnchor); // ROUTER error RouterInsufficientLpOut(uint256 actualLpOut, uint256 requiredLpOut); error RouterInsufficientSyOut(uint256 actualSyOut, uint256 requiredSyOut); error RouterInsufficientPtOut(uint256 actualPtOut, uint256 requiredPtOut); error RouterInsufficientYtOut(uint256 actualYtOut, uint256 requiredYtOut); error RouterInsufficientPYOut(uint256 actualPYOut, uint256 requiredPYOut); error RouterInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); error RouterExceededLimitSyIn(uint256 actualSyIn, uint256 limitSyIn); error RouterExceededLimitPtIn(uint256 actualPtIn, uint256 limitPtIn); error RouterExceededLimitYtIn(uint256 actualYtIn, uint256 limitYtIn); error RouterInsufficientSyRepay(uint256 actualSyRepay, uint256 requiredSyRepay); error RouterInsufficientPtRepay(uint256 actualPtRepay, uint256 requiredPtRepay); error RouterNotAllSyUsed(uint256 netSyDesired, uint256 netSyUsed); error RouterTimeRangeZero(); error RouterCallbackNotPendleMarket(address caller); error RouterInvalidAction(bytes4 selector); error RouterInvalidFacet(address facet); error RouterKyberSwapDataZero(); // YIELD CONTRACT error YCExpired(); error YCNotExpired(); error YieldContractInsufficientSy(uint256 actualSy, uint256 requiredSy); error YCNothingToRedeem(); error YCPostExpiryDataNotSet(); error YCNoFloatingSy(); // YieldFactory error YCFactoryInvalidExpiry(); error YCFactoryYieldContractExisted(); error YCFactoryZeroExpiryDivisor(); error YCFactoryZeroTreasury(); error YCFactoryInterestFeeRateTooHigh(uint256 interestFeeRate, uint256 maxInterestFeeRate); error YCFactoryRewardFeeRateTooHigh(uint256 newRewardFeeRate, uint256 maxRewardFeeRate); // SY error SYInvalidTokenIn(address token); error SYInvalidTokenOut(address token); error SYZeroDeposit(); error SYZeroRedeem(); error SYInsufficientSharesOut(uint256 actualSharesOut, uint256 requiredSharesOut); error SYInsufficientTokenOut(uint256 actualTokenOut, uint256 requiredTokenOut); // SY-specific error SYQiTokenMintFailed(uint256 errCode); error SYQiTokenRedeemFailed(uint256 errCode); error SYQiTokenRedeemRewardsFailed(uint256 rewardAccruedType0, uint256 rewardAccruedType1); error SYQiTokenBorrowRateTooHigh(uint256 borrowRate, uint256 borrowRateMax); error SYCurveInvalidPid(); error SYCurve3crvPoolNotFound(); error SYApeDepositAmountTooSmall(uint256 amountDeposited); error SYBalancerInvalidPid(); error SYInvalidRewardToken(address token); error SYStargateRedeemCapExceeded(uint256 amountLpDesired, uint256 amountLpRedeemable); error SYBalancerReentrancy(); error NotFromTrustedRemote(uint16 srcChainId, bytes path); // Liquidity Mining error VCInactivePool(address pool); error VCPoolAlreadyActive(address pool); error VCZeroVePendle(address user); error VCExceededMaxWeight(uint256 totalWeight, uint256 maxWeight); error VCEpochNotFinalized(uint256 wTime); error VCPoolAlreadyAddAndRemoved(address pool); error VEInvalidNewExpiry(uint256 newExpiry); error VEExceededMaxLockTime(); error VEInsufficientLockTime(); error VENotAllowedReduceExpiry(); error VEZeroAmountLocked(); error VEPositionNotExpired(); error VEZeroPosition(); error VEZeroSlope(uint128 bias, uint128 slope); error VEReceiveOldSupply(uint256 msgTime); error GCNotPendleMarket(address caller); error GCNotVotingController(address caller); error InvalidWTime(uint256 wTime); error ExpiryInThePast(uint256 expiry); error ChainNotSupported(uint256 chainId); error FDTotalAmountFundedNotMatch(uint256 actualTotalAmount, uint256 expectedTotalAmount); error FDEpochLengthMismatch(); error FDInvalidPool(address pool); error FDPoolAlreadyExists(address pool); error FDInvalidNewFinishedEpoch(uint256 oldFinishedEpoch, uint256 newFinishedEpoch); error FDInvalidStartEpoch(uint256 startEpoch); error FDInvalidWTimeFund(uint256 lastFunded, uint256 wTime); error FDFutureFunding(uint256 lastFunded, uint256 currentWTime); error BDInvalidEpoch(uint256 epoch, uint256 startTime); // Cross-Chain error MsgNotFromSendEndpoint(uint16 srcChainId, bytes path); error MsgNotFromReceiveEndpoint(address sender); error InsufficientFeeToSendMsg(uint256 currentFee, uint256 requiredFee); error ApproxDstExecutionGasNotSet(); error InvalidRetryData(); // GENERIC MSG error ArrayLengthMismatch(); error ArrayEmpty(); error ArrayOutOfBounds(); error ZeroAddress(); error FailedToSendEther(); error InvalidMerkleProof(); error OnlyLayerZeroEndpoint(); error OnlyYT(); error OnlyYCFactory(); error OnlyWhitelisted(); // Swap Aggregator error SAInsufficientTokenIn(address tokenIn, uint256 amountExpected, uint256 amountActual); error UnsupportedSelector(uint256 aggregatorType, bytes4 selector); }
// SPDX-License-Identifier: GPL-3.0-or-later // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated // documentation files (the “Software”), to deal in the Software without restriction, including without limitation the // rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to // permit persons to whom the Software is furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. pragma solidity 0.8.17; /* solhint-disable */ /** * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument). * * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural * exponentiation and logarithm (where the base is Euler's number). * * @author Fernando Martinelli - @fernandomartinelli * @author Sergio Yuhjtman - @sergioyuhjtman * @author Daniel Fernandez - @dmf7z */ library LogExpMath { // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying // two numbers, and multiply by ONE when dividing them. // All arguments and return values are 18 decimal fixed point numbers. int256 constant ONE_18 = 1e18; // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the // case of ln36, 36 decimals. int256 constant ONE_20 = 1e20; int256 constant ONE_36 = 1e36; // The domain of natural exponentiation is bound by the word size and number of decimals used. // // Because internally the result will be stored using 20 decimals, the largest possible result is // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221. // The smallest possible result is 10^(-18), which makes largest negative argument // ln(10^(-18)) = -41.446531673892822312. // We use 130.0 and -41.0 to have some safety margin. int256 constant MAX_NATURAL_EXPONENT = 130e18; int256 constant MIN_NATURAL_EXPONENT = -41e18; // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point // 256 bit integer. int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17; int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17; uint256 constant MILD_EXPONENT_BOUND = 2 ** 254 / uint256(ONE_20); // 18 decimal constants int256 constant x0 = 128000000000000000000; // 2ˆ7 int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals) int256 constant x1 = 64000000000000000000; // 2ˆ6 int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals) // 20 decimal constants int256 constant x2 = 3200000000000000000000; // 2ˆ5 int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2) int256 constant x3 = 1600000000000000000000; // 2ˆ4 int256 constant a3 = 888611052050787263676000000; // eˆ(x3) int256 constant x4 = 800000000000000000000; // 2ˆ3 int256 constant a4 = 298095798704172827474000; // eˆ(x4) int256 constant x5 = 400000000000000000000; // 2ˆ2 int256 constant a5 = 5459815003314423907810; // eˆ(x5) int256 constant x6 = 200000000000000000000; // 2ˆ1 int256 constant a6 = 738905609893065022723; // eˆ(x6) int256 constant x7 = 100000000000000000000; // 2ˆ0 int256 constant a7 = 271828182845904523536; // eˆ(x7) int256 constant x8 = 50000000000000000000; // 2ˆ-1 int256 constant a8 = 164872127070012814685; // eˆ(x8) int256 constant x9 = 25000000000000000000; // 2ˆ-2 int256 constant a9 = 128402541668774148407; // eˆ(x9) int256 constant x10 = 12500000000000000000; // 2ˆ-3 int256 constant a10 = 113314845306682631683; // eˆ(x10) int256 constant x11 = 6250000000000000000; // 2ˆ-4 int256 constant a11 = 106449445891785942956; // eˆ(x11) /** * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent. * * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`. */ function exp(int256 x) internal pure returns (int256) { unchecked { require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, "Invalid exponent"); if (x < 0) { // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT). // Fixed point division requires multiplying by ONE_18. return ((ONE_18 * ONE_18) / exp(-x)); } // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n, // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7 // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the // decomposition. // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this // decomposition, which will be lower than the smallest x_n. // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1. // We mutate x by subtracting x_n, making it the remainder of the decomposition. // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause // intermediate overflows. Instead we store them as plain integers, with 0 decimals. // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the // decomposition. // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct // it and compute the accumulated product. int256 firstAN; if (x >= x0) { x -= x0; firstAN = a0; } else if (x >= x1) { x -= x1; firstAN = a1; } else { firstAN = 1; // One with no decimal places } // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the // smaller terms. x *= 100; // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point // one. Recall that fixed point multiplication requires dividing by ONE_20. int256 product = ONE_20; if (x >= x2) { x -= x2; product = (product * a2) / ONE_20; } if (x >= x3) { x -= x3; product = (product * a3) / ONE_20; } if (x >= x4) { x -= x4; product = (product * a4) / ONE_20; } if (x >= x5) { x -= x5; product = (product * a5) / ONE_20; } if (x >= x6) { x -= x6; product = (product * a6) / ONE_20; } if (x >= x7) { x -= x7; product = (product * a7) / ONE_20; } if (x >= x8) { x -= x8; product = (product * a8) / ONE_20; } if (x >= x9) { x -= x9; product = (product * a9) / ONE_20; } // x10 and x11 are unnecessary here since we have high enough precision already. // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!). int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places. int256 term; // Each term in the sum, where the nth term is (x^n / n!). // The first term is simply x. term = x; seriesSum += term; // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number, // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not. term = ((term * x) / ONE_20) / 2; seriesSum += term; term = ((term * x) / ONE_20) / 3; seriesSum += term; term = ((term * x) / ONE_20) / 4; seriesSum += term; term = ((term * x) / ONE_20) / 5; seriesSum += term; term = ((term * x) / ONE_20) / 6; seriesSum += term; term = ((term * x) / ONE_20) / 7; seriesSum += term; term = ((term * x) / ONE_20) / 8; seriesSum += term; term = ((term * x) / ONE_20) / 9; seriesSum += term; term = ((term * x) / ONE_20) / 10; seriesSum += term; term = ((term * x) / ONE_20) / 11; seriesSum += term; term = ((term * x) / ONE_20) / 12; seriesSum += term; // 12 Taylor terms are sufficient for 18 decimal precision. // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication), // and then drop two digits to return an 18 decimal value. return (((product * seriesSum) / ONE_20) * firstAN) / 100; } } /** * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function ln(int256 a) internal pure returns (int256) { unchecked { // The real natural logarithm is not defined for negative numbers or zero. require(a > 0, "out of bounds"); if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) { return _ln_36(a) / ONE_18; } else { return _ln(a); } } } /** * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent. * * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`. */ function pow(uint256 x, uint256 y) internal pure returns (uint256) { unchecked { if (y == 0) { // We solve the 0^0 indetermination by making it equal one. return uint256(ONE_18); } if (x == 0) { return 0; } // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to // arrive at that r`esult. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means // x^y = exp(y * ln(x)). // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range. require(x < 2 ** 255, "x out of bounds"); int256 x_int256 = int256(x); // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end. // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range. require(y < MILD_EXPONENT_BOUND, "y out of bounds"); int256 y_int256 = int256(y); int256 logx_times_y; if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) { int256 ln_36_x = _ln_36(x_int256); // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the // (downscaled) last 18 decimals. logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18); } else { logx_times_y = _ln(x_int256) * y_int256; } logx_times_y /= ONE_18; // Finally, we compute exp(y * ln(x)) to arrive at x^y require( MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT, "product out of bounds" ); return uint256(exp(logx_times_y)); } } /** * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument. */ function _ln(int256 a) private pure returns (int256) { unchecked { if (a < ONE_18) { // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call. // Fixed point division requires multiplying by ONE_18. return (-_ln((ONE_18 * ONE_18) / a)); } // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is, // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a. // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this // decomposition, which will be lower than the smallest a_n. // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1. // We mutate a by subtracting a_n, making it the remainder of the decomposition. // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by // ONE_18 to convert them to fixed point. // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide // by it and compute the accumulated sum. int256 sum = 0; if (a >= a0 * ONE_18) { a /= a0; // Integer, not fixed point division sum += x0; } if (a >= a1 * ONE_18) { a /= a1; // Integer, not fixed point division sum += x1; } // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format. sum *= 100; a *= 100; // Because further a_n are 20 digit fixed point numbers, we multiply by ONE_20 when dividing by them. if (a >= a2) { a = (a * ONE_20) / a2; sum += x2; } if (a >= a3) { a = (a * ONE_20) / a3; sum += x3; } if (a >= a4) { a = (a * ONE_20) / a4; sum += x4; } if (a >= a5) { a = (a * ONE_20) / a5; sum += x5; } if (a >= a6) { a = (a * ONE_20) / a6; sum += x6; } if (a >= a7) { a = (a * ONE_20) / a7; sum += x7; } if (a >= a8) { a = (a * ONE_20) / a8; sum += x8; } if (a >= a9) { a = (a * ONE_20) / a9; sum += x9; } if (a >= a10) { a = (a * ONE_20) / a10; sum += x10; } if (a >= a11) { a = (a * ONE_20) / a11; sum += x11; } // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series // that converges rapidly for values of `a` close to one - the same one used in ln_36. // Let z = (a - 1) / (a + 1). // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires // division by ONE_20. int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20); int256 z_squared = (z * z) / ONE_20; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_20; seriesSum += num / 3; num = (num * z_squared) / ONE_20; seriesSum += num / 5; num = (num * z_squared) / ONE_20; seriesSum += num / 7; num = (num * z_squared) / ONE_20; seriesSum += num / 9; num = (num * z_squared) / ONE_20; seriesSum += num / 11; // 6 Taylor terms are sufficient for 36 decimal precision. // Finally, we multiply by 2 (non fixed point) to compute ln(remainder) seriesSum *= 2; // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal // value. return (sum + seriesSum) / 100; } } /** * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument, * for x close to one. * * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND. */ function _ln_36(int256 x) private pure returns (int256) { unchecked { // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits // worthwhile. // First, we transform x to a 36 digit fixed point value. x *= ONE_18; // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1). // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1)) // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires // division by ONE_36. int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36); int256 z_squared = (z * z) / ONE_36; // num is the numerator of the series: the z^(2 * n + 1) term int256 num = z; // seriesSum holds the accumulated sum of each term in the series, starting with the initial z int256 seriesSum = num; // In each step, the numerator is multiplied by z^2 num = (num * z_squared) / ONE_36; seriesSum += num / 3; num = (num * z_squared) / ONE_36; seriesSum += num / 5; num = (num * z_squared) / ONE_36; seriesSum += num / 7; num = (num * z_squared) / ONE_36; seriesSum += num / 9; num = (num * z_squared) / ONE_36; seriesSum += num / 11; num = (num * z_squared) / ONE_36; seriesSum += num / 13; num = (num * z_squared) / ONE_36; seriesSum += num / 15; // 8 Taylor terms are sufficient for 36 decimal precision. // All that remains is multiplying by 2 (non fixed point). return seriesSum * 2; } } }
// SPDX-License-Identifier: GPL-3.0-or-later // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this program. If not, see <http://www.gnu.org/licenses/>. pragma solidity ^0.8.17; /* solhint-disable private-vars-leading-underscore, reason-string */ library Math { uint256 internal constant ONE = 1e18; // 18 decimal places int256 internal constant IONE = 1e18; // 18 decimal places function subMax0(uint256 a, uint256 b) internal pure returns (uint256) { unchecked { return (a >= b ? a - b : 0); } } function subNoNeg(int256 a, int256 b) internal pure returns (int256) { require(a >= b, "negative"); return a - b; // no unchecked since if b is very negative, a - b might overflow } function mulDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 product = a * b; unchecked { return product / ONE; } } function mulDown(int256 a, int256 b) internal pure returns (int256) { int256 product = a * b; unchecked { return product / IONE; } } function divDown(uint256 a, uint256 b) internal pure returns (uint256) { uint256 aInflated = a * ONE; unchecked { return aInflated / b; } } function divDown(int256 a, int256 b) internal pure returns (int256) { int256 aInflated = a * IONE; unchecked { return aInflated / b; } } function rawDivUp(uint256 a, uint256 b) internal pure returns (uint256) { return (a + b - 1) / b; } // @author Uniswap function sqrt(uint256 y) internal pure returns (uint256 z) { if (y > 3) { z = y; uint256 x = y / 2 + 1; while (x < z) { z = x; x = (y / x + x) / 2; } } else if (y != 0) { z = 1; } } function square(uint256 x) internal pure returns (uint256) { return x * x; } function squareDown(uint256 x) internal pure returns (uint256) { return mulDown(x, x); } function abs(int256 x) internal pure returns (uint256) { return uint256(x > 0 ? x : -x); } function neg(int256 x) internal pure returns (int256) { return x * (-1); } function neg(uint256 x) internal pure returns (int256) { return Int(x) * (-1); } function max(uint256 x, uint256 y) internal pure returns (uint256) { return (x > y ? x : y); } function max(int256 x, int256 y) internal pure returns (int256) { return (x > y ? x : y); } function min(uint256 x, uint256 y) internal pure returns (uint256) { return (x < y ? x : y); } function min(int256 x, int256 y) internal pure returns (int256) { return (x < y ? x : y); } /*/////////////////////////////////////////////////////////////// SIGNED CASTS //////////////////////////////////////////////////////////////*/ function Int(uint256 x) internal pure returns (int256) { require(x <= uint256(type(int256).max)); return int256(x); } function Int128(int256 x) internal pure returns (int128) { require(type(int128).min <= x && x <= type(int128).max); return int128(x); } function Int128(uint256 x) internal pure returns (int128) { return Int128(Int(x)); } /*/////////////////////////////////////////////////////////////// UNSIGNED CASTS //////////////////////////////////////////////////////////////*/ function Uint(int256 x) internal pure returns (uint256) { require(x >= 0); return uint256(x); } function Uint32(uint256 x) internal pure returns (uint32) { require(x <= type(uint32).max); return uint32(x); } function Uint112(uint256 x) internal pure returns (uint112) { require(x <= type(uint112).max); return uint112(x); } function Uint96(uint256 x) internal pure returns (uint96) { require(x <= type(uint96).max); return uint96(x); } function Uint128(uint256 x) internal pure returns (uint128) { require(x <= type(uint128).max); return uint128(x); } function isAApproxB( uint256 a, uint256 b, uint256 eps ) internal pure returns (bool) { return mulDown(b, ONE - eps) <= a && a <= mulDown(b, ONE + eps); } function isAGreaterApproxB( uint256 a, uint256 b, uint256 eps ) internal pure returns (bool) { return a >= b && a <= mulDown(b, ONE + eps); } function isASmallerApproxB( uint256 a, uint256 b, uint256 eps ) internal pure returns (bool) { return a <= b && a >= mulDown(b, ONE - eps); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; library MiniHelpers { function isCurrentlyExpired(uint256 expiry) internal view returns (bool) { return (expiry <= block.timestamp); } function isExpired(uint256 expiry, uint256 blockTime) internal pure returns (bool) { return (expiry <= blockTime); } function isTimeInThePast(uint256 timestamp) internal view returns (bool) { return (timestamp <= block.timestamp); // same definition as isCurrentlyExpired } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; import "../../interfaces/IWETH.sol"; abstract contract TokenHelper { using SafeERC20 for IERC20; address internal constant NATIVE = address(0); uint256 internal constant LOWER_BOUND_APPROVAL = type(uint96).max / 2; // some tokens use 96 bits for approval function _transferIn(address token, address from, uint256 amount) internal { if (token == NATIVE) require(msg.value == amount, "eth mismatch"); else if (amount != 0) IERC20(token).safeTransferFrom(from, address(this), amount); } function _transferFrom(IERC20 token, address from, address to, uint256 amount) internal { if (amount != 0) token.safeTransferFrom(from, to, amount); } function _transferOut(address token, address to, uint256 amount) internal { if (amount == 0) return; if (token == NATIVE) { (bool success, ) = to.call{ value: amount }(""); require(success, "eth send failed"); } else { IERC20(token).safeTransfer(to, amount); } } function _transferOut(address[] memory tokens, address to, uint256[] memory amounts) internal { uint256 numTokens = tokens.length; require(numTokens == amounts.length, "length mismatch"); for (uint256 i = 0; i < numTokens; ) { _transferOut(tokens[i], to, amounts[i]); unchecked { i++; } } } function _selfBalance(address token) internal view returns (uint256) { return (token == NATIVE) ? address(this).balance : IERC20(token).balanceOf(address(this)); } function _selfBalance(IERC20 token) internal view returns (uint256) { return token.balanceOf(address(this)); } /// @notice Approves the stipulated contract to spend the given allowance in the given token /// @dev PLS PAY ATTENTION to tokens that requires the approval to be set to 0 before changing it function _safeApprove(address token, address to, uint256 value) internal { (bool success, bytes memory data) = token.call( abi.encodeWithSelector(IERC20.approve.selector, to, value) ); require(success && (data.length == 0 || abi.decode(data, (bool))), "Safe Approve"); } function _safeApproveInf(address token, address to) internal { if (token == NATIVE) return; if (IERC20(token).allowance(address(this), to) < LOWER_BOUND_APPROVAL) { _safeApprove(token, to, 0); _safeApprove(token, to, type(uint256).max); } } function _wrap_unwrap_ETH(address tokenIn, address tokenOut, uint256 netTokenIn) internal { if (tokenIn == NATIVE) IWETH(tokenOut).deposit{ value: netTokenIn }(); else IWETH(tokenIn).withdraw(netTokenIn); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../libraries/math/Math.sol"; import "../libraries/math/LogExpMath.sol"; import "../StandardizedYield/PYIndex.sol"; import "../libraries/MiniHelpers.sol"; import "../libraries/Errors.sol"; struct MarketState { int256 totalPt; int256 totalSy; int256 totalLp; address treasury; /// immutable variables /// int256 scalarRoot; uint256 expiry; /// fee data /// uint256 lnFeeRateRoot; uint256 reserveFeePercent; // base 100 /// last trade data /// uint256 lastLnImpliedRate; } // params that are expensive to compute, therefore we pre-compute them struct MarketPreCompute { int256 rateScalar; int256 totalAsset; int256 rateAnchor; int256 feeRate; } // solhint-disable ordering library MarketMathCore { using Math for uint256; using Math for int256; using LogExpMath for int256; using PYIndexLib for PYIndex; int256 internal constant MINIMUM_LIQUIDITY = 10 ** 3; int256 internal constant PERCENTAGE_DECIMALS = 100; uint256 internal constant DAY = 86400; uint256 internal constant IMPLIED_RATE_TIME = 365 * DAY; int256 internal constant MAX_MARKET_PROPORTION = (1e18 * 96) / 100; using Math for uint256; using Math for int256; /*/////////////////////////////////////////////////////////////// UINT FUNCTIONS TO PROXY TO CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidity( MarketState memory market, uint256 syDesired, uint256 ptDesired, uint256 blockTime ) internal pure returns (uint256 lpToReserve, uint256 lpToAccount, uint256 syUsed, uint256 ptUsed) { ( int256 _lpToReserve, int256 _lpToAccount, int256 _syUsed, int256 _ptUsed ) = addLiquidityCore(market, syDesired.Int(), ptDesired.Int(), blockTime); lpToReserve = _lpToReserve.Uint(); lpToAccount = _lpToAccount.Uint(); syUsed = _syUsed.Uint(); ptUsed = _ptUsed.Uint(); } function removeLiquidity( MarketState memory market, uint256 lpToRemove ) internal pure returns (uint256 netSyToAccount, uint256 netPtToAccount) { (int256 _syToAccount, int256 _ptToAccount) = removeLiquidityCore(market, lpToRemove.Int()); netSyToAccount = _syToAccount.Uint(); netPtToAccount = _ptToAccount.Uint(); } function swapExactPtForSy( MarketState memory market, PYIndex index, uint256 exactPtToMarket, uint256 blockTime ) internal pure returns (uint256 netSyToAccount, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore( market, index, exactPtToMarket.neg(), blockTime ); netSyToAccount = _netSyToAccount.Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } function swapSyForExactPt( MarketState memory market, PYIndex index, uint256 exactPtToAccount, uint256 blockTime ) internal pure returns (uint256 netSyToMarket, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyToAccount, int256 _netSyFee, int256 _netSyToReserve) = executeTradeCore( market, index, exactPtToAccount.Int(), blockTime ); netSyToMarket = _netSyToAccount.neg().Uint(); netSyFee = _netSyFee.Uint(); netSyToReserve = _netSyToReserve.Uint(); } /*/////////////////////////////////////////////////////////////// CORE FUNCTIONS //////////////////////////////////////////////////////////////*/ function addLiquidityCore( MarketState memory market, int256 syDesired, int256 ptDesired, uint256 blockTime ) internal pure returns (int256 lpToReserve, int256 lpToAccount, int256 syUsed, int256 ptUsed) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (syDesired == 0 || ptDesired == 0) revert Errors.MarketZeroAmountsInput(); if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ if (market.totalLp == 0) { lpToAccount = Math.sqrt((syDesired * ptDesired).Uint()).Int() - MINIMUM_LIQUIDITY; lpToReserve = MINIMUM_LIQUIDITY; syUsed = syDesired; ptUsed = ptDesired; } else { int256 netLpByPt = (ptDesired * market.totalLp) / market.totalPt; int256 netLpBySy = (syDesired * market.totalLp) / market.totalSy; if (netLpByPt < netLpBySy) { lpToAccount = netLpByPt; ptUsed = ptDesired; syUsed = (market.totalSy * lpToAccount) / market.totalLp; } else { lpToAccount = netLpBySy; syUsed = syDesired; ptUsed = (market.totalPt * lpToAccount) / market.totalLp; } } if (lpToAccount <= 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalSy += syUsed; market.totalPt += ptUsed; market.totalLp += lpToAccount + lpToReserve; } function removeLiquidityCore( MarketState memory market, int256 lpToRemove ) internal pure returns (int256 netSyToAccount, int256 netPtToAccount) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (lpToRemove == 0) revert Errors.MarketZeroAmountsInput(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ netSyToAccount = (lpToRemove * market.totalSy) / market.totalLp; netPtToAccount = (lpToRemove * market.totalPt) / market.totalLp; if (netSyToAccount == 0 && netPtToAccount == 0) revert Errors.MarketZeroAmountsOutput(); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.totalLp = market.totalLp.subNoNeg(lpToRemove); market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount); } function executeTradeCore( MarketState memory market, PYIndex index, int256 netPtToAccount, uint256 blockTime ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); if (market.totalPt <= netPtToAccount) revert Errors.MarketInsufficientPtForTrade(market.totalPt, netPtToAccount); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ MarketPreCompute memory comp = getMarketPreCompute(market, index, blockTime); (netSyToAccount, netSyFee, netSyToReserve) = calcTrade( market, comp, index, netPtToAccount ); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ _setNewMarketStateTrade( market, comp, index, netPtToAccount, netSyToAccount, netSyToReserve, blockTime ); } function getMarketPreCompute( MarketState memory market, PYIndex index, uint256 blockTime ) internal pure returns (MarketPreCompute memory res) { if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); uint256 timeToExpiry = market.expiry - blockTime; res.rateScalar = _getRateScalar(market, timeToExpiry); res.totalAsset = index.syToAsset(market.totalSy); if (market.totalPt == 0 || res.totalAsset == 0) revert Errors.MarketZeroTotalPtOrTotalAsset(market.totalPt, res.totalAsset); res.rateAnchor = _getRateAnchor( market.totalPt, market.lastLnImpliedRate, res.totalAsset, res.rateScalar, timeToExpiry ); res.feeRate = _getExchangeRateFromImpliedRate(market.lnFeeRateRoot, timeToExpiry); } function calcTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount ) internal pure returns (int256 netSyToAccount, int256 netSyFee, int256 netSyToReserve) { int256 preFeeExchangeRate = _getExchangeRate( market.totalPt, comp.totalAsset, comp.rateScalar, comp.rateAnchor, netPtToAccount ); int256 preFeeAssetToAccount = netPtToAccount.divDown(preFeeExchangeRate).neg(); int256 fee = comp.feeRate; if (netPtToAccount > 0) { int256 postFeeExchangeRate = preFeeExchangeRate.divDown(fee); if (postFeeExchangeRate < Math.IONE) revert Errors.MarketExchangeRateBelowOne(postFeeExchangeRate); fee = preFeeAssetToAccount.mulDown(Math.IONE - fee); } else { fee = ((preFeeAssetToAccount * (Math.IONE - fee)) / fee).neg(); } int256 netAssetToReserve = (fee * market.reserveFeePercent.Int()) / PERCENTAGE_DECIMALS; int256 netAssetToAccount = preFeeAssetToAccount - fee; netSyToAccount = netAssetToAccount < 0 ? index.assetToSyUp(netAssetToAccount) : index.assetToSy(netAssetToAccount); netSyFee = index.assetToSy(fee); netSyToReserve = index.assetToSy(netAssetToReserve); } function _setNewMarketStateTrade( MarketState memory market, MarketPreCompute memory comp, PYIndex index, int256 netPtToAccount, int256 netSyToAccount, int256 netSyToReserve, uint256 blockTime ) internal pure { uint256 timeToExpiry = market.expiry - blockTime; market.totalPt = market.totalPt.subNoNeg(netPtToAccount); market.totalSy = market.totalSy.subNoNeg(netSyToAccount + netSyToReserve); market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, index.syToAsset(market.totalSy), comp.rateScalar, comp.rateAnchor, timeToExpiry ); if (market.lastLnImpliedRate == 0) revert Errors.MarketZeroLnImpliedRate(); } function _getRateAnchor( int256 totalPt, uint256 lastLnImpliedRate, int256 totalAsset, int256 rateScalar, uint256 timeToExpiry ) internal pure returns (int256 rateAnchor) { int256 newExchangeRate = _getExchangeRateFromImpliedRate(lastLnImpliedRate, timeToExpiry); if (newExchangeRate < Math.IONE) revert Errors.MarketExchangeRateBelowOne(newExchangeRate); { int256 proportion = totalPt.divDown(totalPt + totalAsset); int256 lnProportion = _logProportion(proportion); rateAnchor = newExchangeRate - lnProportion.divDown(rateScalar); } } /// @notice Calculates the current market implied rate. /// @return lnImpliedRate the implied rate function _getLnImpliedRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, uint256 timeToExpiry ) internal pure returns (uint256 lnImpliedRate) { // This will check for exchange rates < Math.IONE int256 exchangeRate = _getExchangeRate(totalPt, totalAsset, rateScalar, rateAnchor, 0); // exchangeRate >= 1 so its ln >= 0 uint256 lnRate = exchangeRate.ln().Uint(); lnImpliedRate = (lnRate * IMPLIED_RATE_TIME) / timeToExpiry; } /// @notice Converts an implied rate to an exchange rate given a time to expiry. The /// formula is E = e^rt function _getExchangeRateFromImpliedRate( uint256 lnImpliedRate, uint256 timeToExpiry ) internal pure returns (int256 exchangeRate) { uint256 rt = (lnImpliedRate * timeToExpiry) / IMPLIED_RATE_TIME; exchangeRate = LogExpMath.exp(rt.Int()); } function _getExchangeRate( int256 totalPt, int256 totalAsset, int256 rateScalar, int256 rateAnchor, int256 netPtToAccount ) internal pure returns (int256 exchangeRate) { int256 numerator = totalPt.subNoNeg(netPtToAccount); int256 proportion = (numerator.divDown(totalPt + totalAsset)); if (proportion > MAX_MARKET_PROPORTION) revert Errors.MarketProportionTooHigh(proportion, MAX_MARKET_PROPORTION); int256 lnProportion = _logProportion(proportion); exchangeRate = lnProportion.divDown(rateScalar) + rateAnchor; if (exchangeRate < Math.IONE) revert Errors.MarketExchangeRateBelowOne(exchangeRate); } function _logProportion(int256 proportion) internal pure returns (int256 res) { if (proportion == Math.IONE) revert Errors.MarketProportionMustNotEqualOne(); int256 logitP = proportion.divDown(Math.IONE - proportion); res = logitP.ln(); } function _getRateScalar( MarketState memory market, uint256 timeToExpiry ) internal pure returns (int256 rateScalar) { rateScalar = (market.scalarRoot * IMPLIED_RATE_TIME.Int()) / timeToExpiry.Int(); if (rateScalar <= 0) revert Errors.MarketRateScalarBelowZero(rateScalar); } function setInitialLnImpliedRate( MarketState memory market, PYIndex index, int256 initialAnchor, uint256 blockTime ) internal pure { /// ------------------------------------------------------------ /// CHECKS /// ------------------------------------------------------------ if (MiniHelpers.isExpired(market.expiry, blockTime)) revert Errors.MarketExpired(); /// ------------------------------------------------------------ /// MATH /// ------------------------------------------------------------ int256 totalAsset = index.syToAsset(market.totalSy); uint256 timeToExpiry = market.expiry - blockTime; int256 rateScalar = _getRateScalar(market, timeToExpiry); /// ------------------------------------------------------------ /// WRITE /// ------------------------------------------------------------ market.lastLnImpliedRate = _getLnImpliedRate( market.totalPt, totalAsset, rateScalar, initialAnchor, timeToExpiry ); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../../interfaces/IPYieldToken.sol"; import "../../interfaces/IPPrincipalToken.sol"; import "./SYUtils.sol"; import "../libraries/math/Math.sol"; type PYIndex is uint256; library PYIndexLib { using Math for uint256; using Math for int256; function newIndex(IPYieldToken YT) internal returns (PYIndex) { return PYIndex.wrap(YT.pyIndexCurrent()); } function syToAsset(PYIndex index, uint256 syAmount) internal pure returns (uint256) { return SYUtils.syToAsset(PYIndex.unwrap(index), syAmount); } function assetToSy(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount); } function assetToSyUp(PYIndex index, uint256 assetAmount) internal pure returns (uint256) { return SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount); } function syToAssetUp(PYIndex index, uint256 syAmount) internal pure returns (uint256) { uint256 _index = PYIndex.unwrap(index); return SYUtils.syToAssetUp(_index, syAmount); } function syToAsset(PYIndex index, int256 syAmount) internal pure returns (int256) { int256 sign = syAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.syToAsset(PYIndex.unwrap(index), syAmount.abs())).Int(); } function assetToSy(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSy(PYIndex.unwrap(index), assetAmount.abs())).Int(); } function assetToSyUp(PYIndex index, int256 assetAmount) internal pure returns (int256) { int256 sign = assetAmount < 0 ? int256(-1) : int256(1); return sign * (SYUtils.assetToSyUp(PYIndex.unwrap(index), assetAmount.abs())).Int(); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; library SYUtils { uint256 internal constant ONE = 1e18; function syToAsset(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate) / ONE; } function syToAssetUp(uint256 exchangeRate, uint256 syAmount) internal pure returns (uint256) { return (syAmount * exchangeRate + ONE - 1) / ONE; } function assetToSy(uint256 exchangeRate, uint256 assetAmount) internal pure returns (uint256) { return (assetAmount * ONE) / exchangeRate; } function assetToSyUp( uint256 exchangeRate, uint256 assetAmount ) internal pure returns (uint256) { return (assetAmount * ONE + exchangeRate - 1) / exchangeRate; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /******************************************************************************\ * Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) * EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 /******************************************************************************/ // A loupe is a small magnifying glass used to look at diamonds. // These functions look at diamonds interface IDiamondLoupe { /// These functions are expected to be called frequently /// by tools. struct Facet { address facetAddress; bytes4[] functionSelectors; } /// @notice Gets all facet addresses and their four byte function selectors. /// @return facets_ Facet function facets() external view returns (Facet[] memory facets_); /// @notice Gets all the function selectors supported by a specific facet. /// @param _facet The facet address. /// @return facetFunctionSelectors_ function facetFunctionSelectors( address _facet ) external view returns (bytes4[] memory facetFunctionSelectors_); /// @notice Get all the facet addresses used by a diamond. /// @return facetAddresses_ function facetAddresses() external view returns (address[] memory facetAddresses_); /// @notice Gets the facet that supports the given selector. /// @dev If facet is not found return address(0). /// @param _functionSelector The function selector. /// @return facetAddress_ The facet address. function facetAddress(bytes4 _functionSelector) external view returns (address facetAddress_); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../router/base/MarketApproxLib.sol"; import "../router/base/ActionBaseMintRedeem.sol"; interface IPActionAddRemoveLiq { event AddLiquidityDualSyAndPt( address indexed caller, address indexed market, address indexed receiver, uint256 netSyUsed, uint256 netPtUsed, uint256 netLpOut ); event AddLiquidityDualTokenAndPt( address indexed caller, address indexed market, address indexed tokenIn, address receiver, uint256 netTokenUsed, uint256 netPtUsed, uint256 netLpOut ); event AddLiquiditySinglePt( address indexed caller, address indexed market, address indexed receiver, uint256 netPtIn, uint256 netLpOut ); event AddLiquiditySingleSy( address indexed caller, address indexed market, address indexed receiver, uint256 netSyIn, uint256 netLpOut ); event AddLiquiditySingleToken( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netTokenIn, uint256 netLpOut ); event AddLiquiditySingleSyKeepYt( address indexed caller, address indexed market, address indexed receiver, uint256 netSyIn, uint256 netLpOut, uint256 netYtOut ); event AddLiquiditySingleTokenKeepYt( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netTokenIn, uint256 netLpOut, uint256 netYtOut ); event RemoveLiquidityDualSyAndPt( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netPtOut, uint256 netSyOut ); event RemoveLiquidityDualTokenAndPt( address indexed caller, address indexed market, address indexed tokenOut, address receiver, uint256 netLpToRemove, uint256 netPtOut, uint256 netTokenOut ); event RemoveLiquiditySinglePt( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netPtOut ); event RemoveLiquiditySingleSy( address indexed caller, address indexed market, address indexed receiver, uint256 netLpToRemove, uint256 netSyOut ); event RemoveLiquiditySingleToken( address indexed caller, address indexed market, address indexed token, address receiver, uint256 netLpToRemove, uint256 netTokenOut ); function addLiquidityDualSyAndPt( address receiver, address market, uint256 netSyDesired, uint256 netPtDesired, uint256 minLpOut ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed); function addLiquidityDualTokenAndPt( address receiver, address market, TokenInput calldata input, uint256 netPtDesired, uint256 minLpOut ) external payable returns (uint256 netLpOut, uint256 netTokenUsed, uint256 netPtUsed); function addLiquiditySinglePt( address receiver, address market, uint256 netPtIn, uint256 minLpOut, ApproxParams calldata guessPtSwapToSy ) external returns (uint256 netLpOut, uint256 netSyFee); function addLiquiditySingleSy( address receiver, address market, uint256 netSyIn, uint256 minLpOut, ApproxParams calldata guessPtReceivedFromSy ) external returns (uint256 netLpOut, uint256 netSyFee); function addLiquiditySingleToken( address receiver, address market, uint256 minLpOut, ApproxParams calldata guessPtReceivedFromSy, TokenInput calldata input ) external payable returns (uint256 netLpOut, uint256 netSyFee); function addLiquiditySingleSyKeepYt( address receiver, address market, uint256 netSyIn, uint256 minLpOut, uint256 minYtOut ) external returns (uint256 netLpOut, uint256 netYtOut); function addLiquiditySingleTokenKeepYt( address receiver, address market, uint256 minLpOut, uint256 minYtOut, TokenInput calldata input ) external returns (uint256 netLpOut, uint256 netYtOut); function removeLiquidityDualSyAndPt( address receiver, address market, uint256 netLpToRemove, uint256 minSyOut, uint256 minPtOut ) external returns (uint256 netSyOut, uint256 netPtOut); function removeLiquidityDualTokenAndPt( address receiver, address market, uint256 netLpToRemove, TokenOutput calldata output, uint256 minPtOut ) external returns (uint256 netTokenOut, uint256 netPtOut); function removeLiquiditySinglePt( address receiver, address market, uint256 netLpToRemove, uint256 minPtOut, ApproxParams calldata guessPtOut ) external returns (uint256 netPtOut, uint256 netSyFee); function removeLiquiditySingleSy( address receiver, address market, uint256 netLpToRemove, uint256 minSyOut ) external returns (uint256 netSyOut, uint256 netSyFee); function removeLiquiditySingleToken( address receiver, address market, uint256 netLpToRemove, TokenOutput calldata output ) external returns (uint256 netTokenOut, uint256 netSyFee); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; interface IPActionInfoStatic { struct TokenAmount { address token; uint256 amount; } struct UserSYInfo { TokenAmount syBalance; TokenAmount[] unclaimedRewards; } struct UserPYInfo { TokenAmount ptBalance; TokenAmount ytBalance; TokenAmount unclaimedInterest; TokenAmount[] unclaimedRewards; } struct UserMarketInfo { TokenAmount lpBalance; TokenAmount ptBalance; TokenAmount syBalance; TokenAmount[] unclaimedRewards; } function getPY(address py) external view returns (address pt, address yt); /// can be SY, PY or Market function getTokensInOut(address token) external view returns (address[] memory tokensIn, address[] memory tokensOut); function getUserSYInfo(address sy, address user) external returns (UserSYInfo memory res); function getUserPYInfo(address py, address user) external returns (UserPYInfo memory res); function getUserMarketInfo(address market, address user) external returns (UserMarketInfo memory res); }
pragma solidity ^0.8.17; import "./IPMarket.sol"; interface IPActionMarketAuxStatic { function calcPriceImpactPY(address market, int256 netPtOut) external view returns (uint256); function calcPriceImpactPt(address market, int256 netPtOut) external view returns (uint256); function calcPriceImpactYt(address market, int256 netPtOut) external view returns (uint256); function getMarketState(address market) external view returns ( address pt, address yt, address sy, int256 impliedYield, uint256 marketExchangeRateExcludeFee, MarketState memory state ); function getTradeExchangeRateExcludeFee(address market, MarketState memory state) external view returns (uint256); function getTradeExchangeRateIncludeFee(address market, int256 netPtOut) external view returns (uint256); function getLpToSyRate(address market) external view returns (uint256); function getPtToSyRate(address market) external view returns (uint256); function getLpToAssetRate(address market) external view returns (uint256); function getPtToAssetRate(address market) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; interface IPActionMarketCoreStatic { function addLiquidityDualSyAndPtStatic( address market, uint256 netSyDesired, uint256 netPtDesired ) external view returns ( uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed ); function addLiquidityDualTokenAndPtStatic( address market, address tokenIn, uint256 netTokenDesired, address bulk, uint256 netPtDesired ) external view returns ( uint256 netLpOut, uint256 netTokenUsed, uint256 netPtUsed, uint256 netSyUsed, uint256 netSyDesired ); function addLiquiditySinglePtStatic(address market, uint256 netPtIn) external view returns ( uint256 netLpOut, uint256 netPtToSwap, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter, uint256 netSyFromSwap ); function addLiquiditySingleSyKeepYtStatic(address market, uint256 netSyIn) external view returns ( uint256 netLpOut, uint256 netYtOut, uint256 netSyToPY ); function addLiquiditySingleSyStatic(address market, uint256 netSyIn) external view returns ( uint256 netLpOut, uint256 netPtFromSwap, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter, uint256 netSyToSwap ); function addLiquiditySingleTokenKeepYtStatic( address market, address tokenIn, uint256 netTokenIn, address bulk ) external view returns ( uint256 netLpOut, uint256 netYtOut, uint256 netSyMinted, uint256 netSyToPY ); function addLiquiditySingleTokenStatic( address market, address tokenIn, uint256 netTokenIn, address bulk ) external view returns ( uint256 netLpOut, uint256 netPtFromSwap, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter, uint256 netSyMinted, uint256 netSyToSwap ); function removeLiquidityDualSyAndPtStatic(address market, uint256 netLpToRemove) external view returns (uint256 netSyOut, uint256 netPtOut); function removeLiquidityDualTokenAndPtStatic( address market, uint256 netLpToRemove, address tokenOut, address bulk ) external view returns ( uint256 netTokenOut, uint256 netPtOut, uint256 netSyToRedeem ); function removeLiquiditySinglePtStatic(address market, uint256 netLpToRemove) external view returns ( uint256 netPtOut, uint256 netPtFromSwap, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter, uint256 netSyFromBurn, uint256 netPtFromBurn ); function removeLiquiditySingleSyStatic(address market, uint256 netLpToRemove) external view returns ( uint256 netSyOut, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter, uint256 netSyFromBurn, uint256 netPtFromBurn, uint256 netSyFromSwap ); function removeLiquiditySingleTokenStatic( address market, uint256 netLpToRemove, address tokenOut, address bulk ) external view returns ( uint256 netTokenOut, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter, uint256 netSyOut, uint256 netSyFromBurn, uint256 netPtFromBurn, uint256 netSyFromSwap ); function swapExactPtForSyStatic(address market, uint256 exactPtIn) external view returns ( uint256 netSyOut, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); function swapExactPtForTokenStatic( address market, uint256 exactPtIn, address tokenOut, address bulk ) external view returns ( uint256 netTokenOut, uint256 netSyToRedeem, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); function swapExactPtForYtStatic(address market, uint256 exactPtIn) external view returns ( uint256 netYtOut, uint256 totalPtToSwap, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); function swapExactSyForPtStatic(address market, uint256 exactSyIn) external view returns ( uint256 netPtOut, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); function swapExactSyForYtStatic(address market, uint256 exactSyIn) external view returns ( uint256 netYtOut, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); function swapExactTokenForPtStatic( address market, address tokenIn, uint256 amountTokenIn, address bulk ) external view returns ( uint256 netPtOut, uint256 netSyMinted, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); function swapExactTokenForYtStatic( address market, address tokenIn, uint256 amountTokenIn, address bulk ) external view returns ( uint256 netYtOut, uint256 netSyMinted, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); function swapExactYtForPtStatic(address market, uint256 exactYtIn) external view returns ( uint256 netPtOut, uint256 totalPtSwapped, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); function swapExactYtForSyStatic(address market, uint256 exactYtIn) external view returns ( uint256 netSyOut, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter, uint256 netSyOwedInt, uint256 netPYToRepaySyOwedInt, uint256 netPYToRedeemSyOutInt ); function swapExactYtForTokenStatic( address market, uint256 exactYtIn, address tokenOut, address bulk ) external view returns ( uint256 netTokenOut, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter, uint256 netSyOut, uint256 netSyOwedInt, uint256 netPYToRepaySyOwedInt, uint256 netPYToRedeemSyOutInt ); function swapPtForExactSyStatic(address market, uint256 exactSyOut) external view returns ( uint256 netPtIn, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); function swapSyForExactPtStatic(address market, uint256 exactPtOut) external view returns ( uint256 netSyIn, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); function swapSyForExactYtStatic(address market, uint256 exactYtOut) external view returns ( uint256 netSyIn, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter, uint256 netSyReceivedInt, uint256 totalSyNeedInt ); function swapYtForExactSyStatic(address market, uint256 exactSyOut) external view returns ( uint256 netYtIn, uint256 netSyFee, uint256 priceImpact, uint256 exchangeRateAfter ); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../router/base/MarketApproxLib.sol"; import "../router/base/ActionBaseMintRedeem.sol"; interface IPActionMintRedeem { event MintSyFromToken( address indexed caller, address indexed tokenIn, address indexed SY, address receiver, uint256 netTokenIn, uint256 netSyOut ); event RedeemSyToToken( address indexed caller, address indexed tokenOut, address indexed SY, address receiver, uint256 netSyIn, uint256 netTokenOut ); event MintPyFromSy( address indexed caller, address indexed receiver, address indexed YT, uint256 netSyIn, uint256 netPyOut ); event RedeemPyToSy( address indexed caller, address indexed receiver, address indexed YT, uint256 netPyIn, uint256 netSyOut ); event MintPyFromToken( address indexed caller, address indexed tokenIn, address indexed YT, address receiver, uint256 netTokenIn, uint256 netPyOut ); event RedeemPyToToken( address indexed caller, address indexed tokenOut, address indexed YT, address receiver, uint256 netPyIn, uint256 netTokenOut ); function mintSyFromToken( address receiver, address SY, uint256 minSyOut, TokenInput calldata input ) external payable returns (uint256 netSyOut); function redeemSyToToken( address receiver, address SY, uint256 netSyIn, TokenOutput calldata output ) external returns (uint256 netTokenOut); function mintPyFromToken( address receiver, address YT, uint256 minPyOut, TokenInput calldata input ) external payable returns (uint256 netPyOut); function redeemPyToToken( address receiver, address YT, uint256 netPyIn, TokenOutput calldata output ) external returns (uint256 netTokenOut); function mintPyFromSy( address receiver, address YT, uint256 netSyIn, uint256 minPyOut ) external returns (uint256 netPyOut); function redeemPyToSy( address receiver, address YT, uint256 netPyIn, uint256 minSyOut ) external returns (uint256 netSyOut); function redeemDueInterestAndRewards( address user, address[] calldata sys, address[] calldata yts, address[] calldata markets ) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; interface IPActionMintRedeemStatic { function getAmountTokenToMintSy( address SY, address tokenIn, address bulk, uint256 netSyOut ) external view returns (uint256 netTokenIn); function getBulkSellerInfo( address token, address SY, uint256 netTokenIn, uint256 netSyIn ) external view returns ( address bulk, uint256 totalToken, uint256 totalSy ); function mintPyFromSyStatic(address YT, uint256 netSyToMint) external view returns (uint256 netPYOut); function mintPyFromTokenStatic( address YT, address tokenIn, uint256 netTokenIn, address bulk ) external view returns (uint256 netPyOut); function mintSyFromTokenStatic( address SY, address tokenIn, uint256 netTokenIn, address bulk ) external view returns (uint256 netSyOut); function redeemPyToSyStatic(address YT, uint256 netPYToRedeem) external view returns (uint256 netSyOut); function redeemPyToTokenStatic( address YT, uint256 netPYToRedeem, address tokenOut, address bulk ) external view returns (uint256 netTokenOut); function redeemSyToTokenStatic( address SY, address tokenOut, uint256 netSyIn, address bulk ) external view returns (uint256 netTokenOut); function pyIndexCurrentViewMarket(address market) external view returns (uint256); function pyIndexCurrentViewYt(address yt) external view returns (uint256); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; interface IPActionMisc { struct MultiApproval { address[] tokens; address spender; } struct Call3 { bool allowFailure; bytes callData; } struct Result { bool success; bytes returnData; } function approveInf(MultiApproval[] calldata) external; function batchExec(Call3[] calldata calls) external returns (Result[] memory returnData); }
pragma solidity ^0.8.17; import "./IPAllAction.sol"; interface IPActionStorageStatic { event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); function setDefaultApproxParams(ApproxParams memory params) external; function getDefaultApproxParams() external view returns (ApproxParams memory); function setBulkSellerFactory(address _bulkSellerFactory) external; function getBulkSellerFactory() external view returns (address); function getOwnerAndPendingOwner() external view returns (address _owner, address _pendingOwner); function transferOwnership(address newOwner, bool direct, bool renounce) external; function claimOwnership() external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../router/base/MarketApproxLib.sol"; import "../router/base/ActionBaseMintRedeem.sol"; interface IPActionSwapPT { event SwapPtAndSy( address indexed caller, address indexed market, address indexed receiver, int256 netPtToAccount, int256 netSyToAccount ); event SwapPtAndToken( address indexed caller, address indexed market, address indexed token, address receiver, int256 netPtToAccount, int256 netTokenToAccount ); function swapExactPtForSy( address receiver, address market, uint256 exactPtIn, uint256 minSyOut ) external returns (uint256 netSyOut, uint256 netSyFee); function swapPtForExactSy( address receiver, address market, uint256 exactSyOut, uint256 maxPtIn, ApproxParams calldata guessPtIn ) external returns (uint256 netPtIn, uint256 netSyFee); function swapSyForExactPt( address receiver, address market, uint256 exactPtOut, uint256 maxSyIn ) external returns (uint256 netSyIn, uint256 netSyFee); function swapExactSyForPt( address receiver, address market, uint256 exactSyIn, uint256 minPtOut, ApproxParams calldata guessPtOut ) external returns (uint256 netPtOut, uint256 netSyFee); function swapExactTokenForPt( address receiver, address market, uint256 minPtOut, ApproxParams calldata guessPtOut, TokenInput calldata input ) external payable returns (uint256 netPtOut, uint256 netSyFee); function swapExactPtForToken( address receiver, address market, uint256 exactPtIn, TokenOutput calldata output ) external returns (uint256 netTokenOut, uint256 netSyFee); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../router/base/MarketApproxLib.sol"; import "../router/base/ActionBaseMintRedeem.sol"; interface IPActionSwapYT { event SwapYtAndSy( address indexed caller, address indexed market, address indexed receiver, int256 netYtToAccount, int256 netSyToAccount ); event SwapYtAndToken( address indexed caller, address indexed market, address indexed token, address receiver, int256 netYtToAccount, int256 netTokenToAccount ); event SwapPtAndYt( address indexed caller, address indexed market, address indexed receiver, int256 netPtToAccount, int256 netYtToAccount ); function swapExactSyForYt( address receiver, address market, uint256 exactSyIn, uint256 minYtOut, ApproxParams calldata guessYtOut ) external returns (uint256 netYtOut, uint256 netSyFee); function swapExactYtForSy( address receiver, address market, uint256 exactYtIn, uint256 minSyOut ) external returns (uint256 netSyOut, uint256 netSyFee); function swapSyForExactYt( address receiver, address market, uint256 exactYtOut, uint256 maxSyIn ) external returns (uint256 netSyIn, uint256 netSyFee); function swapYtForExactSy( address receiver, address market, uint256 exactSyOut, uint256 maxYtIn, ApproxParams calldata guessYtIn ) external returns (uint256 netYtIn, uint256 netSyFee); function swapExactTokenForYt( address receiver, address market, uint256 minYtOut, ApproxParams calldata guessYtOut, TokenInput calldata input ) external payable returns (uint256 netYtOut, uint256 netSyFee); function swapExactYtForToken( address receiver, address market, uint256 netYtIn, TokenOutput calldata output ) external returns (uint256 netTokenOut, uint256 netSyFee); function swapExactPtForYt( address receiver, address market, uint256 exactPtIn, uint256 minYtOut, ApproxParams calldata guessTotalPtToSwap ) external returns (uint256 netYtOut, uint256 netSyFee); function swapExactYtForPt( address receiver, address market, uint256 exactYtIn, uint256 minPtOut, ApproxParams calldata guessTotalPtSwapped ) external returns (uint256 netPtOut, uint256 netSyFee); }
pragma solidity ^0.8.17; interface IPActionVePendleStatic { function increaseLockPositionStatic( address user, uint128 additionalAmountToLock, uint128 newExpiry ) external view returns (uint128 newVeBalance); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "./IPActionAddRemoveLiq.sol"; import "./IPActionSwapPT.sol"; import "./IPActionSwapYT.sol"; import "./IPActionMintRedeem.sol"; import "./IPActionMisc.sol"; import "./IPMarketSwapCallback.sol"; import "./IDiamondLoupe.sol"; interface IPAllAction is IPActionAddRemoveLiq, IPActionSwapPT, IPActionSwapYT, IPActionMintRedeem, IPActionMisc, IPMarketSwapCallback, IDiamondLoupe {}
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../core/BulkSeller/BulkSellerMathCore.sol"; interface IPBulkSeller { event SwapExactTokenForSy(address receiver, uint256 netTokenIn, uint256 netSyOut); event SwapExactSyForToken(address receiver, uint256 netSyIn, uint256 netTokenOut); event RateUpdated( uint256 newRateTokenToSy, uint256 newRateSyToToken, uint256 oldRateTokenToSy, uint256 oldRateSyToToken ); event ReBalanceTokenToSy( uint256 netTokenDeposit, uint256 netSyFromToken, uint256 newTokenProp, uint256 oldTokenProp ); event ReBalanceSyToToken( uint256 netSyRedeem, uint256 netTokenFromSy, uint256 newTokenProp, uint256 oldTokenProp ); event ReserveUpdated(uint256 totalToken, uint256 totalSy); event FeeRateUpdated(uint256 newFeeRate, uint256 oldFeeRate); function swapExactTokenForSy( address receiver, uint256 netTokenIn, uint256 minSyOut ) external payable returns (uint256 netSyOut); function swapExactSyForToken( address receiver, uint256 exactSyIn, uint256 minTokenOut, bool swapFromInternalBalance ) external returns (uint256 netTokenOut); function SY() external view returns (address); function token() external view returns (address); function readState() external view returns (BulkSellerState memory); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; interface IPBulkSellerFactory { event BulkSellerCreated(address indexed token, address indexed sy, address indexed bulk); event UpgradedBeacon(address indexed implementation); function get(address token, address SY) external view returns (address); function isMaintainer(address addr) external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; interface IPGauge { function totalActiveSupply() external view returns (uint256); function activeBalance(address user) external view returns (uint256); // only available for newer factories. please check the verified contracts event RedeemRewards(address indexed user, uint256[] rewardsOut); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; interface IPInterestManagerYT { function userInterest( address user ) external view returns (uint128 lastPYIndex, uint128 accruedInterest); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IPPrincipalToken.sol"; import "./IPYieldToken.sol"; import "./IStandardizedYield.sol"; import "./IPGauge.sol"; import "../core/Market/MarketMathCore.sol"; interface IPMarket is IERC20Metadata, IPGauge { event Mint( address indexed receiver, uint256 netLpMinted, uint256 netSyUsed, uint256 netPtUsed ); event Burn( address indexed receiverSy, address indexed receiverPt, uint256 netLpBurned, uint256 netSyOut, uint256 netPtOut ); event Swap( address indexed caller, address indexed receiver, int256 netPtOut, int256 netSyOut, uint256 netSyFee, uint256 netSyToReserve ); event UpdateImpliedRate(uint256 indexed timestamp, uint256 lnLastImpliedRate); event IncreaseObservationCardinalityNext( uint16 observationCardinalityNextOld, uint16 observationCardinalityNextNew ); function mint( address receiver, uint256 netSyDesired, uint256 netPtDesired ) external returns (uint256 netLpOut, uint256 netSyUsed, uint256 netPtUsed); function burn( address receiverSy, address receiverPt, uint256 netLpToBurn ) external returns (uint256 netSyOut, uint256 netPtOut); function swapExactPtForSy( address receiver, uint256 exactPtIn, bytes calldata data ) external returns (uint256 netSyOut, uint256 netSyFee); function swapSyForExactPt( address receiver, uint256 exactPtOut, bytes calldata data ) external returns (uint256 netSyIn, uint256 netSyFee); function redeemRewards(address user) external returns (uint256[] memory); function readState(address router) external view returns (MarketState memory market); function observe( uint32[] memory secondsAgos ) external view returns (uint216[] memory lnImpliedRateCumulative); function increaseObservationsCardinalityNext(uint16 cardinalityNext) external; function readTokens() external view returns (IStandardizedYield _SY, IPPrincipalToken _PT, IPYieldToken _YT); function getRewardTokens() external view returns (address[] memory); function isExpired() external view returns (bool); function expiry() external view returns (uint256); function observations( uint256 index ) external view returns (uint32 blockTimestamp, uint216 lnImpliedRateCumulative, bool initialized); function _storage() external view returns ( int128 totalPt, int128 totalSy, uint96 lastLnImpliedRate, uint16 observationIndex, uint16 observationCardinality, uint16 observationCardinalityNext ); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; interface IPMarketSwapCallback { function swapCallback(int256 ptToAccount, int256 syToAccount, bytes calldata data) external; }
pragma solidity ^0.8.17; interface IPMiniDiamond { struct SelectorsToFacet { address facet; bytes4[] selectors; } function setFacetForSelectors(SelectorsToFacet[] calldata arr) external; function facetAddress(bytes4 selector) external view returns (address); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IPPrincipalToken is IERC20Metadata { function burnByYT(address user, uint256 amount) external; function mintByYT(address user, uint256 amount) external; function initialize(address _YT) external; function SY() external view returns (address); function YT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.17; import "./IPActionMarketAuxStatic.sol"; import "./IPActionMintRedeemStatic.sol"; import "./IPActionInfoStatic.sol"; import "./IPActionMarketCoreStatic.sol"; import "./IPActionVePendleStatic.sol"; import "./IPMiniDiamond.sol"; import "./IPActionStorageStatic.sol"; //solhint-disable-next-line no-empty-blocks interface IPRouterStatic is IPActionMintRedeemStatic, IPActionInfoStatic, IPActionMarketAuxStatic, IPActionMarketCoreStatic, IPActionVePendleStatic, IPMiniDiamond, IPActionStorageStatic { }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import "./IRewardManager.sol"; import "./IPInterestManagerYT.sol"; interface IPYieldToken is IERC20Metadata, IRewardManager, IPInterestManagerYT { event NewInterestIndex(uint256 indexed newIndex); event Mint( address indexed caller, address indexed receiverPT, address indexed receiverYT, uint256 amountSyToMint, uint256 amountPYOut ); event Burn( address indexed caller, address indexed receiver, uint256 amountPYToRedeem, uint256 amountSyOut ); event RedeemRewards(address indexed user, uint256[] amountRewardsOut); event RedeemInterest(address indexed user, uint256 interestOut); event WithdrawFeeToTreasury(uint256[] amountRewardsOut, uint256 syOut); function mintPY(address receiverPT, address receiverYT) external returns (uint256 amountPYOut); function redeemPY(address receiver) external returns (uint256 amountSyOut); function redeemPYMulti( address[] calldata receivers, uint256[] calldata amountPYToRedeems ) external returns (uint256[] memory amountSyOuts); function redeemDueInterestAndRewards( address user, bool redeemInterest, bool redeemRewards ) external returns (uint256 interestOut, uint256[] memory rewardsOut); function rewardIndexesCurrent() external returns (uint256[] memory); function pyIndexCurrent() external returns (uint256); function pyIndexStored() external view returns (uint256); function getRewardTokens() external view returns (address[] memory); function SY() external view returns (address); function PT() external view returns (address); function factory() external view returns (address); function expiry() external view returns (uint256); function isExpired() external view returns (bool); function doCacheIndexSameBlock() external view returns (bool); function pyIndexLastUpdatedBlock() external view returns (uint128); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; interface IRewardManager { function userReward( address token, address user ) external view returns (uint128 index, uint128 accrued); }
// SPDX-License-Identifier: GPL-3.0-or-later /* * MIT License * =========== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */ pragma solidity 0.8.17; import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; interface IStandardizedYield is IERC20Metadata { /// @dev Emitted when any base tokens is deposited to mint shares event Deposit( address indexed caller, address indexed receiver, address indexed tokenIn, uint256 amountDeposited, uint256 amountSyOut ); /// @dev Emitted when any shares are redeemed for base tokens event Redeem( address indexed caller, address indexed receiver, address indexed tokenOut, uint256 amountSyToRedeem, uint256 amountTokenOut ); /// @dev check `assetInfo()` for more information enum AssetType { TOKEN, LIQUIDITY } /// @dev Emitted when (`user`) claims their rewards event ClaimRewards(address indexed user, address[] rewardTokens, uint256[] rewardAmounts); /** * @notice mints an amount of shares by depositing a base token. * @param receiver shares recipient address * @param tokenIn address of the base tokens to mint shares * @param amountTokenToDeposit amount of base tokens to be transferred from (`msg.sender`) * @param minSharesOut reverts if amount of shares minted is lower than this * @return amountSharesOut amount of shares minted * @dev Emits a {Deposit} event * * Requirements: * - (`tokenIn`) must be a valid base token. */ function deposit( address receiver, address tokenIn, uint256 amountTokenToDeposit, uint256 minSharesOut ) external payable returns (uint256 amountSharesOut); /** * @notice redeems an amount of base tokens by burning some shares * @param receiver recipient address * @param amountSharesToRedeem amount of shares to be burned * @param tokenOut address of the base token to be redeemed * @param minTokenOut reverts if amount of base token redeemed is lower than this * @param burnFromInternalBalance if true, burns from balance of `address(this)`, otherwise burns from `msg.sender` * @return amountTokenOut amount of base tokens redeemed * @dev Emits a {Redeem} event * * Requirements: * - (`tokenOut`) must be a valid base token. */ function redeem( address receiver, uint256 amountSharesToRedeem, address tokenOut, uint256 minTokenOut, bool burnFromInternalBalance ) external returns (uint256 amountTokenOut); /** * @notice exchangeRate * syBalance / 1e18 must return the asset balance of the account * @notice vice-versa, if a user uses some amount of tokens equivalent to X asset, the amount of sy he can mint must be X * exchangeRate / 1e18 * @dev SYUtils's assetToSy & syToAsset should be used instead of raw multiplication & division */ function exchangeRate() external view returns (uint256 res); /** * @notice claims reward for (`user`) * @param user the user receiving their rewards * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens` * @dev * Emits a `ClaimRewards` event * See {getRewardTokens} for list of reward tokens */ function claimRewards(address user) external returns (uint256[] memory rewardAmounts); /** * @notice get the amount of unclaimed rewards for (`user`) * @param user the user to check for * @return rewardAmounts an array of reward amounts in the same order as `getRewardTokens` */ function accruedRewards(address user) external view returns (uint256[] memory rewardAmounts); function rewardIndexesCurrent() external returns (uint256[] memory indexes); function rewardIndexesStored() external view returns (uint256[] memory indexes); /** * @notice returns the list of reward token addresses */ function getRewardTokens() external view returns (address[] memory); /** * @notice returns the address of the underlying yield token */ function yieldToken() external view returns (address); /** * @notice returns all tokens that can mint this SY */ function getTokensIn() external view returns (address[] memory res); /** * @notice returns all tokens that can be redeemed by this SY */ function getTokensOut() external view returns (address[] memory res); function isValidTokenIn(address token) external view returns (bool); function isValidTokenOut(address token) external view returns (bool); function previewDeposit(address tokenIn, uint256 amountTokenToDeposit) external view returns (uint256 amountSharesOut); function previewRedeem(address tokenOut, uint256 amountSharesToRedeem) external view returns (uint256 amountTokenOut); /** * @notice This function contains information to interpret what the asset is * @return assetType the type of the asset (0 for ERC20 tokens, 1 for AMM liquidity tokens, 2 for bridged yield bearing tokens like wstETH, rETH on Arbi whose the underlying asset doesn't exist on the chain) * @return assetAddress the address of the asset * @return assetDecimals the decimals of the asset */ function assetInfo() external view returns ( AssetType assetType, address assetAddress, uint8 assetDecimals ); }
// SPDX-License-Identifier: GPL-3.0-or-later /* * MIT License * =========== * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE */ pragma solidity 0.8.17; import "@openzeppelin/contracts/token/ERC20/IERC20.sol"; interface IWETH is IERC20 { event Deposit(address indexed dst, uint256 wad); event Withdrawal(address indexed src, uint256 wad); function deposit() external payable; function withdraw(uint256 wad) external; }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../../../router/base/MarketApproxLib.sol"; import "../../../interfaces/IPBulkSellerFactory.sol"; abstract contract StorageLayout { address internal owner; address internal pendingOwner; mapping(bytes4 => address) internal selectorToFacet; ApproxParams internal defaultApproxParams; IPBulkSellerFactory internal bulkSellerFactory; modifier onlyOwner() { require(msg.sender == owner, "Ownable: caller is not the owner"); _; } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../../core/libraries/TokenHelper.sol"; import "../../interfaces/IStandardizedYield.sol"; import "../../interfaces/IPYieldToken.sol"; import "../../interfaces/IPBulkSeller.sol"; import "../../core/libraries/Errors.sol"; import "../swap-aggregator/IPSwapAggregator.sol"; struct TokenInput { // Token/Sy data address tokenIn; uint256 netTokenIn; address tokenMintSy; address bulk; // aggregator data address pendleSwap; SwapData swapData; } struct TokenOutput { // Token/Sy data address tokenOut; uint256 minTokenOut; address tokenRedeemSy; address bulk; // aggregator data address pendleSwap; SwapData swapData; } // solhint-disable no-empty-blocks abstract contract ActionBaseMintRedeem is TokenHelper { bytes internal constant EMPTY_BYTES = abi.encode(); function _mintSyFromToken( address receiver, address SY, uint256 minSyOut, TokenInput calldata inp ) internal returns (uint256 netSyOut) { SwapType swapType = inp.swapData.swapType; uint256 netTokenMintSy; if (swapType == SwapType.NONE) { _transferIn(inp.tokenIn, msg.sender, inp.netTokenIn); netTokenMintSy = inp.netTokenIn; } else if (swapType == SwapType.ETH_WETH) { _transferIn(inp.tokenIn, msg.sender, inp.netTokenIn); _wrap_unwrap_ETH(inp.tokenIn, inp.tokenMintSy, inp.netTokenIn); netTokenMintSy = inp.netTokenIn; } else { if (inp.tokenIn == NATIVE) _transferIn(NATIVE, msg.sender, inp.netTokenIn); else _transferFrom(IERC20(inp.tokenIn), msg.sender, inp.pendleSwap, inp.netTokenIn); IPSwapAggregator(inp.pendleSwap).swap{ value: inp.tokenIn == NATIVE ? inp.netTokenIn : 0 }(inp.tokenIn, inp.netTokenIn, inp.swapData); netTokenMintSy = _selfBalance(inp.tokenMintSy); } // outcome of all branches: satisfy pre-condition of __mintSy netSyOut = __mintSy(receiver, SY, netTokenMintSy, minSyOut, inp); } /// @dev pre-condition: having netTokenMintSy of tokens in this contract function __mintSy( address receiver, address SY, uint256 netTokenMintSy, uint256 minSyOut, TokenInput calldata inp ) private returns (uint256 netSyOut) { uint256 netNative = inp.tokenMintSy == NATIVE ? netTokenMintSy : 0; if (inp.bulk != address(0)) { netSyOut = IPBulkSeller(inp.bulk).swapExactTokenForSy{ value: netNative }( receiver, netTokenMintSy, minSyOut ); } else { netSyOut = IStandardizedYield(SY).deposit{ value: netNative }( receiver, inp.tokenMintSy, netTokenMintSy, minSyOut ); } } function _redeemSyToToken( address receiver, address SY, uint256 netSyIn, TokenOutput calldata out, bool doPull ) internal returns (uint256 netTokenOut) { SwapType swapType = out.swapData.swapType; if (swapType == SwapType.NONE) { netTokenOut = __redeemSy(receiver, SY, netSyIn, out, doPull); } else if (swapType == SwapType.ETH_WETH) { netTokenOut = __redeemSy(address(this), SY, netSyIn, out, doPull); // ETH:WETH is 1:1 _wrap_unwrap_ETH(out.tokenRedeemSy, out.tokenOut, netTokenOut); _transferOut(out.tokenOut, receiver, netTokenOut); } else { uint256 netTokenRedeemed = __redeemSy(out.pendleSwap, SY, netSyIn, out, doPull); IPSwapAggregator(out.pendleSwap).swap( out.tokenRedeemSy, netTokenRedeemed, out.swapData ); netTokenOut = _selfBalance(out.tokenOut); _transferOut(out.tokenOut, receiver, netTokenOut); } // outcome of all branches: netTokenOut of tokens goes back to receiver if (netTokenOut < out.minTokenOut) { revert Errors.RouterInsufficientTokenOut(netTokenOut, out.minTokenOut); } } function __redeemSy( address receiver, address SY, uint256 netSyIn, TokenOutput calldata out, bool doPull ) private returns (uint256 netTokenRedeemed) { if (doPull) { _transferFrom(IERC20(SY), msg.sender, _syOrBulk(SY, out), netSyIn); } if (out.bulk != address(0)) { netTokenRedeemed = IPBulkSeller(out.bulk).swapExactSyForToken( receiver, netSyIn, 0, true ); } else { netTokenRedeemed = IStandardizedYield(SY).redeem( receiver, netSyIn, out.tokenRedeemSy, 0, true ); } } function _mintPyFromSy( address receiver, address SY, address YT, uint256 netSyIn, uint256 minPyOut, bool doPull ) internal returns (uint256 netPyOut) { if (doPull) { _transferFrom(IERC20(SY), msg.sender, YT, netSyIn); } netPyOut = IPYieldToken(YT).mintPY(receiver, receiver); if (netPyOut < minPyOut) revert Errors.RouterInsufficientPYOut(netPyOut, minPyOut); } function _redeemPyToSy( address receiver, address YT, uint256 netPyIn, uint256 minSyOut ) internal returns (uint256 netSyOut) { address PT = IPYieldToken(YT).PT(); _transferFrom(IERC20(PT), msg.sender, YT, netPyIn); bool needToBurnYt = (!IPYieldToken(YT).isExpired()); if (needToBurnYt) _transferFrom(IERC20(YT), msg.sender, YT, netPyIn); netSyOut = IPYieldToken(YT).redeemPY(receiver); if (netSyOut < minSyOut) revert Errors.RouterInsufficientSyOut(netSyOut, minSyOut); } function _syOrBulk(address SY, TokenOutput calldata output) internal pure returns (address addr) { return output.bulk != address(0) ? output.bulk : SY; } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; import "../../core/libraries/math/Math.sol"; import "../../core/Market/MarketMathCore.sol"; struct ApproxParams { uint256 guessMin; uint256 guessMax; uint256 guessOffchain; // pass 0 in to skip this variable uint256 maxIteration; // every iteration, the diff between guessMin and guessMax will be divided by 2 uint256 eps; // the max eps between the returned result & the correct result, base 1e18. Normally this number will be set // to 1e15 (1e18/1000 = 0.1%) /// Further explanation of the eps. Take swapExactSyForPt for example. To calc the corresponding amount of Pt to swap out, /// it's necessary to run an approximation algorithm, because by default there only exists the Pt to Sy formula /// To approx, the 5 values above will have to be provided, and the approx process will run as follows: /// mid = (guessMin + guessMax) / 2 // mid here is the current guess of the amount of Pt out /// netSyNeed = calcSwapSyForExactPt(mid) /// if (netSyNeed > exactSyIn) guessMax = mid - 1 // since the maximum Sy in can't exceed the exactSyIn /// else guessMin = mid (1) /// For the (1), since netSyNeed <= exactSyIn, the result might be usable. If the netSyNeed is within eps of /// exactSyIn (ex eps=0.1% => we have used 99.9% the amount of Sy specified), mid will be chosen as the final guess result /// for guessOffchain, this is to provide a shortcut to guessing. The offchain SDK can precalculate the exact result /// before the tx is sent. When the tx reaches the contract, the guessOffchain will be checked first, and if it satisfies the /// approximation, it will be used (and save all the guessing). It's expected that this shortcut will be used in most cases /// except in cases that there is a trade in the same market right before the tx } library MarketApproxPtInLib { using MarketMathCore for MarketState; using PYIndexLib for PYIndex; using Math for uint256; using Math for int256; using LogExpMath for int256; /** * @dev algorithm: - Bin search the amount of PT to swap in - Try swapping & get netSyOut - Stop when netSyOut greater & approx minSyOut - guess & approx is for netPtIn */ function approxSwapPtForExactSy( MarketState memory market, PYIndex index, uint256 minSyOut, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netPtIn*/, uint256 /*netSyOut*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); if (netSyOut >= minSyOut) { if (Math.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) return (guess, netSyOut, netSyFee); approx.guessMax = guess; } else { approx.guessMin = guess; } } revert Errors.ApproxFail(); } /** * @dev algorithm: - Bin search the amount of PT to swap in - Flashswap the corresponding amount of SY out - Pair those amount with exactSyIn SY to tokenize into PT & YT - PT to repay the flashswap, YT transferred to user - Stop when the amount of SY to be pulled to tokenize PT to repay loan approx the exactSyIn - guess & approx is for netYtOut (also netPtIn) */ function approxSwapExactSyForYt( MarketState memory market, PYIndex index, uint256 exactSyIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netYtOut*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = Math.max(approx.guessMin, index.syToAsset(exactSyIn)); approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } // at minimum we will flashswap exactSyIn since we have enough SY to payback the PT loan for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); uint256 netSyToTokenizePt = index.assetToSyUp(guess); // for sure netSyToTokenizePt >= netSyOut since we are swapping PT to SY uint256 netSyToPull = netSyToTokenizePt - netSyOut; if (netSyToPull <= exactSyIn) { if (Math.isASmallerApproxB(netSyToPull, exactSyIn, approx.eps)) return (guess, netSyFee); approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } /** * @dev algorithm: - Bin search the amount of PT to swap to SY - Swap PT to SY - Pair the remaining PT with the SY to add liquidity - Stop when the ratio of PT / totalPt & SY / totalSy is approx - guess & approx is for netPtSwap */ function approxSwapPtToAddLiquidity( MarketState memory market, PYIndex index, uint256 totalPtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netPtSwap*/, uint256 /*netSyFromSwap*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp)); approx.guessMax = Math.min(approx.guessMax, totalPtIn); validateApprox(approx); require(market.totalLp != 0, "no existing lp"); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); ( uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, ) = calcNumerators(market, index, totalPtIn, comp, guess); if (Math.isAApproxB(syNumerator, ptNumerator, approx.eps)) return (guess, netSyOut, netSyFee); if (syNumerator <= ptNumerator) { // needs more SY --> swap more PT approx.guessMin = guess + 1; } else { // needs less SY --> swap less PT approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } function calcNumerators( MarketState memory market, PYIndex index, uint256 totalPtIn, MarketPreCompute memory comp, uint256 guess ) internal pure returns ( uint256 syNumerator, uint256 ptNumerator, uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve ) { (netSyOut, netSyFee, netSyToReserve) = calcSyOut(market, comp, index, guess); uint256 newTotalPt = uint256(market.totalPt) + guess; uint256 newTotalSy = (uint256(market.totalSy) - netSyOut - netSyToReserve); // it is desired that // netSyOut / newTotalSy = netPtRemaining / newTotalPt // which is equivalent to // netSyOut * newTotalPt = netPtRemaining * newTotalSy syNumerator = netSyOut * newTotalPt; ptNumerator = (totalPtIn - guess) * newTotalSy; } struct Args7 { MarketState market; PYIndex index; uint256 exactPtIn; uint256 blockTime; } /** * @dev algorithm: - Bin search the amount of PT to swap to SY - Flashswap the corresponding amount of SY out - Tokenize all the SY into PT + YT - PT to repay the flashswap, YT transferred to user - Stop when the additional amount of PT to pull to repay the loan approx the exactPtIn - guess & approx is for totalPtToSwap */ function approxSwapExactPtForYt( MarketState memory market, PYIndex index, uint256 exactPtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netYtOut*/, uint256 /*totalPtToSwap*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = Math.max(approx.guessMin, exactPtIn); approx.guessMax = Math.min(approx.guessMax, calcMaxPtIn(market, comp)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOut, uint256 netSyFee, ) = calcSyOut(market, comp, index, guess); uint256 netAssetOut = index.syToAsset(netSyOut); // guess >= netAssetOut since we are swapping PT to SY uint256 netPtToPull = guess - netAssetOut; if (netPtToPull <= exactPtIn) { if (Math.isASmallerApproxB(netPtToPull, exactPtIn, approx.eps)) return (netAssetOut, guess, netSyFee); approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } //////////////////////////////////////////////////////////////////////////////// function calcSyOut( MarketState memory market, MarketPreCompute memory comp, PYIndex index, uint256 netPtIn ) internal pure returns (uint256 netSyOut, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyOut, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade( comp, index, -int256(netPtIn) ); netSyOut = uint256(_netSyOut); netSyFee = uint256(_netSyFee); netSyToReserve = uint256(_netSyToReserve); } function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) { if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain; if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2; revert Errors.ApproxFail(); } /// INTENDED TO BE CALLED BY WHEN GUESS.OFFCHAIN == 0 ONLY /// function validateApprox(ApproxParams memory approx) internal pure { if (approx.guessMin > approx.guessMax || approx.eps > Math.ONE) revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps); } function calcMaxPtIn( MarketState memory market, MarketPreCompute memory comp ) internal pure returns (uint256) { uint256 low = 0; uint256 hi = uint256(comp.totalAsset) - 1; while (low != hi) { uint256 mid = (low + hi + 1) / 2; if (calcSlope(comp, market.totalPt, int256(mid)) < 0) hi = mid - 1; else low = mid; } return low; } function calcSlope( MarketPreCompute memory comp, int256 totalPt, int256 ptToMarket ) internal pure returns (int256) { int256 diffAssetPtToMarket = comp.totalAsset - ptToMarket; int256 sumPt = ptToMarket + totalPt; require(diffAssetPtToMarket > 0 && sumPt > 0, "invalid ptToMarket"); int256 part1 = (ptToMarket * (totalPt + comp.totalAsset)).divDown( sumPt * diffAssetPtToMarket ); int256 part2 = sumPt.divDown(diffAssetPtToMarket).ln(); int256 part3 = Math.IONE.divDown(comp.rateScalar); return comp.rateAnchor - (part1 - part2).mulDown(part3); } } library MarketApproxPtOutLib { using MarketMathCore for MarketState; using PYIndexLib for PYIndex; using Math for uint256; using Math for int256; using LogExpMath for int256; /** * @dev algorithm: - Bin search the amount of PT to swapExactOut - Calculate the amount of SY needed - Stop when the netSyIn is smaller approx exactSyIn - guess & approx is for netSyIn */ function approxSwapExactSyForPt( MarketState memory market, PYIndex index, uint256 exactSyIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netPtOut*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = Math.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyIn, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); if (netSyIn <= exactSyIn) { if (Math.isASmallerApproxB(netSyIn, exactSyIn, approx.eps)) return (guess, netSyFee); approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } /** * @dev algorithm: - Bin search the amount of PT to swapExactOut - Flashswap that amount of PT & pair with YT to redeem SY - Use the SY to repay the flashswap debt and the remaining is transferred to user - Stop when the netSyOut is greater approx the minSyOut - guess & approx is for netSyOut */ function approxSwapYtForExactSy( MarketState memory market, PYIndex index, uint256 minSyOut, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netYtIn*/, uint256 /*netSyOut*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { // no limit on min approx.guessMax = Math.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); uint256 netAssetToRepay = index.syToAssetUp(netSyOwed); uint256 netSyOut = index.assetToSy(guess - netAssetToRepay); if (netSyOut >= minSyOut) { if (Math.isAGreaterApproxB(netSyOut, minSyOut, approx.eps)) return (guess, netSyOut, netSyFee); approx.guessMax = guess; } else { approx.guessMin = guess + 1; } } revert Errors.ApproxFail(); } struct Args6 { MarketState market; PYIndex index; uint256 totalSyIn; uint256 blockTime; ApproxParams approx; } /** * @dev algorithm: - Bin search the amount of PT to swapExactOut - Swap that amount of PT out - Pair the remaining PT with the SY to add liquidity - Stop when the ratio of PT / totalPt & SY / totalSy is approx - guess & approx is for netPtFromSwap */ function approxSwapSyToAddLiquidity( MarketState memory _market, PYIndex _index, uint256 _totalSyIn, uint256 _blockTime, ApproxParams memory _approx ) internal pure returns (uint256 /*netPtFromSwap*/, uint256 /*netSySwap*/, uint256 /*netSyFee*/) { Args6 memory a = Args6(_market, _index, _totalSyIn, _blockTime, _approx); MarketPreCompute memory comp = a.market.getMarketPreCompute(a.index, a.blockTime); if (a.approx.guessOffchain == 0) { // no limit on min a.approx.guessMax = Math.min(a.approx.guessMax, calcMaxPtOut(comp, a.market.totalPt)); validateApprox(a.approx); require(a.market.totalLp != 0, "no existing lp"); } for (uint256 iter = 0; iter < a.approx.maxIteration; ++iter) { uint256 guess = nextGuess(a.approx, iter); (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) = calcSyIn( a.market, comp, a.index, guess ); if (netSyIn > a.totalSyIn) { a.approx.guessMax = guess - 1; continue; } uint256 syNumerator; uint256 ptNumerator; { uint256 newTotalPt = uint256(a.market.totalPt) - guess; uint256 netTotalSy = uint256(a.market.totalSy) + netSyIn - netSyToReserve; // it is desired that // netPtFromSwap / newTotalPt = netSyRemaining / netTotalSy // which is equivalent to // netPtFromSwap * netTotalSy = netSyRemaining * newTotalPt ptNumerator = guess * netTotalSy; syNumerator = (a.totalSyIn - netSyIn) * newTotalPt; } if (Math.isAApproxB(ptNumerator, syNumerator, a.approx.eps)) return (guess, netSyIn, netSyFee); if (ptNumerator <= syNumerator) { // needs more PT a.approx.guessMin = guess + 1; } else { // needs less PT a.approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } /** * @dev algorithm: - Bin search the amount of PT to swapExactOut - Flashswap that amount of PT out - Pair all the PT with the YT to redeem SY - Use the SY to repay the flashswap debt - Stop when the amount of YT required to pair with PT is approx exactYtIn - guess & approx is for netPtFromSwap */ function approxSwapExactYtForPt( MarketState memory market, PYIndex index, uint256 exactYtIn, uint256 blockTime, ApproxParams memory approx ) internal pure returns (uint256 /*netPtOut*/, uint256 /*totalPtSwapped*/, uint256 /*netSyFee*/) { MarketPreCompute memory comp = market.getMarketPreCompute(index, blockTime); if (approx.guessOffchain == 0) { approx.guessMin = Math.max(approx.guessMin, exactYtIn); approx.guessMax = Math.min(approx.guessMax, calcMaxPtOut(comp, market.totalPt)); validateApprox(approx); } for (uint256 iter = 0; iter < approx.maxIteration; ++iter) { uint256 guess = nextGuess(approx, iter); (uint256 netSyOwed, uint256 netSyFee, ) = calcSyIn(market, comp, index, guess); uint256 netYtToPull = index.syToAssetUp(netSyOwed); if (netYtToPull <= exactYtIn) { if (Math.isASmallerApproxB(netYtToPull, exactYtIn, approx.eps)) return (guess - netYtToPull, guess, netSyFee); approx.guessMin = guess; } else { approx.guessMax = guess - 1; } } revert Errors.ApproxFail(); } //////////////////////////////////////////////////////////////////////////////// function calcSyIn( MarketState memory market, MarketPreCompute memory comp, PYIndex index, uint256 netPtOut ) internal pure returns (uint256 netSyIn, uint256 netSyFee, uint256 netSyToReserve) { (int256 _netSyIn, int256 _netSyFee, int256 _netSyToReserve) = market.calcTrade( comp, index, int256(netPtOut) ); // all safe since totalPt and totalSy is int128 netSyIn = uint256(-_netSyIn); netSyFee = uint256(_netSyFee); netSyToReserve = uint256(_netSyToReserve); } function calcMaxPtOut( MarketPreCompute memory comp, int256 totalPt ) internal pure returns (uint256) { int256 logitP = (comp.feeRate - comp.rateAnchor).mulDown(comp.rateScalar).exp(); int256 proportion = logitP.divDown(logitP + Math.IONE); int256 numerator = proportion.mulDown(totalPt + comp.totalAsset); int256 maxPtOut = totalPt - numerator; // only get 99.9% of the theoretical max to accommodate some precision issues return (uint256(maxPtOut) * 999) / 1000; } function nextGuess(ApproxParams memory approx, uint256 iter) internal pure returns (uint256) { if (iter == 0 && approx.guessOffchain != 0) return approx.guessOffchain; if (approx.guessMin <= approx.guessMax) return (approx.guessMin + approx.guessMax) / 2; revert Errors.ApproxFail(); } function validateApprox(ApproxParams memory approx) internal pure { if (approx.guessMin > approx.guessMax || approx.eps > Math.ONE) revert Errors.ApproxParamsInvalid(approx.guessMin, approx.guessMax, approx.eps); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity 0.8.17; struct SwapData { SwapType swapType; address extRouter; bytes extCalldata; bool needScale; } enum SwapType { NONE, KYBERSWAP, ONE_INCH, // ETH_WETH not used in Aggregator ETH_WETH } interface IPSwapAggregator { function swap(address tokenIn, uint256 amountIn, SwapData calldata swapData) external payable; }
{ "optimizer": { "enabled": true, "runs": 0 }, "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"actionStorage","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"stateMutability":"payable","type":"fallback"},{"stateMutability":"payable","type":"receive"}]
Contract Creation Code
6080346100af57601f6101fc38819003918201601f19168301916001600160401b038311848410176100b4578084926020946040528339810103126100af57516001600160a01b038116908190036100af57600080546001600160a01b0319908116331782556323b7d3cd60e21b90915260026020527fbc02cc0ac50b26a9ecfbd19a445fa7f71dbc9c12c0d1e45ba9bd4990843c174e8054909116909117905560405161013190816100cb8239f35b600080fd5b634e487b7160e01b600052604160045260246000fdfe608060405236156075575b600080356001600160e01b0319168152600260205260409020546001600160a01b03168015603b5760399060db565b005b60405162461bcd60e51b81526020600482015260126024820152711cd95b1958dd1bdc881b9bdd08199bdd5b9960721b6044820152606490fd5b600080356001600160e01b0319168152600260205260409020546001600160a01b0316801560a85760a49060db565b600a565b62461bcd60e51b6080526020608452601260a452711cd95b1958dd1bdc881b9bdd08199bdd5b9960721b60c45260646080fd5b90506000808092368280378136915af43d82803e1560f7573d90f35b3d90fdfea2646970667358221220cb5b21cb06c4c00160ed41a6bdc84dd7085a99a7c235cb053989955b603c949d64736f6c63430008110033000000000000000000000000872c9d71a5b64a9611b08f0956a3cc3deb77a317
Deployed Bytecode
0x608060405236156075575b600080356001600160e01b0319168152600260205260409020546001600160a01b03168015603b5760399060db565b005b60405162461bcd60e51b81526020600482015260126024820152711cd95b1958dd1bdc881b9bdd08199bdd5b9960721b6044820152606490fd5b600080356001600160e01b0319168152600260205260409020546001600160a01b0316801560a85760a49060db565b600a565b62461bcd60e51b6080526020608452601260a452711cd95b1958dd1bdc881b9bdd08199bdd5b9960721b60c45260646080fd5b90506000808092368280378136915af43d82803e1560f7573d90f35b3d90fdfea2646970667358221220cb5b21cb06c4c00160ed41a6bdc84dd7085a99a7c235cb053989955b603c949d64736f6c63430008110033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
000000000000000000000000872c9d71a5b64a9611b08f0956a3cc3deb77a317
-----Decoded View---------------
Arg [0] : actionStorage (address): 0x872c9d71a5B64A9611b08F0956A3cc3deB77A317
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 000000000000000000000000872c9d71a5b64a9611b08f0956a3cc3deb77a317
Multichain Portfolio | 31 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
BSC | 100.00% | $3.49 | 30,641.4412 | $106,938.63 |
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.