Overview
ETH Balance
0 ETH
ETH Value
$0.00More Info
Private Name Tags
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
134830950 | 44 hrs ago | Contract Creation | 0 ETH |
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
AxelarBridgeRouteConstants
Compiler Version
v0.8.26+commit.8a97fa7a
Optimization Enabled:
Yes with 999999 runs
Other Settings:
london EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.12; import "../../src/DaimoPayAxelarBridger.sol"; // @title AxelarBridgeRouteConstants // @notice Auto-generated constants for Axelar bridge routes library AxelarBridgeRouteConstants { // Return all Axelar bridge routes for the given source chain. // Configures bridged tokens to be sent to the provided axelarReceiver // address on the destination chain. function getAxelarBridgeRoutes( uint256 sourceChainId, address axelarReceiver ) public pure returns ( uint256[] memory chainIds, DaimoPayAxelarBridger.AxelarBridgeRoute[] memory bridgeRoutes ) { // Source chain 1 if (sourceChainId == 1) { chainIds = new uint256[](2); bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2); // 1 -> 56 chainIds[0] = 56; bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "binance", bridgeTokenIn: 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, tokenSymbol: "USDC", receiverContract: axelarReceiver, nativeFee: 500000000000000 }); // 1 -> 5000 chainIds[1] = 5000; bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "mantle", bridgeTokenIn: 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "USDC", receiverContract: axelarReceiver, nativeFee: 500000000000000 }); return (chainIds, bridgeRoutes); } // Source chain 10 if (sourceChainId == 10) { chainIds = new uint256[](2); bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2); // 10 -> 56 chainIds[0] = 56; bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "binance", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 500000000000000 }); // 10 -> 5000 chainIds[1] = 5000; bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "mantle", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 500000000000000 }); return (chainIds, bridgeRoutes); } // Source chain 56 if (sourceChainId == 56) { chainIds = new uint256[](7); bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](7); // 56 -> 1 chainIds[0] = 1; bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "ethereum", bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, bridgeTokenOut: 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 2000000000000000 }); // 56 -> 10 chainIds[1] = 10; bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "optimism", bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 2000000000000000 }); // 56 -> 137 chainIds[2] = 137; bridgeRoutes[2] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "polygon", bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, bridgeTokenOut: 0x750e4C4984a9e0f12978eA6742Bc1c5D248f40ed, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 2000000000000000 }); // 56 -> 5000 chainIds[3] = 5000; bridgeRoutes[3] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "mantle", bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 2000000000000000 }); // 56 -> 8453 chainIds[4] = 8453; bridgeRoutes[4] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "base", bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 2000000000000000 }); // 56 -> 42161 chainIds[5] = 42161; bridgeRoutes[5] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "arbitrum", bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 2000000000000000 }); // 56 -> 59144 chainIds[6] = 59144; bridgeRoutes[6] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "linea", bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 2000000000000000 }); return (chainIds, bridgeRoutes); } // Source chain 137 if (sourceChainId == 137) { chainIds = new uint256[](2); bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2); // 137 -> 56 chainIds[0] = 56; bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "binance", bridgeTokenIn: 0x750e4C4984a9e0f12978eA6742Bc1c5D248f40ed, bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 4000000000000000000 }); // 137 -> 5000 chainIds[1] = 5000; bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "mantle", bridgeTokenIn: 0x750e4C4984a9e0f12978eA6742Bc1c5D248f40ed, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 4000000000000000000 }); return (chainIds, bridgeRoutes); } // Source chain 5000 if (sourceChainId == 5000) { chainIds = new uint256[](7); bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](7); // 5000 -> 1 chainIds[0] = 1; bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "ethereum", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 1200000000000000000 }); // 5000 -> 10 chainIds[1] = 10; bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "optimism", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 1200000000000000000 }); // 5000 -> 56 chainIds[2] = 56; bridgeRoutes[2] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "binance", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 1200000000000000000 }); // 5000 -> 137 chainIds[3] = 137; bridgeRoutes[3] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "polygon", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0x750e4C4984a9e0f12978eA6742Bc1c5D248f40ed, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 1200000000000000000 }); // 5000 -> 8453 chainIds[4] = 8453; bridgeRoutes[4] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "base", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 1200000000000000000 }); // 5000 -> 42161 chainIds[5] = 42161; bridgeRoutes[5] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "arbitrum", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 1200000000000000000 }); // 5000 -> 59144 chainIds[6] = 59144; bridgeRoutes[6] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "linea", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 1200000000000000000 }); return (chainIds, bridgeRoutes); } // Source chain 8453 if (sourceChainId == 8453) { chainIds = new uint256[](2); bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2); // 8453 -> 56 chainIds[0] = 56; bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "binance", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 500000000000000 }); // 8453 -> 5000 chainIds[1] = 5000; bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "mantle", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 500000000000000 }); return (chainIds, bridgeRoutes); } // Source chain 42161 if (sourceChainId == 42161) { chainIds = new uint256[](2); bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2); // 42161 -> 56 chainIds[0] = 56; bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "binance", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 500000000000000 }); // 42161 -> 5000 chainIds[1] = 5000; bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "mantle", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 500000000000000 }); return (chainIds, bridgeRoutes); } // Source chain 59144 if (sourceChainId == 59144) { chainIds = new uint256[](2); bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2); // 59144 -> 56 chainIds[0] = 56; bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "binance", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 500000000000000 }); // 59144 -> 5000 chainIds[1] = 5000; bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({ destChainName: "mantle", bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215, tokenSymbol: "axlUSDC", receiverContract: axelarReceiver, nativeFee: 500000000000000 }); return (chainIds, bridgeRoutes); } // If source chain not found, revert revert("Source chain not found"); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.12; import {AxelarExpressExecutableWithToken} from "@axelar-network/contracts/express/AxelarExpressExecutableWithToken.sol"; import {IAxelarGatewayWithToken} from "@axelar-network/contracts/interfaces/IAxelarGatewayWithToken.sol"; import {IAxelarGasService} from "@axelar-network/contracts/interfaces/IAxelarGasService.sol"; import "@openzeppelin/contracts/utils/Strings.sol"; import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol"; import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol"; import "./interfaces/IDaimoPayBridger.sol"; /// @author Daimo, Inc /// @custom:security-contact [email protected] /// /// @notice Bridges assets to a destination chain using Axelar Protocol. Makes /// the assumption that the local token is an ERC20 token and has a 1 to 1 price /// with the corresponding destination token. /// /// @dev Axelar protocol requires the bridge recipient to be a contract /// implementing the AxelarExecutableWithToken interface. This contract /// fulfills that requirement and acts as the receiver on the destination chain. contract DaimoPayAxelarBridger is IDaimoPayBridger, AxelarExpressExecutableWithToken { using SafeERC20 for IERC20; struct AxelarBridgeRoute { /// Axelar requires the name of the destination chain, e.g. "base", /// "binance". string destChainName; address bridgeTokenIn; address bridgeTokenOut; /// Axelar requires the symbol name of bridgeTokenIn, e.g. "axlUSDC" or /// "USDC". string tokenSymbol; /// When bridging with an Axelar contract call, the receiver on the /// destination chain must be a contract that implements the /// AxelarExecutableWithToken interface. address receiverContract; /// Fee paid in native token on the source chain for Axelar's bridging /// gas fee. uint256 nativeFee; } struct ExtraData { /// Address to refund excess gas fees to. address gasRefundAddress; /// Whether to use Axelar Express bridging. bool useExpress; } /// Axelar contracts for this chain. IAxelarGatewayWithToken public immutable axelarGateway; IAxelarGasService public immutable axelarGasService; /// Mapping from destination chain and token to the corresponding token on /// the current chain. mapping(uint256 toChainId => AxelarBridgeRoute bridgeRoute) public bridgeRouteMapping; /// Specify the localToken mapping to destination chains and tokens constructor( IAxelarGatewayWithToken _axelarGateway, IAxelarGasService _axelarGasService, uint256[] memory _toChainIds, AxelarBridgeRoute[] memory _bridgeRoutes ) AxelarExpressExecutableWithToken(address(_axelarGateway)) { axelarGateway = _axelarGateway; axelarGasService = _axelarGasService; uint256 n = _toChainIds.length; require(n == _bridgeRoutes.length, "DPAB: wrong bridgeRoutes length"); for (uint256 i = 0; i < n; ++i) { bridgeRouteMapping[_toChainIds[i]] = _bridgeRoutes[i]; } } // ----- AXELAR EXECUTABLE FUNCTIONS ----- /// Part of the AxelarExpressExecutableWithToken interface. Used to make /// a contract call on the destination chain without tokens. Not supported /// by this implementation because we will always be bridging tokens. function _execute( bytes32 /* commandId */, string calldata /* sourceChain */, string calldata /* sourceAddress */, bytes calldata /* payload */ ) internal pure override { revert("DPAxB: _execute not supported"); } /// Part of the AxelarExpressExecutableWithToken interface. Used to make /// a contract call on the destination chain with tokens. In this case, it /// will always be used to transfer tokens to the intent address on the /// destination chain. function _executeWithToken( bytes32 /* commandId */, string calldata /* sourceChain */, string calldata /* sourceAddress */, bytes calldata payload, string calldata tokenSymbol, uint256 amount ) internal override { address recipient = abi.decode(payload, (address)); address tokenAddress = axelarGateway.tokenAddresses(tokenSymbol); IERC20(tokenAddress).safeTransfer(recipient, amount); } // ----- BRIDGING FUNCTIONS ----- /// Given a list of bridge token options, find the index of the bridge token /// that matches the correct bridge token out. Return the length of the array /// if no match is found. function _findBridgeTokenOut( TokenAmount[] calldata bridgeTokenOutOptions, address bridgeTokenOut ) internal pure returns (uint256 index) { uint256 n = bridgeTokenOutOptions.length; for (uint256 i = 0; i < n; ++i) { if (address(bridgeTokenOutOptions[i].token) == bridgeTokenOut) { return i; } } return n; } /// Retrieves the necessary data for bridging tokens from the current chain /// to a specified destination chain using Axelar Protocol. function _getBridgeData( uint256 toChainId, TokenAmount[] calldata bridgeTokenOutOptions ) internal view returns ( address inToken, uint256 inAmount, address outToken, string memory outTokenSymbol, uint256 outAmount, string memory destChainName, address receiverContract, uint256 nativeFee ) { AxelarBridgeRoute memory bridgeRoute = bridgeRouteMapping[toChainId]; require( bridgeRoute.bridgeTokenOut != address(0), "DPAB: bridge route not found" ); uint256 index = _findBridgeTokenOut( bridgeTokenOutOptions, bridgeRoute.bridgeTokenOut ); // If the index is the length of the array, then the bridge token out // was not found in the list of options. require(index < bridgeTokenOutOptions.length, "DPAB: bad bridge token"); inToken = bridgeRoute.bridgeTokenIn; // Assumes the input token has a 1 to 1 price with the destination token. // Gas fees are charged in native token and paid separately. inAmount = bridgeTokenOutOptions[index].amount; outToken = bridgeRoute.bridgeTokenOut; outTokenSymbol = bridgeRoute.tokenSymbol; outAmount = bridgeTokenOutOptions[index].amount; destChainName = bridgeRoute.destChainName; receiverContract = bridgeRoute.receiverContract; nativeFee = bridgeRoute.nativeFee; } /// Determine the input token and amount required for bridging to /// another chain. function getBridgeTokenIn( uint256 toChainId, TokenAmount[] calldata bridgeTokenOutOptions ) public view returns (address bridgeTokenIn, uint256 inAmount) { (bridgeTokenIn, inAmount, , , , , , ) = _getBridgeData( toChainId, bridgeTokenOutOptions ); } /// Initiate a bridge to a destination chain using Axelar Protocol. function sendToChain( uint256 toChainId, address toAddress, TokenAmount[] calldata bridgeTokenOutOptions, bytes calldata extraData ) public { require(toChainId != block.chainid, "DPAxB: same chain"); ( address inToken, uint256 inAmount, address outToken, string memory outTokenSymbol, uint256 outAmount, string memory destChainName, address receiverContract, uint256 nativeFee ) = _getBridgeData(toChainId, bridgeTokenOutOptions); require(outAmount > 0, "DPAxB: zero amount"); // Parse remaining arguments from extraData ExtraData memory extra; extra = abi.decode(extraData, (ExtraData)); // Move input token from caller to this contract IERC20(inToken).safeTransferFrom({ from: msg.sender, to: address(this), value: inAmount }); // Pay for Axelar's bridging gas fee. if (extra.useExpress) { axelarGasService.payNativeGasForExpressCallWithToken{ value: nativeFee }( address(this), destChainName, Strings.toHexString(receiverContract), abi.encode(toAddress), outTokenSymbol, outAmount, extra.gasRefundAddress ); } else { axelarGasService.payNativeGasForContractCallWithToken{ value: nativeFee }( address(this), destChainName, Strings.toHexString(receiverContract), abi.encode(toAddress), outTokenSymbol, outAmount, extra.gasRefundAddress ); } // Approve the AxelarGateway contract and initiate the bridge. Send the // tokens to the receiverContract on the destination chain. The // _executeWithToken function will be called on the destination chain. IERC20(inToken).forceApprove({ spender: address(axelarGateway), value: inAmount }); axelarGateway.callContractWithToken( destChainName, Strings.toHexString(receiverContract), abi.encode(toAddress), outTokenSymbol, outAmount ); emit BridgeInitiated({ fromAddress: msg.sender, fromToken: inToken, fromAmount: inAmount, toChainId: toChainId, toAddress: toAddress, toToken: outToken, toAmount: outAmount }); } receive() external payable {} }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { AxelarExecutable } from '../executable/AxelarExecutable.sol'; import { AxelarExecutableWithToken } from '../executable/AxelarExecutableWithToken.sol'; import { IAxelarExecutable } from '../interfaces/IAxelarExecutable.sol'; import { IAxelarExecutableWithToken } from '../interfaces/IAxelarExecutableWithToken.sol'; import { IAxelarExpressExecutableWithToken } from '../interfaces/IAxelarExpressExecutableWithToken.sol'; import { ExpressExecutorTracker } from './ExpressExecutorTracker.sol'; import { SafeTokenTransferFrom, SafeTokenTransfer } from '../libs/SafeTransfer.sol'; import { IERC20 } from '../interfaces/IERC20.sol'; abstract contract AxelarExpressExecutableWithToken is IAxelarExpressExecutableWithToken, ExpressExecutorTracker, AxelarExecutableWithToken { using SafeTokenTransfer for IERC20; using SafeTokenTransferFrom for IERC20; constructor(address gateway_) AxelarExecutableWithToken(gateway_) {} function execute( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload ) external override(AxelarExecutable, IAxelarExecutable) { bytes32 payloadHash = keccak256(payload); if (!gateway().validateContractCall(commandId, sourceChain, sourceAddress, payloadHash)) revert NotApprovedByGateway(); address expressExecutor = _popExpressExecutor(commandId, sourceChain, sourceAddress, payloadHash); if (expressExecutor != address(0)) { // slither-disable-next-line reentrancy-events emit ExpressExecutionFulfilled(commandId, sourceChain, sourceAddress, payloadHash, expressExecutor); } else { _execute(commandId, sourceChain, sourceAddress, payload); } } function executeWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload, string calldata tokenSymbol, uint256 amount ) external override(AxelarExecutableWithToken, IAxelarExecutableWithToken) { bytes32 payloadHash = keccak256(payload); if ( !gatewayWithToken().validateContractCallAndMint( commandId, sourceChain, sourceAddress, payloadHash, tokenSymbol, amount ) ) revert NotApprovedByGateway(); address expressExecutor = _popExpressExecutorWithToken( commandId, sourceChain, sourceAddress, payloadHash, tokenSymbol, amount ); if (expressExecutor != address(0)) { // slither-disable-next-line reentrancy-events emit ExpressExecutionWithTokenFulfilled( commandId, sourceChain, sourceAddress, payloadHash, tokenSymbol, amount, expressExecutor ); address gatewayToken = gatewayWithToken().tokenAddresses(tokenSymbol); IERC20(gatewayToken).safeTransfer(expressExecutor, amount); } else { _executeWithToken(commandId, sourceChain, sourceAddress, payload, tokenSymbol, amount); } } function expressExecute( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload ) external payable virtual { if (gateway().isCommandExecuted(commandId)) revert AlreadyExecuted(); address expressExecutor = msg.sender; bytes32 payloadHash = keccak256(payload); emit ExpressExecuted(commandId, sourceChain, sourceAddress, payloadHash, expressExecutor); _setExpressExecutor(commandId, sourceChain, sourceAddress, payloadHash, expressExecutor); _execute(commandId, sourceChain, sourceAddress, payload); } function expressExecuteWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload, string calldata symbol, uint256 amount ) external payable virtual { if (gatewayWithToken().isCommandExecuted(commandId)) revert AlreadyExecuted(); address expressExecutor = msg.sender; address gatewayToken = gatewayWithToken().tokenAddresses(symbol); bytes32 payloadHash = keccak256(payload); emit ExpressExecutedWithToken( commandId, sourceChain, sourceAddress, payloadHash, symbol, amount, expressExecutor ); _setExpressExecutorWithToken( commandId, sourceChain, sourceAddress, payloadHash, symbol, amount, expressExecutor ); IERC20(gatewayToken).safeTransferFrom(expressExecutor, address(this), amount); _executeWithToken(commandId, sourceChain, sourceAddress, payload, symbol, amount); } /** * @notice Returns the express executor for a given command. * @param commandId The commandId for the contractCall. * @param sourceChain The source chain. * @param sourceAddress The source address. * @param payloadHash The hash of the payload. * @return expressExecutor The address of the express executor. */ function getExpressExecutor( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash ) external view returns (address expressExecutor) { expressExecutor = _getExpressExecutor(commandId, sourceChain, sourceAddress, payloadHash); } /** * @notice Returns the express executor with token for a given command. * @param commandId The commandId for the contractCallWithToken. * @param sourceChain The source chain. * @param sourceAddress The source address. * @param payloadHash The hash of the payload. * @param symbol The token symbol. * @param amount The amount of tokens. * @return expressExecutor The address of the express executor. */ function getExpressExecutorWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash, string calldata symbol, uint256 amount ) external view returns (address expressExecutor) { expressExecutor = _getExpressExecutorWithToken( commandId, sourceChain, sourceAddress, payloadHash, symbol, amount ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IAxelarGateway } from './IAxelarGateway.sol'; /** * @title IAxelarGatewayWithToken * @dev Interface for the Axelar Gateway that supports cross-chain token transfers coupled with general message passing. * It extends IAxelarGateway to include token-related functionality. */ interface IAxelarGatewayWithToken is IAxelarGateway { /** * @notice Emitted when a token is sent to another chain. * @dev Logs the attempt to send tokens to a recipient on another chain. * @param sender The address of the sender who initiated the token transfer. * @param destinationChain The name of the destination chain. * @param destinationAddress The address of the recipient on the destination chain. * @param symbol The symbol of the token being transferred. * @param amount The amount of the tokens being transferred. */ event TokenSent( address indexed sender, string destinationChain, string destinationAddress, string symbol, uint256 amount ); /** * @notice Emitted when a contract call is made through the gateway along with a token transfer. * @dev Logs the attempt to call a contract on another chain with an associated token transfer. * @param sender The address of the sender who initiated the contract call with token. * @param destinationChain The name of the destination chain. * @param destinationContractAddress The address of the contract on the destination chain. * @param payloadHash The keccak256 hash of the sent payload data. * @param payload The payload data used for the contract call. * @param symbol The symbol of the token being transferred. * @param amount The amount of the tokens being transferred. */ event ContractCallWithToken( address indexed sender, string destinationChain, string destinationContractAddress, bytes32 indexed payloadHash, bytes payload, string symbol, uint256 amount ); /** * @notice Emitted when a contract call with a token minting is approved. * @dev Logs the approval of a contract call that originated from another chain and involves a token minting process. * @param commandId The identifier of the command to execute. * @param sourceChain The name of the source chain from whence the command came. * @param sourceAddress The address of the sender on the source chain. * @param contractAddress The address of the contract where the call will be executed. * @param payloadHash The keccak256 hash of the approved payload data. * @param symbol The symbol of the token being minted. * @param amount The amount of the tokens being minted. * @param sourceTxHash The hash of the source transaction on the source chain. * @param sourceEventIndex The index of the event in the source transaction logs. */ event ContractCallApprovedWithMint( bytes32 indexed commandId, string sourceChain, string sourceAddress, address indexed contractAddress, bytes32 indexed payloadHash, string symbol, uint256 amount, bytes32 sourceTxHash, uint256 sourceEventIndex ); /** * @notice Sends tokens to another chain. * @dev Initiates a cross-chain token transfer through the gateway to the specified destination chain and recipient. * @param destinationChain The name of the destination chain. * @param destinationAddress The address of the recipient on the destination chain. * @param symbol The symbol of the token being transferred. * @param amount The amount of the tokens being transferred. */ function sendToken( string calldata destinationChain, string calldata destinationAddress, string calldata symbol, uint256 amount ) external; /** * @notice Makes a contract call on another chain with an associated token transfer. * @dev Initiates a cross-chain contract call through the gateway that includes a token transfer to the specified contract on the destination chain. * @param destinationChain The name of the destination chain. * @param contractAddress The address of the contract on the destination chain. * @param payload The payload data to be used in the contract call. * @param symbol The symbol of the token being transferred. * @param amount The amount of the tokens being transferred. */ function callContractWithToken( string calldata destinationChain, string calldata contractAddress, bytes calldata payload, string calldata symbol, uint256 amount ) external; /** * @notice Checks if a contract call with token minting is approved. * @dev Determines whether a given contract call, identified by the commandId and payloadHash, involving token minting is approved. * @param commandId The identifier of the command to check. * @param sourceChain The name of the source chain. * @param sourceAddress The address of the sender on the source chain. * @param contractAddress The address of the contract where the call will be executed. * @param payloadHash The keccak256 hash of the payload data. * @param symbol The symbol of the token associated with the minting. * @param amount The amount of the tokens to be minted. * @return True if the contract call with token minting is approved, false otherwise. */ function isContractCallAndMintApproved( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, address contractAddress, bytes32 payloadHash, string calldata symbol, uint256 amount ) external view returns (bool); /** * @notice Validates and approves a contract call with token minting. * @dev Validates the given contract call information and marks it as approved if valid. It also involves the minting of tokens. * @param commandId The identifier of the command to validate. * @param sourceChain The name of the source chain. * @param sourceAddress The address of the sender on the source chain. * @param payloadHash The keccak256 hash of the payload data. * @param symbol The symbol of the token associated with the minting. * @param amount The amount of the tokens to be minted. * @return True if the contract call with token minting is validated and approved, false otherwise. */ function validateContractCallAndMint( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash, string calldata symbol, uint256 amount ) external returns (bool); /** * @notice Retrieves the address of a token given its symbol. * @dev Gets the contract address of the token registered with the given symbol. * @param symbol The symbol of the token to retrieve the address for. * @return The contract address of the token corresponding to the given symbol. */ function tokenAddresses(string memory symbol) external view returns (address); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { GasInfo } from '../types/GasEstimationTypes.sol'; import { IInterchainGasEstimation } from './IInterchainGasEstimation.sol'; import { IUpgradable } from './IUpgradable.sol'; /** * @title IAxelarGasService Interface * @notice This is an interface for the AxelarGasService contract which manages gas payments * and refunds for cross-chain communication on the Axelar network. * @dev This interface inherits IUpgradable */ interface IAxelarGasService is IInterchainGasEstimation, IUpgradable { error InvalidAddress(); error NotCollector(); error InvalidAmounts(); error InvalidGasUpdates(); error InvalidParams(); error InsufficientGasPayment(uint256 required, uint256 provided); event GasPaidForContractCall( address indexed sourceAddress, string destinationChain, string destinationAddress, bytes32 indexed payloadHash, address gasToken, uint256 gasFeeAmount, address refundAddress ); event GasPaidForContractCallWithToken( address indexed sourceAddress, string destinationChain, string destinationAddress, bytes32 indexed payloadHash, string symbol, uint256 amount, address gasToken, uint256 gasFeeAmount, address refundAddress ); event NativeGasPaidForContractCall( address indexed sourceAddress, string destinationChain, string destinationAddress, bytes32 indexed payloadHash, uint256 gasFeeAmount, address refundAddress ); event NativeGasPaidForContractCallWithToken( address indexed sourceAddress, string destinationChain, string destinationAddress, bytes32 indexed payloadHash, string symbol, uint256 amount, uint256 gasFeeAmount, address refundAddress ); event GasPaidForExpressCall( address indexed sourceAddress, string destinationChain, string destinationAddress, bytes32 indexed payloadHash, address gasToken, uint256 gasFeeAmount, address refundAddress ); event GasPaidForExpressCallWithToken( address indexed sourceAddress, string destinationChain, string destinationAddress, bytes32 indexed payloadHash, string symbol, uint256 amount, address gasToken, uint256 gasFeeAmount, address refundAddress ); event NativeGasPaidForExpressCall( address indexed sourceAddress, string destinationChain, string destinationAddress, bytes32 indexed payloadHash, uint256 gasFeeAmount, address refundAddress ); event NativeGasPaidForExpressCallWithToken( address indexed sourceAddress, string destinationChain, string destinationAddress, bytes32 indexed payloadHash, string symbol, uint256 amount, uint256 gasFeeAmount, address refundAddress ); event GasAdded( bytes32 indexed txHash, uint256 indexed logIndex, address gasToken, uint256 gasFeeAmount, address refundAddress ); event NativeGasAdded(bytes32 indexed txHash, uint256 indexed logIndex, uint256 gasFeeAmount, address refundAddress); event ExpressGasAdded( bytes32 indexed txHash, uint256 indexed logIndex, address gasToken, uint256 gasFeeAmount, address refundAddress ); event NativeExpressGasAdded( bytes32 indexed txHash, uint256 indexed logIndex, uint256 gasFeeAmount, address refundAddress ); event Refunded( bytes32 indexed txHash, uint256 indexed logIndex, address payable receiver, address token, uint256 amount ); /** * @notice Pay for gas for any type of contract execution on a destination chain. * @dev This function is called on the source chain before calling the gateway to execute a remote contract. * @dev If estimateOnChain is true, the function will estimate the gas cost and revert if the payment is insufficient. * @param sender The address making the payment * @param destinationChain The target chain where the contract call will be made * @param destinationAddress The target address on the destination chain * @param payload Data payload for the contract call * @param executionGasLimit The gas limit for the contract call * @param estimateOnChain Flag to enable on-chain gas estimation * @param refundAddress The address where refunds, if any, should be sent * @param params Additional parameters for gas payment. This can be left empty for normal contract call payments. */ function payGas( address sender, string calldata destinationChain, string calldata destinationAddress, bytes calldata payload, uint256 executionGasLimit, bool estimateOnChain, address refundAddress, bytes calldata params ) external payable; /** * @notice Pay for gas using ERC20 tokens for a contract call on a destination chain. * @dev This function is called on the source chain before calling the gateway to execute a remote contract. * @param sender The address making the payment * @param destinationChain The target chain where the contract call will be made * @param destinationAddress The target address on the destination chain * @param payload Data payload for the contract call * @param gasToken The address of the ERC20 token used to pay for gas * @param gasFeeAmount The amount of tokens to pay for gas * @param refundAddress The address where refunds, if any, should be sent */ function payGasForContractCall( address sender, string calldata destinationChain, string calldata destinationAddress, bytes calldata payload, address gasToken, uint256 gasFeeAmount, address refundAddress ) external; /** * @notice Pay for gas using ERC20 tokens for a contract call with tokens on a destination chain. * @dev This function is called on the source chain before calling the gateway to execute a remote contract. * @param sender The address making the payment * @param destinationChain The target chain where the contract call with tokens will be made * @param destinationAddress The target address on the destination chain * @param payload Data payload for the contract call with tokens * @param symbol The symbol of the token to be sent with the call * @param amount The amount of tokens to be sent with the call * @param gasToken The address of the ERC20 token used to pay for gas * @param gasFeeAmount The amount of tokens to pay for gas * @param refundAddress The address where refunds, if any, should be sent */ function payGasForContractCallWithToken( address sender, string calldata destinationChain, string calldata destinationAddress, bytes calldata payload, string calldata symbol, uint256 amount, address gasToken, uint256 gasFeeAmount, address refundAddress ) external; /** * @notice Pay for gas using native currency for a contract call on a destination chain. * @dev This function is called on the source chain before calling the gateway to execute a remote contract. * @param sender The address making the payment * @param destinationChain The target chain where the contract call will be made * @param destinationAddress The target address on the destination chain * @param payload Data payload for the contract call * @param refundAddress The address where refunds, if any, should be sent */ function payNativeGasForContractCall( address sender, string calldata destinationChain, string calldata destinationAddress, bytes calldata payload, address refundAddress ) external payable; /** * @notice Pay for gas using native currency for a contract call with tokens on a destination chain. * @dev This function is called on the source chain before calling the gateway to execute a remote contract. * @param sender The address making the payment * @param destinationChain The target chain where the contract call with tokens will be made * @param destinationAddress The target address on the destination chain * @param payload Data payload for the contract call with tokens * @param symbol The symbol of the token to be sent with the call * @param amount The amount of tokens to be sent with the call * @param refundAddress The address where refunds, if any, should be sent */ function payNativeGasForContractCallWithToken( address sender, string calldata destinationChain, string calldata destinationAddress, bytes calldata payload, string calldata symbol, uint256 amount, address refundAddress ) external payable; /** * @notice Pay for gas using ERC20 tokens for an express contract call on a destination chain. * @dev This function is called on the source chain before calling the gateway to express execute a remote contract. * @param sender The address making the payment * @param destinationChain The target chain where the contract call will be made * @param destinationAddress The target address on the destination chain * @param payload Data payload for the contract call * @param gasToken The address of the ERC20 token used to pay for gas * @param gasFeeAmount The amount of tokens to pay for gas * @param refundAddress The address where refunds, if any, should be sent */ function payGasForExpressCall( address sender, string calldata destinationChain, string calldata destinationAddress, bytes calldata payload, address gasToken, uint256 gasFeeAmount, address refundAddress ) external; /** * @notice Pay for gas using ERC20 tokens for an express contract call with tokens on a destination chain. * @dev This function is called on the source chain before calling the gateway to express execute a remote contract. * @param sender The address making the payment * @param destinationChain The target chain where the contract call with tokens will be made * @param destinationAddress The target address on the destination chain * @param payload Data payload for the contract call with tokens * @param symbol The symbol of the token to be sent with the call * @param amount The amount of tokens to be sent with the call * @param gasToken The address of the ERC20 token used to pay for gas * @param gasFeeAmount The amount of tokens to pay for gas * @param refundAddress The address where refunds, if any, should be sent */ function payGasForExpressCallWithToken( address sender, string calldata destinationChain, string calldata destinationAddress, bytes calldata payload, string calldata symbol, uint256 amount, address gasToken, uint256 gasFeeAmount, address refundAddress ) external; /** * @notice Pay for gas using native currency for an express contract call on a destination chain. * @dev This function is called on the source chain before calling the gateway to execute a remote contract. * @param sender The address making the payment * @param destinationChain The target chain where the contract call will be made * @param destinationAddress The target address on the destination chain * @param payload Data payload for the contract call * @param refundAddress The address where refunds, if any, should be sent */ function payNativeGasForExpressCall( address sender, string calldata destinationChain, string calldata destinationAddress, bytes calldata payload, address refundAddress ) external payable; /** * @notice Pay for gas using native currency for an express contract call with tokens on a destination chain. * @dev This function is called on the source chain before calling the gateway to execute a remote contract. * @param sender The address making the payment * @param destinationChain The target chain where the contract call with tokens will be made * @param destinationAddress The target address on the destination chain * @param payload Data payload for the contract call with tokens * @param symbol The symbol of the token to be sent with the call * @param amount The amount of tokens to be sent with the call * @param refundAddress The address where refunds, if any, should be sent */ function payNativeGasForExpressCallWithToken( address sender, string calldata destinationChain, string calldata destinationAddress, bytes calldata payload, string calldata symbol, uint256 amount, address refundAddress ) external payable; /** * @notice Add additional gas payment using ERC20 tokens after initiating a cross-chain call. * @dev This function can be called on the source chain after calling the gateway to execute a remote contract. * @param txHash The transaction hash of the cross-chain call * @param logIndex The log index for the cross-chain call * @param gasToken The ERC20 token address used to add gas * @param gasFeeAmount The amount of tokens to add as gas * @param refundAddress The address where refunds, if any, should be sent */ function addGas( bytes32 txHash, uint256 logIndex, address gasToken, uint256 gasFeeAmount, address refundAddress ) external; /** * @notice Add additional gas payment using native currency after initiating a cross-chain call. * @dev This function can be called on the source chain after calling the gateway to execute a remote contract. * @param txHash The transaction hash of the cross-chain call * @param logIndex The log index for the cross-chain call * @param refundAddress The address where refunds, if any, should be sent */ function addNativeGas( bytes32 txHash, uint256 logIndex, address refundAddress ) external payable; /** * @notice Add additional gas payment using ERC20 tokens after initiating an express cross-chain call. * @dev This function can be called on the source chain after calling the gateway to express execute a remote contract. * @param txHash The transaction hash of the cross-chain call * @param logIndex The log index for the cross-chain call * @param gasToken The ERC20 token address used to add gas * @param gasFeeAmount The amount of tokens to add as gas * @param refundAddress The address where refunds, if any, should be sent */ function addExpressGas( bytes32 txHash, uint256 logIndex, address gasToken, uint256 gasFeeAmount, address refundAddress ) external; /** * @notice Add additional gas payment using native currency after initiating an express cross-chain call. * @dev This function can be called on the source chain after calling the gateway to express execute a remote contract. * @param txHash The transaction hash of the cross-chain call * @param logIndex The log index for the cross-chain call * @param refundAddress The address where refunds, if any, should be sent */ function addNativeExpressGas( bytes32 txHash, uint256 logIndex, address refundAddress ) external payable; /** * @notice Updates the gas price for a specific chain. * @dev This function is called by the gas oracle to update the gas prices for a specific chains. * @param chains Array of chain names * @param gasUpdates Array of gas updates */ function updateGasInfo(string[] calldata chains, GasInfo[] calldata gasUpdates) external; /** * @notice Allows the gasCollector to collect accumulated fees from the contract. * @dev Use address(0) as the token address for native currency. * @param receiver The address to receive the collected fees * @param tokens Array of token addresses to be collected * @param amounts Array of amounts to be collected for each respective token address */ function collectFees( address payable receiver, address[] calldata tokens, uint256[] calldata amounts ) external; /** * @notice Refunds gas payment to the receiver in relation to a specific cross-chain transaction. * @dev Only callable by the gasCollector. * @dev Use address(0) as the token address to refund native currency. * @param txHash The transaction hash of the cross-chain call * @param logIndex The log index for the cross-chain call * @param receiver The address to receive the refund * @param token The token address to be refunded * @param amount The amount to refund */ function refund( bytes32 txHash, uint256 logIndex, address payable receiver, address token, uint256 amount ) external; /** * @notice Returns the address of the designated gas collector. * @return address of the gas collector */ function gasCollector() external returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SafeCast} from "./math/SafeCast.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { using SafeCast for *; bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; uint256 private constant SPECIAL_CHARS_LOOKUP = (1 << 0x08) | // backspace (1 << 0x09) | // tab (1 << 0x0a) | // newline (1 << 0x0c) | // form feed (1 << 0x0d) | // carriage return (1 << 0x22) | // double quote (1 << 0x5c); // backslash /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev The string being parsed contains characters that are not in scope of the given base. */ error StringsInvalidChar(); /** * @dev The string being parsed is not a properly formatted address. */ error StringsInvalidAddressFormat(); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; assembly ("memory-safe") { ptr := add(buffer, add(32, length)) } while (true) { ptr--; assembly ("memory-safe") { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal * representation, according to EIP-55. */ function toChecksumHexString(address addr) internal pure returns (string memory) { bytes memory buffer = bytes(toHexString(addr)); // hash the hex part of buffer (skip length + 2 bytes, length 40) uint256 hashValue; assembly ("memory-safe") { hashValue := shr(96, keccak256(add(buffer, 0x22), 40)) } for (uint256 i = 41; i > 1; --i) { // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f) if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) { // case shift by xoring with 0x20 buffer[i] ^= 0x20; } hashValue >>= 4; } return string(buffer); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } /** * @dev Parse a decimal string and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input) internal pure returns (uint256) { return parseUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[0-9]*` * - The result must fit into an `uint256` type */ function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); uint256 result = 0; for (uint256 i = begin; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 9) return (false, 0); result *= 10; result += chr; } return (true, result); } /** * @dev Parse a decimal string and returns the value as a `int256`. * * Requirements: * - The string must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input) internal pure returns (int256) { return parseInt(input, 0, bytes(input).length); } /** * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `[-+]?[0-9]*` * - The result must fit in an `int256` type. */ function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) { (bool success, int256 value) = tryParseInt(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if * the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt(string memory input) internal pure returns (bool success, int256 value) { return _tryParseIntUncheckedBounds(input, 0, bytes(input).length); } uint256 private constant ABS_MIN_INT256 = 2 ** 255; /** * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid * character or if the result does not fit in a `int256`. * * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`. */ function tryParseInt( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, int256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseIntUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseIntUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, int256 value) { bytes memory buffer = bytes(input); // Check presence of a negative sign. bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty bool positiveSign = sign == bytes1("+"); bool negativeSign = sign == bytes1("-"); uint256 offset = (positiveSign || negativeSign).toUint(); (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end); if (absSuccess && absValue < ABS_MIN_INT256) { return (true, negativeSign ? -int256(absValue) : int256(absValue)); } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) { return (true, type(int256).min); } else return (false, 0); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input) internal pure returns (uint256) { return parseHexUint(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]*` * - The result must fit in an `uint256` type. */ function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) { (bool success, uint256 value) = tryParseHexUint(input, begin, end); if (!success) revert StringsInvalidChar(); return value; } /** * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) { return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length); } /** * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an * invalid character. * * NOTE: This function will revert if the result does not fit in a `uint256`. */ function tryParseHexUint( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, uint256 value) { if (end > bytes(input).length || begin > end) return (false, 0); return _tryParseHexUintUncheckedBounds(input, begin, end); } /** * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that * `begin <= end <= input.length`. Other inputs would result in undefined behavior. */ function _tryParseHexUintUncheckedBounds( string memory input, uint256 begin, uint256 end ) private pure returns (bool success, uint256 value) { bytes memory buffer = bytes(input); // skip 0x prefix if present bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 offset = hasPrefix.toUint() * 2; uint256 result = 0; for (uint256 i = begin + offset; i < end; ++i) { uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i))); if (chr > 15) return (false, 0); result *= 16; unchecked { // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check). // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked. result += chr; } } return (true, result); } /** * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`. * * Requirements: * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input) internal pure returns (address) { return parseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and * `end` (excluded). * * Requirements: * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}` */ function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) { (bool success, address value) = tryParseAddress(input, begin, end); if (!success) revert StringsInvalidAddressFormat(); return value; } /** * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly * formatted address. See {parseAddress-string} requirements. */ function tryParseAddress(string memory input) internal pure returns (bool success, address value) { return tryParseAddress(input, 0, bytes(input).length); } /** * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly * formatted address. See {parseAddress-string-uint256-uint256} requirements. */ function tryParseAddress( string memory input, uint256 begin, uint256 end ) internal pure returns (bool success, address value) { if (end > bytes(input).length || begin > end) return (false, address(0)); bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty uint256 expectedLength = 40 + hasPrefix.toUint() * 2; // check that input is the correct length if (end - begin == expectedLength) { // length guarantees that this does not overflow, and value is at most type(uint160).max (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end); return (s, address(uint160(v))); } else { return (false, address(0)); } } function _tryParseChr(bytes1 chr) private pure returns (uint8) { uint8 value = uint8(chr); // Try to parse `chr`: // - Case 1: [0-9] // - Case 2: [a-f] // - Case 3: [A-F] // - otherwise not supported unchecked { if (value > 47 && value < 58) value -= 48; else if (value > 96 && value < 103) value -= 87; else if (value > 64 && value < 71) value -= 55; else return type(uint8).max; } return value; } /** * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata. * * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped. */ function escapeJSON(string memory input) internal pure returns (string memory) { bytes memory buffer = bytes(input); bytes memory output = new bytes(2 * buffer.length); // worst case scenario uint256 outputLength = 0; for (uint256 i; i < buffer.length; ++i) { bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i)); if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) { output[outputLength++] = "\\"; if (char == 0x08) output[outputLength++] = "b"; else if (char == 0x09) output[outputLength++] = "t"; else if (char == 0x0a) output[outputLength++] = "n"; else if (char == 0x0c) output[outputLength++] = "f"; else if (char == 0x0d) output[outputLength++] = "r"; else if (char == 0x5c) output[outputLength++] = "\\"; else if (char == 0x22) { // solhint-disable-next-line quotes output[outputLength++] = '"'; } } else { output[outputLength++] = char; } } // write the actual length and deallocate unused memory assembly ("memory-safe") { mstore(output, outputLength) mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63))))) } return string(output); } /** * @dev Reads a bytes32 from a bytes array without bounds checking. * * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the * assembly block as such would prevent some optimizations. */ function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) { // This is not memory safe in the general case, but all calls to this private function are within bounds. assembly ("memory-safe") { value := mload(add(buffer, add(0x20, offset))) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-20 standard as defined in the ERC. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; import {IERC1363} from "../../../interfaces/IERC1363.sol"; /** * @title SafeERC20 * @dev Wrappers around ERC-20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { /** * @dev An operation with an ERC-20 token failed. */ error SafeERC20FailedOperation(address token); /** * @dev Indicates a failed `decreaseAllowance` request. */ error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease); /** * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value, * non-reverting calls are assumed to be successful. */ function safeTransfer(IERC20 token, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful. */ function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal { _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful. */ function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) { return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value))); } /** * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful. */ function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) { return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value))); } /** * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal { uint256 oldAllowance = token.allowance(address(this), spender); forceApprove(token, spender, oldAllowance + value); } /** * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no * value, non-reverting calls are assumed to be successful. * * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client" * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior. */ function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal { unchecked { uint256 currentAllowance = token.allowance(address(this), spender); if (currentAllowance < requestedDecrease) { revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease); } forceApprove(token, spender, currentAllowance - requestedDecrease); } } /** * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value, * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval * to be set to zero before setting it to a non-zero value, such as USDT. * * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being * set here. */ function forceApprove(IERC20 token, address spender, uint256 value) internal { bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value)); if (!_callOptionalReturnBool(token, approvalCall)) { _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0))); _callOptionalReturn(token, approvalCall); } } /** * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { safeTransfer(token, to, value); } else if (!token.transferAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * Reverts if the returned value is other than `true`. */ function transferFromAndCallRelaxed( IERC1363 token, address from, address to, uint256 value, bytes memory data ) internal { if (to.code.length == 0) { safeTransferFrom(token, from, to, value); } else if (!token.transferFromAndCall(from, to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when * targeting contracts. * * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}. * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall} * once without retrying, and relies on the returned value to be true. * * Reverts if the returned value is other than `true`. */ function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal { if (to.code.length == 0) { forceApprove(token, to, value); } else if (!token.approveAndCall(to, value, data)) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements. */ function _callOptionalReturn(IERC20 token, bytes memory data) private { uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) // bubble errors if iszero(success) { let ptr := mload(0x40) returndatacopy(ptr, 0, returndatasize()) revert(ptr, returndatasize()) } returnSize := returndatasize() returnValue := mload(0) } if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) { revert SafeERC20FailedOperation(address(token)); } } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). * * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead. */ function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) { bool success; uint256 returnSize; uint256 returnValue; assembly ("memory-safe") { success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20) returnSize := returndatasize() returnValue := mload(0) } return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1); } }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.12; import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol"; import "../TokenUtils.sol"; /// @author Daimo, Inc /// @custom:security-contact [email protected] /// @notice Bridges assets. Specifically, it lets any relayer initiate a bridge /// transaction to another chain. interface IDaimoPayBridger { /// Emitted when a bridge transaction is initiated event BridgeInitiated( address fromAddress, address fromToken, uint256 fromAmount, uint256 toChainId, address toAddress, address toToken, uint256 toAmount ); /// Determine the input token and amount required to achieve one of the /// given output options on a given chain. function getBridgeTokenIn( uint256 toChainId, TokenAmount[] memory bridgeTokenOutOptions ) external view returns (address bridgeTokenIn, uint256 inAmount); /// Initiate a bridge. Guarantee that one of the bridge token options /// (bridgeTokenOut, outAmount) shows up at toAddress on toChainId. /// Otherwise, revert. function sendToChain( uint256 toChainId, address toAddress, TokenAmount[] calldata bridgeTokenOutOptions, bytes calldata extraData ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IAxelarGateway } from '../interfaces/IAxelarGateway.sol'; import { IAxelarExecutable } from '../interfaces/IAxelarExecutable.sol'; /** * @title AxelarExecutable * @dev Abstract contract to be inherited by contracts that need to execute cross-chain commands via Axelar's Gateway. * It implements the IAxelarExecutable interface. */ abstract contract AxelarExecutable is IAxelarExecutable { /// @dev Reference to the Axelar Gateway contract. address internal immutable gatewayAddress; /** * @dev Contract constructor that sets the Axelar Gateway address. * Reverts if the provided address is the zero address. * @param gateway_ The address of the Axelar Gateway contract. */ constructor(address gateway_) { if (gateway_ == address(0)) revert InvalidAddress(); gatewayAddress = gateway_; } /** * @notice Executes the cross-chain command after validating it with the Axelar Gateway. * @dev This function ensures the call is approved by Axelar Gateway before execution. * It uses a hash of the payload for validation and internally calls _execute for the actual command execution. * Reverts if the validation fails. * @param commandId The unique identifier of the cross-chain message being executed. * @param sourceChain The name of the source chain from which the message originated. * @param sourceAddress The address on the source chain that sent the message. * @param payload The payload of the message payload. */ function execute( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload ) external virtual { bytes32 payloadHash = keccak256(payload); if (!gateway().validateContractCall(commandId, sourceChain, sourceAddress, payloadHash)) revert NotApprovedByGateway(); _execute(commandId, sourceChain, sourceAddress, payload); } /** * @dev Internal virtual function to be overridden by child contracts to execute the command. * It allows child contracts to define their custom command execution logic. * @param commandId The identifier of the command to execute. * @param sourceChain The name of the source chain from which the command originated. * @param sourceAddress The address on the source chain that sent the command. * @param payload The payload of the command to be executed. */ function _execute( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload ) internal virtual; /** * @notice Returns the address of the AxelarGateway contract. * @return The Axelar Gateway instance. */ function gateway() public view returns (IAxelarGateway) { return IAxelarGateway(gatewayAddress); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IAxelarGatewayWithToken } from '../interfaces/IAxelarGatewayWithToken.sol'; import { IAxelarExecutableWithToken } from '../interfaces/IAxelarExecutableWithToken.sol'; import { AxelarExecutable } from './AxelarExecutable.sol'; /** * @title AxelarExecutableWithToken * @dev Abstract contract to be inherited by contracts that need to execute cross-chain commands involving tokens via Axelar's Gateway. * It extends AxelarExecutable and implements the IAxelarExecutableWithToken interface. */ abstract contract AxelarExecutableWithToken is IAxelarExecutableWithToken, AxelarExecutable { /** * @dev Contract constructor that sets the Axelar Gateway With Token address and initializes AxelarExecutable. * @param gateway_ The address of the Axelar Gateway With Token contract. */ constructor(address gateway_) AxelarExecutable(gateway_) {} /** * @notice Executes the cross-chain command with token transfer after validating it with the Axelar Gateway. * @dev This function ensures the call is approved by Axelar Gateway With Token before execution. * It uses a hash of the payload for validation and calls _executeWithToken for the actual command execution. * Reverts if the validation fails. * @param commandId The unique identifier of the cross-chain message being executed. * @param sourceChain The name of the source chain from which the message originated. * @param sourceAddress The address on the source chain that sent the message. * @param payload The payload of the message payload. * @param tokenSymbol The symbol of the token to be transferred. * @param amount The amount of tokens to be transferred. */ function executeWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload, string calldata tokenSymbol, uint256 amount ) external virtual { bytes32 payloadHash = keccak256(payload); if ( !gatewayWithToken().validateContractCallAndMint( commandId, sourceChain, sourceAddress, payloadHash, tokenSymbol, amount ) ) revert NotApprovedByGateway(); _executeWithToken(commandId, sourceChain, sourceAddress, payload, tokenSymbol, amount); } /** * @dev Internal virtual function to be overridden by child contracts to execute the command with token transfer. * It allows child contracts to define their custom command execution logic involving tokens. * @param commandId The unique identifier of the cross-chain message being executed. * @param sourceChain The name of the source chain from which the message originated. * @param sourceAddress The address on the source chain that sent the message. * @param payload The payload of the message payload. * @param tokenSymbol The symbol of the token to be transferred. * @param amount The amount of tokens to be transferred. */ function _executeWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload, string calldata tokenSymbol, uint256 amount ) internal virtual; /** * @notice Returns the address of the IAxelarGatewayWithToken contract. * @return The Axelar Gateway with Token instance. */ function gatewayWithToken() internal view returns (IAxelarGatewayWithToken) { return IAxelarGatewayWithToken(gatewayAddress); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IAxelarGateway } from './IAxelarGateway.sol'; /** * @title IAxelarExecutable * @dev Interface for a contract that is executable by Axelar Gateway's cross-chain message passing. * It defines a standard interface to execute commands sent from another chain. */ interface IAxelarExecutable { /** * @dev Thrown when a function is called with an invalid address. */ error InvalidAddress(); /** * @dev Thrown when the call is not approved by the Axelar Gateway. */ error NotApprovedByGateway(); /** * @notice Returns the address of the AxelarGateway contract. * @return The Axelar Gateway contract associated with this executable contract. */ function gateway() external view returns (IAxelarGateway); /** * @notice Executes the specified command sent from another chain. * @dev This function is called by the Axelar Gateway to carry out cross-chain commands. * Reverts if the call is not approved by the gateway or other checks fail. * @param commandId The identifier of the command to execute. * @param sourceChain The name of the source chain from where the command originated. * @param sourceAddress The address on the source chain that sent the command. * @param payload The payload of the command to be executed. This typically includes the function selector and encoded arguments. */ function execute( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IAxelarExecutable } from './IAxelarExecutable.sol'; /** * @title IAxelarExecutableWithToken * @dev Interface for a contract that can execute commands from Axelar Gateway involving token transfers. * It extends IAxelarExecutable to include token-related functionality. */ interface IAxelarExecutableWithToken is IAxelarExecutable { /** * @notice Executes the specified command sent from another chain and includes a token transfer. * @dev This function should be implemented to handle incoming commands that include token transfers. * It will be called by an implementation of `IAxelarGatewayWithToken`. * @param commandId The identifier of the command to execute. * @param sourceChain The name of the source chain from where the command originated. * @param sourceAddress The address on the source chain that sent the command. * @param payload The payload of the command to be executed. * @param tokenSymbol The symbol of the token to be transferred with this command. * @param amount The amount of tokens to be transferred with this command. */ function executeWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload, string calldata tokenSymbol, uint256 amount ) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IAxelarExpressExecutable } from './IAxelarExpressExecutable.sol'; import { IAxelarExecutableWithToken } from './IAxelarExecutableWithToken.sol'; /** * @title IAxelarExpressExecutableWithToken * @notice Interface for the Axelar Express Executable contract with token. */ interface IAxelarExpressExecutableWithToken is IAxelarExpressExecutable, IAxelarExecutableWithToken { /** * @notice Emitted when an express execution with a token is successfully performed. * @param commandId The unique identifier for the command. * @param sourceChain The source chain. * @param sourceAddress The source address. * @param payloadHash The hash of the payload. * @param symbol The token symbol. * @param amount The amount of tokens. * @param expressExecutor The address of the express executor. */ event ExpressExecutedWithToken( bytes32 indexed commandId, string sourceChain, string sourceAddress, bytes32 payloadHash, string symbol, uint256 indexed amount, address indexed expressExecutor ); /** * @notice Emitted when an express execution with a token is fulfilled. * @param commandId The commandId for the contractCallWithToken. * @param sourceChain The source chain. * @param sourceAddress The source address. * @param payloadHash The hash of the payload. * @param symbol The token symbol. * @param amount The amount of tokens. * @param expressExecutor The address of the express executor. */ event ExpressExecutionWithTokenFulfilled( bytes32 indexed commandId, string sourceChain, string sourceAddress, bytes32 payloadHash, string symbol, uint256 indexed amount, address indexed expressExecutor ); /** * @notice Returns the express executor with token for a given command. * @param commandId The commandId for the contractCallWithToken. * @param sourceChain The source chain. * @param sourceAddress The source address. * @param payloadHash The hash of the payload. * @param symbol The token symbol. * @param amount The amount of tokens. * @return expressExecutor The address of the express executor. */ function getExpressExecutorWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash, string calldata symbol, uint256 amount ) external view returns (address expressExecutor); /** * @notice Express executes a contract call with token. * @param commandId The commandId for the contractCallWithToken. * @param sourceChain The source chain. * @param sourceAddress The source address. * @param payload The payload data. * @param symbol The token symbol. * @param amount The amount of token. */ function expressExecuteWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload, string calldata symbol, uint256 amount ) external payable; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; abstract contract ExpressExecutorTracker { error ExpressExecutorAlreadySet(); bytes32 internal constant PREFIX_EXPRESS_EXECUTE = keccak256('express-execute'); bytes32 internal constant PREFIX_EXPRESS_EXECUTE_WITH_TOKEN = keccak256('express-execute-with-token'); function _expressExecuteSlot( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash ) internal pure returns (bytes32 slot) { slot = keccak256(abi.encode(PREFIX_EXPRESS_EXECUTE, commandId, sourceChain, sourceAddress, payloadHash)); } function _expressExecuteWithTokenSlot( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash, string calldata symbol, uint256 amount ) internal pure returns (bytes32 slot) { slot = keccak256( abi.encode( PREFIX_EXPRESS_EXECUTE_WITH_TOKEN, commandId, sourceChain, sourceAddress, payloadHash, symbol, amount ) ); } function _getExpressExecutor( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash ) internal view returns (address expressExecutor) { bytes32 slot = _expressExecuteSlot(commandId, sourceChain, sourceAddress, payloadHash); assembly { expressExecutor := sload(slot) } } function _getExpressExecutorWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash, string calldata symbol, uint256 amount ) internal view returns (address expressExecutor) { bytes32 slot = _expressExecuteWithTokenSlot(commandId, sourceChain, sourceAddress, payloadHash, symbol, amount); assembly { expressExecutor := sload(slot) } } function _setExpressExecutor( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash, address expressExecutor ) internal { bytes32 slot = _expressExecuteSlot(commandId, sourceChain, sourceAddress, payloadHash); address currentExecutor; assembly { currentExecutor := sload(slot) } if (currentExecutor != address(0)) revert ExpressExecutorAlreadySet(); assembly { sstore(slot, expressExecutor) } } function _setExpressExecutorWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash, string calldata symbol, uint256 amount, address expressExecutor ) internal { bytes32 slot = _expressExecuteWithTokenSlot(commandId, sourceChain, sourceAddress, payloadHash, symbol, amount); address currentExecutor; assembly { currentExecutor := sload(slot) } if (currentExecutor != address(0)) revert ExpressExecutorAlreadySet(); assembly { sstore(slot, expressExecutor) } } function _popExpressExecutor( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash ) internal returns (address expressExecutor) { bytes32 slot = _expressExecuteSlot(commandId, sourceChain, sourceAddress, payloadHash); assembly { expressExecutor := sload(slot) if expressExecutor { sstore(slot, 0) } } } function _popExpressExecutorWithToken( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash, string calldata symbol, uint256 amount ) internal returns (address expressExecutor) { bytes32 slot = _expressExecuteWithTokenSlot(commandId, sourceChain, sourceAddress, payloadHash, symbol, amount); assembly { expressExecutor := sload(slot) if expressExecutor { sstore(slot, 0) } } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IERC20 } from '../interfaces/IERC20.sol'; error TokenTransferFailed(); /* * @title SafeTokenCall * @dev This library is used for performing safe token transfers. */ library SafeTokenCall { /* * @notice Make a safe call to a token contract. * @param token The token contract to interact with. * @param callData The function call data. * @throws TokenTransferFailed error if transfer of token is not successful. */ function safeCall(IERC20 token, bytes memory callData) internal { (bool success, bytes memory returnData) = address(token).call(callData); bool transferred = success && (returnData.length == uint256(0) || abi.decode(returnData, (bool))); if (!transferred || address(token).code.length == 0) revert TokenTransferFailed(); } } /* * @title SafeTokenTransfer * @dev This library safely transfers tokens from the contract to a recipient. */ library SafeTokenTransfer { /* * @notice Transfer tokens to a recipient. * @param token The token contract. * @param receiver The recipient of the tokens. * @param amount The amount of tokens to transfer. */ function safeTransfer( IERC20 token, address receiver, uint256 amount ) internal { SafeTokenCall.safeCall(token, abi.encodeWithSelector(IERC20.transfer.selector, receiver, amount)); } } /* * @title SafeTokenTransferFrom * @dev This library helps to safely transfer tokens on behalf of a token holder. */ library SafeTokenTransferFrom { /* * @notice Transfer tokens on behalf of a token holder. * @param token The token contract. * @param from The address of the token holder. * @param to The address the tokens are to be sent to. * @param amount The amount of tokens to be transferred. */ function safeTransferFrom( IERC20 token, address from, address to, uint256 amount ) internal { SafeTokenCall.safeCall(token, abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, amount)); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { error InvalidAccount(); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title IAxelarGateway * @dev Interface for the Axelar Gateway that supports general message passing and contract call execution. */ interface IAxelarGateway { /** * @notice Emitted when a contract call is made through the gateway. * @dev Logs the attempt to call a contract on another chain. * @param sender The address of the sender who initiated the contract call. * @param destinationChain The name of the destination chain. * @param destinationContractAddress The address of the contract on the destination chain. * @param payloadHash The keccak256 hash of the sent payload data. * @param payload The payload data used for the contract call. */ event ContractCall( address indexed sender, string destinationChain, string destinationContractAddress, bytes32 indexed payloadHash, bytes payload ); /** * @notice Sends a contract call to another chain. * @dev Initiates a cross-chain contract call through the gateway to the specified destination chain and contract. * @param destinationChain The name of the destination chain. * @param contractAddress The address of the contract on the destination chain. * @param payload The payload data to be used in the contract call. */ function callContract( string calldata destinationChain, string calldata contractAddress, bytes calldata payload ) external; /** * @notice Checks if a contract call is approved. * @dev Determines whether a given contract call, identified by the commandId and payloadHash, is approved. * @param commandId The identifier of the command to check. * @param sourceChain The name of the source chain. * @param sourceAddress The address of the sender on the source chain. * @param contractAddress The address of the contract where the call will be executed. * @param payloadHash The keccak256 hash of the payload data. * @return True if the contract call is approved, false otherwise. */ function isContractCallApproved( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, address contractAddress, bytes32 payloadHash ) external view returns (bool); /** * @notice Validates and approves a contract call. * @dev Validates the given contract call information and marks it as approved if valid. * @param commandId The identifier of the command to validate. * @param sourceChain The name of the source chain. * @param sourceAddress The address of the sender on the source chain. * @param payloadHash The keccak256 hash of the payload data. * @return True if the contract call is validated and approved, false otherwise. */ function validateContractCall( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash ) external returns (bool); /** * @notice Checks if a command has been executed. * @dev Determines whether a command, identified by the commandId, has been executed. * @param commandId The identifier of the command to check. * @return True if the command has been executed, false otherwise. */ function isCommandExecuted(bytes32 commandId) external view returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title GasEstimationType * @notice This enum represents the gas estimation types for different chains. */ enum GasEstimationType { Default, OptimismEcotone, OptimismBedrock, Arbitrum, Scroll } /** * @title GasInfo * @notice This struct represents the gas pricing information for a specific chain. * @dev Smaller uint types are used for efficient struct packing to save storage costs. */ struct GasInfo { /// @dev Custom gas pricing rule, such as L1 data fee on L2s uint64 gasEstimationType; /// @dev Scalar value needed for specific gas estimation types, expected to be less than 1e10 uint64 l1FeeScalar; /// @dev Axelar base fee for cross-chain message approval on destination, in terms of source native gas token uint128 axelarBaseFee; /// @dev Gas price of destination chain, in terms of the source chain token, i.e dest_gas_price * dest_token_market_price / src_token_market_price uint128 relativeGasPrice; /// @dev Needed for specific gas estimation types. Blob base fee of destination chain, in terms of the source chain token, i.e dest_blob_base_fee * dest_token_market_price / src_token_market_price uint128 relativeBlobBaseFee; /// @dev Axelar express fee for express execution, in terms of source chain token uint128 expressFee; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { GasEstimationType, GasInfo } from '../types/GasEstimationTypes.sol'; /** * @title IInterchainGasEstimation Interface * @notice This is an interface for the InterchainGasEstimation contract * which allows for estimating gas fees for cross-chain communication on the Axelar network. */ interface IInterchainGasEstimation { error UnsupportedEstimationType(GasEstimationType gasEstimationType); /** * @notice Event emitted when the gas price for a specific chain is updated. * @param chain The name of the chain * @param info The gas info for the chain */ event GasInfoUpdated(string chain, GasInfo info); /** * @notice Returns the gas price for a specific chain. * @param chain The name of the chain * @return gasInfo The gas info for the chain */ function getGasInfo(string calldata chain) external view returns (GasInfo memory); /** * @notice Estimates the gas fee for a cross-chain contract call. * @param destinationChain Axelar registered name of the destination chain * @param destinationAddress Destination contract address being called * @param executionGasLimit The gas limit to be used for the destination contract execution, * e.g. pass in 200k if your app consumes needs upto 200k for this contract call * @param params Additional parameters for the gas estimation * @return gasEstimate The cross-chain gas estimate, in terms of source chain's native gas token that should be forwarded to the gas service. */ function estimateGasFee( string calldata destinationChain, string calldata destinationAddress, bytes calldata payload, uint256 executionGasLimit, bytes calldata params ) external view returns (uint256 gasEstimate); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IOwnable } from './IOwnable.sol'; import { IImplementation } from './IImplementation.sol'; // General interface for upgradable contracts interface IUpgradable is IOwnable, IImplementation { error InvalidCodeHash(); error InvalidImplementation(); error SetupFailed(); event Upgraded(address indexed newImplementation); function implementation() external view returns (address); function upgrade( address newImplementation, bytes32 newImplementationCodeHash, bytes calldata params ) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol) pragma solidity ^0.8.20; import {Panic} from "../Panic.sol"; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Return the 512-bit addition of two uint256. * * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low. */ function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) { assembly ("memory-safe") { low := add(a, b) high := lt(low, a) } } /** * @dev Return the 512-bit multiplication of two uint256. * * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low. */ function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) { // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = high * 2²⁵⁶ + low. assembly ("memory-safe") { let mm := mulmod(a, b, not(0)) low := mul(a, b) high := sub(sub(mm, low), lt(mm, low)) } } /** * @dev Returns the addition of two unsigned integers, with a success flag (no overflow). */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a + b; success = c >= a; result = c * SafeCast.toUint(success); } } /** * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow). */ function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a - b; success = c <= a; result = c * SafeCast.toUint(success); } } /** * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow). */ function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { uint256 c = a * b; assembly ("memory-safe") { // Only true when the multiplication doesn't overflow // (c / a == b) || (a == 0) success := or(eq(div(c, a), b), iszero(a)) } // equivalent to: success ? c : 0 result = c * SafeCast.toUint(success); } } /** * @dev Returns the division of two unsigned integers, with a success flag (no division by zero). */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { success = b > 0; assembly ("memory-safe") { // The `DIV` opcode returns zero when the denominator is 0. result := div(a, b) } } } /** * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero). */ function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) { unchecked { success = b > 0; assembly ("memory-safe") { // The `MOD` opcode returns zero when the denominator is 0. result := mod(a, b) } } } /** * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing. */ function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) { (bool success, uint256 result) = tryAdd(a, b); return ternary(success, result, type(uint256).max); } /** * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing. */ function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) { (, uint256 result) = trySub(a, b); return result; } /** * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing. */ function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) { (bool success, uint256 result) = tryMul(a, b); return ternary(success, result, type(uint256).max); } /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * SafeCast.toUint(condition)); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. Panic.panic(Panic.DIVISION_BY_ZERO); } // The following calculation ensures accurate ceiling division without overflow. // Since a is non-zero, (a - 1) / b will not overflow. // The largest possible result occurs when (a - 1) / b is type(uint256).max, // but the largest value we can obtain is type(uint256).max - 1, which happens // when a = type(uint256).max and b = 1. unchecked { return SafeCast.toUint(a > 0) * ((a - 1) / b + 1); } } /** * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { (uint256 high, uint256 low) = mul512(x, y); // Handle non-overflow cases, 256 by 256 division. if (high == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return low / denominator; } // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0. if (denominator <= high) { Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW)); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [high low]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. high := sub(high, gt(remainder, low)) low := sub(low, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly ("memory-safe") { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [high low] by twos. low := div(low, twos) // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from high into low. low |= high * twos; // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv ≡ 1 mod 2⁴. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2⁸ inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶ inverse *= 2 - denominator * inverse; // inverse mod 2³² inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴ inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸ inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶ // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high // is no longer required. result = low * inverse; return result; } } /** * @dev Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0); } /** * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256. */ function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) { unchecked { (uint256 high, uint256 low) = mul512(x, y); if (high >= 1 << n) { Panic.panic(Panic.UNDER_OVERFLOW); } return (high << (256 - n)) | (low >> n); } } /** * @dev Calculates x * y >> n with full precision, following the selected rounding direction. */ function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) { return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0); } /** * @dev Calculate the modular multiplicative inverse of a number in Z/nZ. * * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0. * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible. * * If the input value is not inversible, 0 is returned. * * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}. */ function invMod(uint256 a, uint256 n) internal pure returns (uint256) { unchecked { if (n == 0) return 0; // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version) // Used to compute integers x and y such that: ax + ny = gcd(a, n). // When the gcd is 1, then the inverse of a modulo n exists and it's x. // ax + ny = 1 // ax = 1 + (-y)n // ax ≡ 1 (mod n) # x is the inverse of a modulo n // If the remainder is 0 the gcd is n right away. uint256 remainder = a % n; uint256 gcd = n; // Therefore the initial coefficients are: // ax + ny = gcd(a, n) = n // 0a + 1n = n int256 x = 0; int256 y = 1; while (remainder != 0) { uint256 quotient = gcd / remainder; (gcd, remainder) = ( // The old remainder is the next gcd to try. remainder, // Compute the next remainder. // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd // where gcd is at most n (capped to type(uint256).max) gcd - remainder * quotient ); (x, y) = ( // Increment the coefficient of a. y, // Decrement the coefficient of n. // Can overflow, but the result is casted to uint256 so that the // next value of y is "wrapped around" to a value between 0 and n - 1. x - y * int256(quotient) ); } if (gcd != 1) return 0; // No inverse exists. return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative. } } /** * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`. * * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that * `a**(p-2)` is the modular multiplicative inverse of a in Fp. * * NOTE: this function does NOT check that `p` is a prime greater than `2`. */ function invModPrime(uint256 a, uint256 p) internal view returns (uint256) { unchecked { return Math.modExp(a, p - 2, p); } } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m) * * Requirements: * - modulus can't be zero * - underlying staticcall to precompile must succeed * * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make * sure the chain you're using it on supports the precompiled contract for modular exponentiation * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, * the underlying function will succeed given the lack of a revert, but the result may be incorrectly * interpreted as 0. */ function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) { (bool success, uint256 result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m). * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying * to operate modulo 0 or if the underlying precompile reverted. * * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack * of a revert, but the result may be incorrectly interpreted as 0. */ function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) { if (m == 0) return (false, 0); assembly ("memory-safe") { let ptr := mload(0x40) // | Offset | Content | Content (Hex) | // |-----------|------------|--------------------------------------------------------------------| // | 0x00:0x1f | size of b | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x20:0x3f | size of e | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x40:0x5f | size of m | 0x0000000000000000000000000000000000000000000000000000000000000020 | // | 0x60:0x7f | value of b | 0x<.............................................................b> | // | 0x80:0x9f | value of e | 0x<.............................................................e> | // | 0xa0:0xbf | value of m | 0x<.............................................................m> | mstore(ptr, 0x20) mstore(add(ptr, 0x20), 0x20) mstore(add(ptr, 0x40), 0x20) mstore(add(ptr, 0x60), b) mstore(add(ptr, 0x80), e) mstore(add(ptr, 0xa0), m) // Given the result < m, it's guaranteed to fit in 32 bytes, // so we can use the memory scratch space located at offset 0. success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20) result := mload(0x00) } } /** * @dev Variant of {modExp} that supports inputs of arbitrary length. */ function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) { (bool success, bytes memory result) = tryModExp(b, e, m); if (!success) { Panic.panic(Panic.DIVISION_BY_ZERO); } return result; } /** * @dev Variant of {tryModExp} that supports inputs of arbitrary length. */ function tryModExp( bytes memory b, bytes memory e, bytes memory m ) internal view returns (bool success, bytes memory result) { if (_zeroBytes(m)) return (false, new bytes(0)); uint256 mLen = m.length; // Encode call args in result and move the free memory pointer result = abi.encodePacked(b.length, e.length, mLen, b, e, m); assembly ("memory-safe") { let dataPtr := add(result, 0x20) // Write result on top of args to avoid allocating extra memory. success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen) // Overwrite the length. // result.length > returndatasize() is guaranteed because returndatasize() == m.length mstore(result, mLen) // Set the memory pointer after the returned data. mstore(0x40, add(dataPtr, mLen)) } } /** * @dev Returns whether the provided byte array is zero. */ function _zeroBytes(bytes memory byteArray) private pure returns (bool) { for (uint256 i = 0; i < byteArray.length; ++i) { if (byteArray[i] != 0) { return false; } } return true; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * This method is based on Newton's method for computing square roots; the algorithm is restricted to only * using integer operations. */ function sqrt(uint256 a) internal pure returns (uint256) { unchecked { // Take care of easy edge cases when a == 0 or a == 1 if (a <= 1) { return a; } // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between // the current value as `ε_n = | x_n - sqrt(a) |`. // // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is // bigger than any uint256. // // By noticing that // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)` // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar // to the msb function. uint256 aa = a; uint256 xn = 1; if (aa >= (1 << 128)) { aa >>= 128; xn <<= 64; } if (aa >= (1 << 64)) { aa >>= 64; xn <<= 32; } if (aa >= (1 << 32)) { aa >>= 32; xn <<= 16; } if (aa >= (1 << 16)) { aa >>= 16; xn <<= 8; } if (aa >= (1 << 8)) { aa >>= 8; xn <<= 4; } if (aa >= (1 << 4)) { aa >>= 4; xn <<= 2; } if (aa >= (1 << 2)) { xn <<= 1; } // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1). // // We can refine our estimation by noticing that the middle of that interval minimizes the error. // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2). // This is going to be our x_0 (and ε_0) xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2) // From here, Newton's method give us: // x_{n+1} = (x_n + a / x_n) / 2 // // One should note that: // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a // = ((x_n² + a) / (2 * x_n))² - a // = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a // = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²) // = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²) // = (x_n² - a)² / (2 * x_n)² // = ((x_n² - a) / (2 * x_n))² // ≥ 0 // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n // // This gives us the proof of quadratic convergence of the sequence: // ε_{n+1} = | x_{n+1} - sqrt(a) | // = | (x_n + a / x_n) / 2 - sqrt(a) | // = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) | // = | (x_n - sqrt(a))² / (2 * x_n) | // = | ε_n² / (2 * x_n) | // = ε_n² / | (2 * x_n) | // // For the first iteration, we have a special case where x_0 is known: // ε_1 = ε_0² / | (2 * x_0) | // ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2))) // ≤ 2**(2*e-4) / (3 * 2**(e-1)) // ≤ 2**(e-3) / 3 // ≤ 2**(e-3-log2(3)) // ≤ 2**(e-4.5) // // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n: // ε_{n+1} = ε_n² / | (2 * x_n) | // ≤ (2**(e-k))² / (2 * 2**(e-1)) // ≤ 2**(2*e-2*k) / 2**e // ≤ 2**(e-2*k) xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5) -- special case, see above xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9) -- general case with k = 4.5 xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18) -- general case with k = 9 xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36) -- general case with k = 18 xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72) -- general case with k = 36 xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144) -- general case with k = 72 // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either // sqrt(a) or sqrt(a) + 1. return xn - SafeCast.toUint(xn > a / xn); } } /** * @dev Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 x) internal pure returns (uint256 r) { // If value has upper 128 bits set, log2 result is at least 128 r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7; // If upper 64 bits of 128-bit half set, add 64 to result r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6; // If upper 32 bits of 64-bit half set, add 32 to result r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5; // If upper 16 bits of 32-bit half set, add 16 to result r |= SafeCast.toUint((x >> r) > 0xffff) << 4; // If upper 8 bits of 16-bit half set, add 8 to result r |= SafeCast.toUint((x >> r) > 0xff) << 3; // If upper 4 bits of 8-bit half set, add 4 to result r |= SafeCast.toUint((x >> r) > 0xf) << 2; // Shifts value right by the current result and use it as an index into this lookup table: // // | x (4 bits) | index | table[index] = MSB position | // |------------|---------|-----------------------------| // | 0000 | 0 | table[0] = 0 | // | 0001 | 1 | table[1] = 0 | // | 0010 | 2 | table[2] = 1 | // | 0011 | 3 | table[3] = 1 | // | 0100 | 4 | table[4] = 2 | // | 0101 | 5 | table[5] = 2 | // | 0110 | 6 | table[6] = 2 | // | 0111 | 7 | table[7] = 2 | // | 1000 | 8 | table[8] = 3 | // | 1001 | 9 | table[9] = 3 | // | 1010 | 10 | table[10] = 3 | // | 1011 | 11 | table[11] = 3 | // | 1100 | 12 | table[12] = 3 | // | 1101 | 13 | table[13] = 3 | // | 1110 | 14 | table[14] = 3 | // | 1111 | 15 | table[15] = 3 | // // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes. assembly ("memory-safe") { r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000)) } } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 x) internal pure returns (uint256 r) { // If value has upper 128 bits set, log2 result is at least 128 r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7; // If upper 64 bits of 128-bit half set, add 64 to result r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6; // If upper 32 bits of 64-bit half set, add 32 to result r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5; // If upper 16 bits of 32-bit half set, add 16 to result r |= SafeCast.toUint((x >> r) > 0xffff) << 4; // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8 return (r >> 3) | SafeCast.toUint((x >> r) > 0xff); } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol) // This file was procedurally generated from scripts/generate/templates/SafeCast.js. pragma solidity ^0.8.20; /** * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow * checks. * * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can * easily result in undesired exploitation or bugs, since developers usually * assume that overflows raise errors. `SafeCast` restores this intuition by * reverting the transaction when such an operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeCast { /** * @dev Value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value); /** * @dev An int value doesn't fit in an uint of `bits` size. */ error SafeCastOverflowedIntToUint(int256 value); /** * @dev Value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedIntDowncast(uint8 bits, int256 value); /** * @dev An uint value doesn't fit in an int of `bits` size. */ error SafeCastOverflowedUintToInt(uint256 value); /** * @dev Returns the downcasted uint248 from uint256, reverting on * overflow (when the input is greater than largest uint248). * * Counterpart to Solidity's `uint248` operator. * * Requirements: * * - input must fit into 248 bits */ function toUint248(uint256 value) internal pure returns (uint248) { if (value > type(uint248).max) { revert SafeCastOverflowedUintDowncast(248, value); } return uint248(value); } /** * @dev Returns the downcasted uint240 from uint256, reverting on * overflow (when the input is greater than largest uint240). * * Counterpart to Solidity's `uint240` operator. * * Requirements: * * - input must fit into 240 bits */ function toUint240(uint256 value) internal pure returns (uint240) { if (value > type(uint240).max) { revert SafeCastOverflowedUintDowncast(240, value); } return uint240(value); } /** * @dev Returns the downcasted uint232 from uint256, reverting on * overflow (when the input is greater than largest uint232). * * Counterpart to Solidity's `uint232` operator. * * Requirements: * * - input must fit into 232 bits */ function toUint232(uint256 value) internal pure returns (uint232) { if (value > type(uint232).max) { revert SafeCastOverflowedUintDowncast(232, value); } return uint232(value); } /** * @dev Returns the downcasted uint224 from uint256, reverting on * overflow (when the input is greater than largest uint224). * * Counterpart to Solidity's `uint224` operator. * * Requirements: * * - input must fit into 224 bits */ function toUint224(uint256 value) internal pure returns (uint224) { if (value > type(uint224).max) { revert SafeCastOverflowedUintDowncast(224, value); } return uint224(value); } /** * @dev Returns the downcasted uint216 from uint256, reverting on * overflow (when the input is greater than largest uint216). * * Counterpart to Solidity's `uint216` operator. * * Requirements: * * - input must fit into 216 bits */ function toUint216(uint256 value) internal pure returns (uint216) { if (value > type(uint216).max) { revert SafeCastOverflowedUintDowncast(216, value); } return uint216(value); } /** * @dev Returns the downcasted uint208 from uint256, reverting on * overflow (when the input is greater than largest uint208). * * Counterpart to Solidity's `uint208` operator. * * Requirements: * * - input must fit into 208 bits */ function toUint208(uint256 value) internal pure returns (uint208) { if (value > type(uint208).max) { revert SafeCastOverflowedUintDowncast(208, value); } return uint208(value); } /** * @dev Returns the downcasted uint200 from uint256, reverting on * overflow (when the input is greater than largest uint200). * * Counterpart to Solidity's `uint200` operator. * * Requirements: * * - input must fit into 200 bits */ function toUint200(uint256 value) internal pure returns (uint200) { if (value > type(uint200).max) { revert SafeCastOverflowedUintDowncast(200, value); } return uint200(value); } /** * @dev Returns the downcasted uint192 from uint256, reverting on * overflow (when the input is greater than largest uint192). * * Counterpart to Solidity's `uint192` operator. * * Requirements: * * - input must fit into 192 bits */ function toUint192(uint256 value) internal pure returns (uint192) { if (value > type(uint192).max) { revert SafeCastOverflowedUintDowncast(192, value); } return uint192(value); } /** * @dev Returns the downcasted uint184 from uint256, reverting on * overflow (when the input is greater than largest uint184). * * Counterpart to Solidity's `uint184` operator. * * Requirements: * * - input must fit into 184 bits */ function toUint184(uint256 value) internal pure returns (uint184) { if (value > type(uint184).max) { revert SafeCastOverflowedUintDowncast(184, value); } return uint184(value); } /** * @dev Returns the downcasted uint176 from uint256, reverting on * overflow (when the input is greater than largest uint176). * * Counterpart to Solidity's `uint176` operator. * * Requirements: * * - input must fit into 176 bits */ function toUint176(uint256 value) internal pure returns (uint176) { if (value > type(uint176).max) { revert SafeCastOverflowedUintDowncast(176, value); } return uint176(value); } /** * @dev Returns the downcasted uint168 from uint256, reverting on * overflow (when the input is greater than largest uint168). * * Counterpart to Solidity's `uint168` operator. * * Requirements: * * - input must fit into 168 bits */ function toUint168(uint256 value) internal pure returns (uint168) { if (value > type(uint168).max) { revert SafeCastOverflowedUintDowncast(168, value); } return uint168(value); } /** * @dev Returns the downcasted uint160 from uint256, reverting on * overflow (when the input is greater than largest uint160). * * Counterpart to Solidity's `uint160` operator. * * Requirements: * * - input must fit into 160 bits */ function toUint160(uint256 value) internal pure returns (uint160) { if (value > type(uint160).max) { revert SafeCastOverflowedUintDowncast(160, value); } return uint160(value); } /** * @dev Returns the downcasted uint152 from uint256, reverting on * overflow (when the input is greater than largest uint152). * * Counterpart to Solidity's `uint152` operator. * * Requirements: * * - input must fit into 152 bits */ function toUint152(uint256 value) internal pure returns (uint152) { if (value > type(uint152).max) { revert SafeCastOverflowedUintDowncast(152, value); } return uint152(value); } /** * @dev Returns the downcasted uint144 from uint256, reverting on * overflow (when the input is greater than largest uint144). * * Counterpart to Solidity's `uint144` operator. * * Requirements: * * - input must fit into 144 bits */ function toUint144(uint256 value) internal pure returns (uint144) { if (value > type(uint144).max) { revert SafeCastOverflowedUintDowncast(144, value); } return uint144(value); } /** * @dev Returns the downcasted uint136 from uint256, reverting on * overflow (when the input is greater than largest uint136). * * Counterpart to Solidity's `uint136` operator. * * Requirements: * * - input must fit into 136 bits */ function toUint136(uint256 value) internal pure returns (uint136) { if (value > type(uint136).max) { revert SafeCastOverflowedUintDowncast(136, value); } return uint136(value); } /** * @dev Returns the downcasted uint128 from uint256, reverting on * overflow (when the input is greater than largest uint128). * * Counterpart to Solidity's `uint128` operator. * * Requirements: * * - input must fit into 128 bits */ function toUint128(uint256 value) internal pure returns (uint128) { if (value > type(uint128).max) { revert SafeCastOverflowedUintDowncast(128, value); } return uint128(value); } /** * @dev Returns the downcasted uint120 from uint256, reverting on * overflow (when the input is greater than largest uint120). * * Counterpart to Solidity's `uint120` operator. * * Requirements: * * - input must fit into 120 bits */ function toUint120(uint256 value) internal pure returns (uint120) { if (value > type(uint120).max) { revert SafeCastOverflowedUintDowncast(120, value); } return uint120(value); } /** * @dev Returns the downcasted uint112 from uint256, reverting on * overflow (when the input is greater than largest uint112). * * Counterpart to Solidity's `uint112` operator. * * Requirements: * * - input must fit into 112 bits */ function toUint112(uint256 value) internal pure returns (uint112) { if (value > type(uint112).max) { revert SafeCastOverflowedUintDowncast(112, value); } return uint112(value); } /** * @dev Returns the downcasted uint104 from uint256, reverting on * overflow (when the input is greater than largest uint104). * * Counterpart to Solidity's `uint104` operator. * * Requirements: * * - input must fit into 104 bits */ function toUint104(uint256 value) internal pure returns (uint104) { if (value > type(uint104).max) { revert SafeCastOverflowedUintDowncast(104, value); } return uint104(value); } /** * @dev Returns the downcasted uint96 from uint256, reverting on * overflow (when the input is greater than largest uint96). * * Counterpart to Solidity's `uint96` operator. * * Requirements: * * - input must fit into 96 bits */ function toUint96(uint256 value) internal pure returns (uint96) { if (value > type(uint96).max) { revert SafeCastOverflowedUintDowncast(96, value); } return uint96(value); } /** * @dev Returns the downcasted uint88 from uint256, reverting on * overflow (when the input is greater than largest uint88). * * Counterpart to Solidity's `uint88` operator. * * Requirements: * * - input must fit into 88 bits */ function toUint88(uint256 value) internal pure returns (uint88) { if (value > type(uint88).max) { revert SafeCastOverflowedUintDowncast(88, value); } return uint88(value); } /** * @dev Returns the downcasted uint80 from uint256, reverting on * overflow (when the input is greater than largest uint80). * * Counterpart to Solidity's `uint80` operator. * * Requirements: * * - input must fit into 80 bits */ function toUint80(uint256 value) internal pure returns (uint80) { if (value > type(uint80).max) { revert SafeCastOverflowedUintDowncast(80, value); } return uint80(value); } /** * @dev Returns the downcasted uint72 from uint256, reverting on * overflow (when the input is greater than largest uint72). * * Counterpart to Solidity's `uint72` operator. * * Requirements: * * - input must fit into 72 bits */ function toUint72(uint256 value) internal pure returns (uint72) { if (value > type(uint72).max) { revert SafeCastOverflowedUintDowncast(72, value); } return uint72(value); } /** * @dev Returns the downcasted uint64 from uint256, reverting on * overflow (when the input is greater than largest uint64). * * Counterpart to Solidity's `uint64` operator. * * Requirements: * * - input must fit into 64 bits */ function toUint64(uint256 value) internal pure returns (uint64) { if (value > type(uint64).max) { revert SafeCastOverflowedUintDowncast(64, value); } return uint64(value); } /** * @dev Returns the downcasted uint56 from uint256, reverting on * overflow (when the input is greater than largest uint56). * * Counterpart to Solidity's `uint56` operator. * * Requirements: * * - input must fit into 56 bits */ function toUint56(uint256 value) internal pure returns (uint56) { if (value > type(uint56).max) { revert SafeCastOverflowedUintDowncast(56, value); } return uint56(value); } /** * @dev Returns the downcasted uint48 from uint256, reverting on * overflow (when the input is greater than largest uint48). * * Counterpart to Solidity's `uint48` operator. * * Requirements: * * - input must fit into 48 bits */ function toUint48(uint256 value) internal pure returns (uint48) { if (value > type(uint48).max) { revert SafeCastOverflowedUintDowncast(48, value); } return uint48(value); } /** * @dev Returns the downcasted uint40 from uint256, reverting on * overflow (when the input is greater than largest uint40). * * Counterpart to Solidity's `uint40` operator. * * Requirements: * * - input must fit into 40 bits */ function toUint40(uint256 value) internal pure returns (uint40) { if (value > type(uint40).max) { revert SafeCastOverflowedUintDowncast(40, value); } return uint40(value); } /** * @dev Returns the downcasted uint32 from uint256, reverting on * overflow (when the input is greater than largest uint32). * * Counterpart to Solidity's `uint32` operator. * * Requirements: * * - input must fit into 32 bits */ function toUint32(uint256 value) internal pure returns (uint32) { if (value > type(uint32).max) { revert SafeCastOverflowedUintDowncast(32, value); } return uint32(value); } /** * @dev Returns the downcasted uint24 from uint256, reverting on * overflow (when the input is greater than largest uint24). * * Counterpart to Solidity's `uint24` operator. * * Requirements: * * - input must fit into 24 bits */ function toUint24(uint256 value) internal pure returns (uint24) { if (value > type(uint24).max) { revert SafeCastOverflowedUintDowncast(24, value); } return uint24(value); } /** * @dev Returns the downcasted uint16 from uint256, reverting on * overflow (when the input is greater than largest uint16). * * Counterpart to Solidity's `uint16` operator. * * Requirements: * * - input must fit into 16 bits */ function toUint16(uint256 value) internal pure returns (uint16) { if (value > type(uint16).max) { revert SafeCastOverflowedUintDowncast(16, value); } return uint16(value); } /** * @dev Returns the downcasted uint8 from uint256, reverting on * overflow (when the input is greater than largest uint8). * * Counterpart to Solidity's `uint8` operator. * * Requirements: * * - input must fit into 8 bits */ function toUint8(uint256 value) internal pure returns (uint8) { if (value > type(uint8).max) { revert SafeCastOverflowedUintDowncast(8, value); } return uint8(value); } /** * @dev Converts a signed int256 into an unsigned uint256. * * Requirements: * * - input must be greater than or equal to 0. */ function toUint256(int256 value) internal pure returns (uint256) { if (value < 0) { revert SafeCastOverflowedIntToUint(value); } return uint256(value); } /** * @dev Returns the downcasted int248 from int256, reverting on * overflow (when the input is less than smallest int248 or * greater than largest int248). * * Counterpart to Solidity's `int248` operator. * * Requirements: * * - input must fit into 248 bits */ function toInt248(int256 value) internal pure returns (int248 downcasted) { downcasted = int248(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(248, value); } } /** * @dev Returns the downcasted int240 from int256, reverting on * overflow (when the input is less than smallest int240 or * greater than largest int240). * * Counterpart to Solidity's `int240` operator. * * Requirements: * * - input must fit into 240 bits */ function toInt240(int256 value) internal pure returns (int240 downcasted) { downcasted = int240(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(240, value); } } /** * @dev Returns the downcasted int232 from int256, reverting on * overflow (when the input is less than smallest int232 or * greater than largest int232). * * Counterpart to Solidity's `int232` operator. * * Requirements: * * - input must fit into 232 bits */ function toInt232(int256 value) internal pure returns (int232 downcasted) { downcasted = int232(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(232, value); } } /** * @dev Returns the downcasted int224 from int256, reverting on * overflow (when the input is less than smallest int224 or * greater than largest int224). * * Counterpart to Solidity's `int224` operator. * * Requirements: * * - input must fit into 224 bits */ function toInt224(int256 value) internal pure returns (int224 downcasted) { downcasted = int224(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(224, value); } } /** * @dev Returns the downcasted int216 from int256, reverting on * overflow (when the input is less than smallest int216 or * greater than largest int216). * * Counterpart to Solidity's `int216` operator. * * Requirements: * * - input must fit into 216 bits */ function toInt216(int256 value) internal pure returns (int216 downcasted) { downcasted = int216(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(216, value); } } /** * @dev Returns the downcasted int208 from int256, reverting on * overflow (when the input is less than smallest int208 or * greater than largest int208). * * Counterpart to Solidity's `int208` operator. * * Requirements: * * - input must fit into 208 bits */ function toInt208(int256 value) internal pure returns (int208 downcasted) { downcasted = int208(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(208, value); } } /** * @dev Returns the downcasted int200 from int256, reverting on * overflow (when the input is less than smallest int200 or * greater than largest int200). * * Counterpart to Solidity's `int200` operator. * * Requirements: * * - input must fit into 200 bits */ function toInt200(int256 value) internal pure returns (int200 downcasted) { downcasted = int200(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(200, value); } } /** * @dev Returns the downcasted int192 from int256, reverting on * overflow (when the input is less than smallest int192 or * greater than largest int192). * * Counterpart to Solidity's `int192` operator. * * Requirements: * * - input must fit into 192 bits */ function toInt192(int256 value) internal pure returns (int192 downcasted) { downcasted = int192(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(192, value); } } /** * @dev Returns the downcasted int184 from int256, reverting on * overflow (when the input is less than smallest int184 or * greater than largest int184). * * Counterpart to Solidity's `int184` operator. * * Requirements: * * - input must fit into 184 bits */ function toInt184(int256 value) internal pure returns (int184 downcasted) { downcasted = int184(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(184, value); } } /** * @dev Returns the downcasted int176 from int256, reverting on * overflow (when the input is less than smallest int176 or * greater than largest int176). * * Counterpart to Solidity's `int176` operator. * * Requirements: * * - input must fit into 176 bits */ function toInt176(int256 value) internal pure returns (int176 downcasted) { downcasted = int176(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(176, value); } } /** * @dev Returns the downcasted int168 from int256, reverting on * overflow (when the input is less than smallest int168 or * greater than largest int168). * * Counterpart to Solidity's `int168` operator. * * Requirements: * * - input must fit into 168 bits */ function toInt168(int256 value) internal pure returns (int168 downcasted) { downcasted = int168(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(168, value); } } /** * @dev Returns the downcasted int160 from int256, reverting on * overflow (when the input is less than smallest int160 or * greater than largest int160). * * Counterpart to Solidity's `int160` operator. * * Requirements: * * - input must fit into 160 bits */ function toInt160(int256 value) internal pure returns (int160 downcasted) { downcasted = int160(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(160, value); } } /** * @dev Returns the downcasted int152 from int256, reverting on * overflow (when the input is less than smallest int152 or * greater than largest int152). * * Counterpart to Solidity's `int152` operator. * * Requirements: * * - input must fit into 152 bits */ function toInt152(int256 value) internal pure returns (int152 downcasted) { downcasted = int152(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(152, value); } } /** * @dev Returns the downcasted int144 from int256, reverting on * overflow (when the input is less than smallest int144 or * greater than largest int144). * * Counterpart to Solidity's `int144` operator. * * Requirements: * * - input must fit into 144 bits */ function toInt144(int256 value) internal pure returns (int144 downcasted) { downcasted = int144(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(144, value); } } /** * @dev Returns the downcasted int136 from int256, reverting on * overflow (when the input is less than smallest int136 or * greater than largest int136). * * Counterpart to Solidity's `int136` operator. * * Requirements: * * - input must fit into 136 bits */ function toInt136(int256 value) internal pure returns (int136 downcasted) { downcasted = int136(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(136, value); } } /** * @dev Returns the downcasted int128 from int256, reverting on * overflow (when the input is less than smallest int128 or * greater than largest int128). * * Counterpart to Solidity's `int128` operator. * * Requirements: * * - input must fit into 128 bits */ function toInt128(int256 value) internal pure returns (int128 downcasted) { downcasted = int128(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(128, value); } } /** * @dev Returns the downcasted int120 from int256, reverting on * overflow (when the input is less than smallest int120 or * greater than largest int120). * * Counterpart to Solidity's `int120` operator. * * Requirements: * * - input must fit into 120 bits */ function toInt120(int256 value) internal pure returns (int120 downcasted) { downcasted = int120(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(120, value); } } /** * @dev Returns the downcasted int112 from int256, reverting on * overflow (when the input is less than smallest int112 or * greater than largest int112). * * Counterpart to Solidity's `int112` operator. * * Requirements: * * - input must fit into 112 bits */ function toInt112(int256 value) internal pure returns (int112 downcasted) { downcasted = int112(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(112, value); } } /** * @dev Returns the downcasted int104 from int256, reverting on * overflow (when the input is less than smallest int104 or * greater than largest int104). * * Counterpart to Solidity's `int104` operator. * * Requirements: * * - input must fit into 104 bits */ function toInt104(int256 value) internal pure returns (int104 downcasted) { downcasted = int104(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(104, value); } } /** * @dev Returns the downcasted int96 from int256, reverting on * overflow (when the input is less than smallest int96 or * greater than largest int96). * * Counterpart to Solidity's `int96` operator. * * Requirements: * * - input must fit into 96 bits */ function toInt96(int256 value) internal pure returns (int96 downcasted) { downcasted = int96(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(96, value); } } /** * @dev Returns the downcasted int88 from int256, reverting on * overflow (when the input is less than smallest int88 or * greater than largest int88). * * Counterpart to Solidity's `int88` operator. * * Requirements: * * - input must fit into 88 bits */ function toInt88(int256 value) internal pure returns (int88 downcasted) { downcasted = int88(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(88, value); } } /** * @dev Returns the downcasted int80 from int256, reverting on * overflow (when the input is less than smallest int80 or * greater than largest int80). * * Counterpart to Solidity's `int80` operator. * * Requirements: * * - input must fit into 80 bits */ function toInt80(int256 value) internal pure returns (int80 downcasted) { downcasted = int80(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(80, value); } } /** * @dev Returns the downcasted int72 from int256, reverting on * overflow (when the input is less than smallest int72 or * greater than largest int72). * * Counterpart to Solidity's `int72` operator. * * Requirements: * * - input must fit into 72 bits */ function toInt72(int256 value) internal pure returns (int72 downcasted) { downcasted = int72(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(72, value); } } /** * @dev Returns the downcasted int64 from int256, reverting on * overflow (when the input is less than smallest int64 or * greater than largest int64). * * Counterpart to Solidity's `int64` operator. * * Requirements: * * - input must fit into 64 bits */ function toInt64(int256 value) internal pure returns (int64 downcasted) { downcasted = int64(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(64, value); } } /** * @dev Returns the downcasted int56 from int256, reverting on * overflow (when the input is less than smallest int56 or * greater than largest int56). * * Counterpart to Solidity's `int56` operator. * * Requirements: * * - input must fit into 56 bits */ function toInt56(int256 value) internal pure returns (int56 downcasted) { downcasted = int56(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(56, value); } } /** * @dev Returns the downcasted int48 from int256, reverting on * overflow (when the input is less than smallest int48 or * greater than largest int48). * * Counterpart to Solidity's `int48` operator. * * Requirements: * * - input must fit into 48 bits */ function toInt48(int256 value) internal pure returns (int48 downcasted) { downcasted = int48(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(48, value); } } /** * @dev Returns the downcasted int40 from int256, reverting on * overflow (when the input is less than smallest int40 or * greater than largest int40). * * Counterpart to Solidity's `int40` operator. * * Requirements: * * - input must fit into 40 bits */ function toInt40(int256 value) internal pure returns (int40 downcasted) { downcasted = int40(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(40, value); } } /** * @dev Returns the downcasted int32 from int256, reverting on * overflow (when the input is less than smallest int32 or * greater than largest int32). * * Counterpart to Solidity's `int32` operator. * * Requirements: * * - input must fit into 32 bits */ function toInt32(int256 value) internal pure returns (int32 downcasted) { downcasted = int32(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(32, value); } } /** * @dev Returns the downcasted int24 from int256, reverting on * overflow (when the input is less than smallest int24 or * greater than largest int24). * * Counterpart to Solidity's `int24` operator. * * Requirements: * * - input must fit into 24 bits */ function toInt24(int256 value) internal pure returns (int24 downcasted) { downcasted = int24(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(24, value); } } /** * @dev Returns the downcasted int16 from int256, reverting on * overflow (when the input is less than smallest int16 or * greater than largest int16). * * Counterpart to Solidity's `int16` operator. * * Requirements: * * - input must fit into 16 bits */ function toInt16(int256 value) internal pure returns (int16 downcasted) { downcasted = int16(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(16, value); } } /** * @dev Returns the downcasted int8 from int256, reverting on * overflow (when the input is less than smallest int8 or * greater than largest int8). * * Counterpart to Solidity's `int8` operator. * * Requirements: * * - input must fit into 8 bits */ function toInt8(int256 value) internal pure returns (int8 downcasted) { downcasted = int8(value); if (downcasted != value) { revert SafeCastOverflowedIntDowncast(8, value); } } /** * @dev Converts an unsigned uint256 into a signed int256. * * Requirements: * * - input must be less than or equal to maxInt256. */ function toInt256(uint256 value) internal pure returns (int256) { // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive if (value > uint256(type(int256).max)) { revert SafeCastOverflowedUintToInt(value); } return int256(value); } /** * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump. */ function toUint(bool b) internal pure returns (uint256 u) { assembly ("memory-safe") { u := iszero(iszero(b)) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; import {SafeCast} from "./SafeCast.sol"; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant. * * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone. * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute * one branch when needed, making this function more expensive. */ function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) { unchecked { // branchless ternary works because: // b ^ (a ^ b) == a // b ^ 0 == b return b ^ ((a ^ b) * int256(SafeCast.toUint(condition))); } } /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return ternary(a > b, a, b); } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return ternary(a < b, a, b); } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson. // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift, // taking advantage of the most significant (or "sign" bit) in two's complement representation. // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result, // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative). int256 mask = n >> 255; // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it. return uint256((n + mask) ^ mask); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol) pragma solidity ^0.8.20; import {IERC20} from "./IERC20.sol"; import {IERC165} from "./IERC165.sol"; /** * @title IERC1363 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363]. * * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction. */ interface IERC1363 is IERC20, IERC165 { /* * Note: the ERC-165 identifier for this interface is 0xb0202a11. * 0xb0202a11 === * bytes4(keccak256('transferAndCall(address,uint256)')) ^ * bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^ * bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^ * bytes4(keccak256('approveAndCall(address,uint256)')) ^ * bytes4(keccak256('approveAndCall(address,uint256,bytes)')) */ /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from the caller's account to `to` * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism * and then calls {IERC1363Receiver-onTransferReceived} on `to`. * @param from The address which you want to send tokens from. * @param to The address which you want to transfer to. * @param value The amount of tokens to be transferred. * @param data Additional data with no specified format, sent in call to `to`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value) external returns (bool); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`. * @param spender The address which will spend the funds. * @param value The amount of tokens to be spent. * @param data Additional data with no specified format, sent in call to `spender`. * @return A boolean value indicating whether the operation succeeded unless throwing. */ function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool); }
// SPDX-License-Identifier: GPL-3.0-or-later pragma solidity ^0.8.12; import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol"; import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol"; /// Asset amount, e.g. $100 USDC or 0.1 ETH struct TokenAmount { /// Zero address = native asset, e.g. ETH IERC20 token; uint256 amount; } /// Represents a destination address + optional arbitrary contract call struct Call { /// Destination receiving address or contract address to; /// Native token amount for call, or 0 uint256 value; /// Calldata for call, or empty = no contract call bytes data; } /// Utility functions that work for both ERC20 and native tokens. library TokenUtils { using SafeERC20 for IERC20; /// Returns ERC20 or ETH balance. function getBalanceOf( IERC20 token, address addr ) internal view returns (uint256) { if (address(token) == address(0)) { return addr.balance; } else { return token.balanceOf(addr); } } /// Approves a token transfer. function approve(IERC20 token, address spender, uint256 amount) internal { if (address(token) != address(0)) { token.approve({spender: spender, value: amount}); } // Do nothing for native token. } /// Sends an ERC20 or ETH transfer. For ETH, verify call success. function transfer( IERC20 token, address payable recipient, uint256 amount ) internal { if (address(token) != address(0)) { token.safeTransfer({to: recipient, value: amount}); } else { // Native token transfer (bool success, ) = recipient.call{value: amount}(""); require(success, "TokenUtils: ETH transfer failed"); } } /// Sends an ERC20 or ETH transfer. Returns true if successful. function tryTransfer( IERC20 token, address recipient, uint256 amount ) internal returns (bool) { if (address(token) != address(0)) { return token.trySafeTransfer({to: recipient, value: amount}); } else { (bool success, ) = recipient.call{value: amount}(""); return success; } } /// Sends an ERC20 transfer. function transferFrom( IERC20 token, address from, address to, uint256 amount ) internal { require( address(token) != address(0), "TokenUtils: ETH transferFrom must be caller" ); token.safeTransferFrom({from: from, to: to, value: amount}); } /// Sends any token balance in the contract to the recipient. function transferBalance( IERC20 token, address payable recipient ) internal returns (uint256) { uint256 balance = getBalanceOf({token: token, addr: address(this)}); if (balance > 0) { transfer({token: token, recipient: recipient, amount: balance}); } return balance; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IAxelarExecutable } from './IAxelarExecutable.sol'; /** * @title IAxelarExpressExecutable * @notice Interface for the Axelar Express Executable contract. */ interface IAxelarExpressExecutable is IAxelarExecutable { // Custom errors error AlreadyExecuted(); error InsufficientValue(); /** * @notice Emitted when an express execution is successfully performed. * @param commandId The unique identifier for the command. * @param sourceChain The source chain. * @param sourceAddress The source address. * @param payloadHash The hash of the payload. * @param expressExecutor The address of the express executor. */ event ExpressExecuted( bytes32 indexed commandId, string sourceChain, string sourceAddress, bytes32 payloadHash, address indexed expressExecutor ); /** * @notice Emitted when an express execution is fulfilled. * @param commandId The commandId for the contractCall. * @param sourceChain The source chain. * @param sourceAddress The source address. * @param payloadHash The hash of the payload. * @param expressExecutor The address of the express executor. */ event ExpressExecutionFulfilled( bytes32 indexed commandId, string sourceChain, string sourceAddress, bytes32 payloadHash, address indexed expressExecutor ); /** * @notice Returns the express executor for a given command. * @param commandId The commandId for the contractCall. * @param sourceChain The source chain. * @param sourceAddress The source address. * @param payloadHash The hash of the payload. * @return expressExecutor The address of the express executor. */ function getExpressExecutor( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes32 payloadHash ) external view returns (address expressExecutor); /** * @notice Express executes a contract call. * @param commandId The commandId for the contractCall. * @param sourceChain The source chain. * @param sourceAddress The source address. * @param payload The payload data. */ function expressExecute( bytes32 commandId, string calldata sourceChain, string calldata sourceAddress, bytes calldata payload ) external payable; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title IOwnable Interface * @notice IOwnable is an interface that abstracts the implementation of a * contract with ownership control features. It's commonly used in upgradable * contracts and includes the functionality to get current owner, transfer * ownership, and propose and accept ownership. */ interface IOwnable { error NotOwner(); error InvalidOwner(); error InvalidOwnerAddress(); event OwnershipTransferStarted(address indexed newOwner); event OwnershipTransferred(address indexed newOwner); /** * @notice Returns the current owner of the contract. * @return address The address of the current owner */ function owner() external view returns (address); /** * @notice Returns the address of the pending owner of the contract. * @return address The address of the pending owner */ function pendingOwner() external view returns (address); /** * @notice Transfers ownership of the contract to a new address * @param newOwner The address to transfer ownership to */ function transferOwnership(address newOwner) external; /** * @notice Proposes to transfer the contract's ownership to a new address. * The new owner needs to accept the ownership explicitly. * @param newOwner The address to transfer ownership to */ function proposeOwnership(address newOwner) external; /** * @notice Transfers ownership to the pending owner. * @dev Can only be called by the pending owner */ function acceptOwnership() external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { IContractIdentifier } from './IContractIdentifier.sol'; interface IImplementation is IContractIdentifier { error NotProxy(); function setup(bytes calldata data) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol) pragma solidity ^0.8.20; /** * @dev Helper library for emitting standardized panic codes. * * ```solidity * contract Example { * using Panic for uint256; * * // Use any of the declared internal constants * function foo() { Panic.GENERIC.panic(); } * * // Alternatively * function foo() { Panic.panic(Panic.GENERIC); } * } * ``` * * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil]. * * _Available since v5.1._ */ // slither-disable-next-line unused-state library Panic { /// @dev generic / unspecified error uint256 internal constant GENERIC = 0x00; /// @dev used by the assert() builtin uint256 internal constant ASSERT = 0x01; /// @dev arithmetic underflow or overflow uint256 internal constant UNDER_OVERFLOW = 0x11; /// @dev division or modulo by zero uint256 internal constant DIVISION_BY_ZERO = 0x12; /// @dev enum conversion error uint256 internal constant ENUM_CONVERSION_ERROR = 0x21; /// @dev invalid encoding in storage uint256 internal constant STORAGE_ENCODING_ERROR = 0x22; /// @dev empty array pop uint256 internal constant EMPTY_ARRAY_POP = 0x31; /// @dev array out of bounds access uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32; /// @dev resource error (too large allocation or too large array) uint256 internal constant RESOURCE_ERROR = 0x41; /// @dev calling invalid internal function uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51; /// @dev Reverts with a panic code. Recommended to use with /// the internal constants with predefined codes. function panic(uint256 code) internal pure { assembly ("memory-safe") { mstore(0x00, 0x4e487b71) mstore(0x20, code) revert(0x1c, 0x24) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol) pragma solidity ^0.8.20; import {IERC20} from "../token/ERC20/IERC20.sol";
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol) pragma solidity ^0.8.20; import {IERC165} from "../utils/introspection/IERC165.sol";
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; // General interface for upgradable contracts interface IContractIdentifier { /** * @notice Returns the contract ID. It can be used as a check during upgrades. * @dev Meant to be overridden in derived contracts. * @return bytes32 The contract ID */ function contractId() external pure returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC-165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[ERC]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
{ "remappings": [ "@axelar-network/=lib/axelar-gmp-sdk-solidity/", "forge-std/=lib/forge-std/src/", "openzeppelin-contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/", "@openzeppelin/contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/", "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/", "axelar-gmp-sdk-solidity/=lib/axelar-gmp-sdk-solidity/contracts/", "ds-test/=lib/solmate/lib/ds-test/src/", "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/", "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/", "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/", "solmate/=lib/solmate/src/" ], "optimizer": { "enabled": true, "runs": 999999 }, "metadata": { "useLiteralContent": false, "bytecodeHash": "ipfs", "appendCBOR": true }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "evmVersion": "london", "viaIR": true, "libraries": { "script/constants/AxelarBridgeRouteConstants.sol": { "AxelarBridgeRouteConstants": "0x704c73C020B3A96e720a305232244F19C45444AE" } } }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"uint256","name":"sourceChainId","type":"uint256"},{"internalType":"address","name":"axelarReceiver","type":"address"}],"name":"getAxelarBridgeRoutes","outputs":[{"internalType":"uint256[]","name":"chainIds","type":"uint256[]"},{"components":[{"internalType":"string","name":"destChainName","type":"string"},{"internalType":"address","name":"bridgeTokenIn","type":"address"},{"internalType":"address","name":"bridgeTokenOut","type":"address"},{"internalType":"string","name":"tokenSymbol","type":"string"},{"internalType":"address","name":"receiverContract","type":"address"},{"internalType":"uint256","name":"nativeFee","type":"uint256"}],"internalType":"struct DaimoPayAxelarBridger.AxelarBridgeRoute[]","name":"bridgeRoutes","type":"tuple[]"}],"stateMutability":"pure","type":"function"}]
Contract Creation Code
6080806040523460195761184c908161001f823930815050f35b600080fdfe6080604052600436101561001257600080fd5b60003560e01c6350c6cc001461002757600080fd5b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c75760243573ffffffffffffffffffffffffffffffffffffffff811681036101c75761007d90600435610459565b906040519182916040830160408452815180915260206060850192019060005b8181106101ae575050508281036020840152815180825260208201916020808360051b8301019401926000915b8383106100d75786860387f35b919395509193602080827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0856001950301865288519060a080610176610126855160c0865260c08601906101cc565b73ffffffffffffffffffffffffffffffffffffffff87870151168786015273ffffffffffffffffffffffffffffffffffffffff6040870151166040860152606086015185820360608701526101cc565b9373ffffffffffffffffffffffffffffffffffffffff60808201511660808501520151910152970193019301909286959492936100ca565b825184528695506020938401939092019160010161009d565b600080fd5b919082519283825260005b8481106102165750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8460006020809697860101520116010190565b806020809284010151828286010152016101d7565b6040519060c0820182811067ffffffffffffffff82111761024b57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f604051930116820182811067ffffffffffffffff82111761024b57604052565b6060906102ca8261027a565b60028152917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0018260005b82811061030157505050565b60209061030c61022b565b606081526000838201526000604082015260608082015260006080820152600060a0820152828285010152016102f5565b6101009061034a8261027a565b60078152917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0018260005b82811061038157505050565b60209061038c61022b565b606081526000838201526000604082015260608082015260006080820152600060a082015282828501015201610375565b8051156103ca5760200190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b8051600110156103ca5760400190565b8051600210156103ca5760600190565b8051600310156103ca5760800190565b8051600410156103ca5760a00190565b8051600510156103ca5760c00190565b8051600610156103ca5760e00190565b9190916001811461160b57600a81146107165760388114610fa55760898114610d985761138881146107225761210581146107165761a4b181146107165761e708146104fd5760646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f536f7572636520636861696e206e6f7420666f756e64000000000000000000006044820152fd5b60606105088161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810136602084013761053e6102be565b93603861054a846103bd565b5273ffffffffffffffffffffffffffffffffffffffff61056861022b565b91610573604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f4052156020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408401526105dd604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201528484015216908160808201526601c6bf5263400060a0820152610629866103bd565b52610633856103bd565b50611388610640846103f9565b5261064961022b565b91610654604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f405215602084015273eb466342c4d449bc9f53a865d5cb90586f40521560408401526106be604061027a565b90600782527f61786c5553444300000000000000000000000000000000000000000000000000602083015283015260808201526601c6bf5263400060a0820152610707846103f9565b52610711836103f9565b509190565b5060606105088161027a565b506101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe06107508261027a565b91600783520136602083013761076461033d565b926001610770836103bd565b5273ffffffffffffffffffffffffffffffffffffffff61078e61022b565b91610799604061027a565b600881527f657468657265756d0000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f405215602084015273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486040840152610803604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606084015216908160808201526710a741a46278000060a0820152610851856103bd565b5261085b846103bd565b50600a610867836103f9565b5261087061022b565b61087a604061027a565b600881527f6f7074696d69736d0000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f40521560408201526108e4604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610930856103f9565b5261093a846103f9565b50603861094683610409565b5261094f61022b565b610959604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f4052156020820152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408201526109c3604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610a0f85610409565b52610a1984610409565b506089610a2583610419565b52610a2e61022b565b610a38604061027a565b600781527f706f6c79676f6e000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6040820152610aa2604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610aee85610419565b52610af884610419565b50612105610b0583610429565b52610b0e61022b565b610b18604061027a565b600481527f62617365000000000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152610b82604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610bce85610429565b52610bd884610429565b5061a4b1610be583610439565b52610bee61022b565b610bf8604061027a565b600881527f617262697472756d0000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152610c62604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610cae85610439565b52610cb884610439565b5061e708610cc583610449565b52610cce61022b565b90610cd9604061027a565b600581527f6c696e65610000000000000000000000000000000000000000000000000000006020820152825273eb466342c4d449bc9f53a865d5cb90586f405215602083015273eb466342c4d449bc9f53a865d5cb90586f4052156040830152610d43604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606083015260808201526710a741a46278000060a0820152610d8e84610449565b5261071183610449565b506060610da48161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101366020840137610dda6102be565b936038610de6846103bd565b5273ffffffffffffffffffffffffffffffffffffffff610e0461022b565b91610e0f604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf36040840152610e79604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152848401521690816080820152673782dace9d90000060a0820152610ec6866103bd565b52610ed0856103bd565b50611388610edd846103f9565b52610ee661022b565b91610ef1604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273750e4c4984a9e0f12978ea6742bc1c5d248f40ed602084015273eb466342c4d449bc9f53a865d5cb90586f4052156040840152610f5b604061027a565b90600782527f61786c555344430000000000000000000000000000000000000000000000000060208301528301526080820152673782dace9d90000060a0820152610707846103f9565b506101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0610fd38261027a565b916007835201366020830137610fe761033d565b926001610ff3836103bd565b5273ffffffffffffffffffffffffffffffffffffffff61101161022b565b9161101c604061027a565b600881527f657468657265756d00000000000000000000000000000000000000000000000060208201528352734268b8f0b87b6eae5d897996e6b845ddbd99adf3602084015273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486040840152611086604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201526060840152169081608082015266071afd498d000060a08201526110d3856103bd565b526110dd846103bd565b50600a6110e9836103f9565b526110f261022b565b6110fc604061027a565b600881527f6f7074696d69736d00000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611166604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a08201526111b1856103f9565b526111bb846103f9565b5060896111c783610409565b526111d061022b565b6111da604061027a565b600781527f706f6c79676f6e0000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6040820152611244604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261128f85610409565b5261129984610409565b506113886112a683610419565b526112af61022b565b6112b9604061027a565b600681527f6d616e746c65000000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611323604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261136e85610419565b5261137884610419565b5061210561138583610429565b5261138e61022b565b611398604061027a565b600481527f626173650000000000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611402604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261144d85610429565b5261145784610429565b5061a4b161146483610439565b5261146d61022b565b611477604061027a565b600881527f617262697472756d00000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f40521560408201526114e1604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261152c85610439565b5261153684610439565b5061e70861154383610449565b5261154c61022b565b90611557604061027a565b600581527f6c696e656100000000000000000000000000000000000000000000000000000060208201528252734268b8f0b87b6eae5d897996e6b845ddbd99adf3602083015273eb466342c4d449bc9f53a865d5cb90586f40521560408301526115c1604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201526060830152608082015266071afd498d000060a0820152610d8e84610449565b5060606116178161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810136602084013761164d6102be565b936038611659846103bd565b5273ffffffffffffffffffffffffffffffffffffffff61167761022b565b91611682604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408401526116ec604061027a565b600481527f555344430000000000000000000000000000000000000000000000000000000060208201528484015216908160808201526601c6bf5263400060a0820152611738866103bd565b52611742856103bd565b5061138861174f846103f9565b5261175861022b565b91611763604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48602084015273eb466342c4d449bc9f53a865d5cb90586f40521560408401526117cd604061027a565b90600482527f5553444300000000000000000000000000000000000000000000000000000000602083015283015260808201526601c6bf5263400060a0820152610707846103f956fea2646970667358221220342d1bd0a6e723b749045ebeea15364b7e5e8dcff15fffbd36bc89a5c9b0c85f64736f6c634300081a0033
Deployed Bytecode
0x6080604052600436101561001257600080fd5b60003560e01c6350c6cc001461002757600080fd5b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c75760243573ffffffffffffffffffffffffffffffffffffffff811681036101c75761007d90600435610459565b906040519182916040830160408452815180915260206060850192019060005b8181106101ae575050508281036020840152815180825260208201916020808360051b8301019401926000915b8383106100d75786860387f35b919395509193602080827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0856001950301865288519060a080610176610126855160c0865260c08601906101cc565b73ffffffffffffffffffffffffffffffffffffffff87870151168786015273ffffffffffffffffffffffffffffffffffffffff6040870151166040860152606086015185820360608701526101cc565b9373ffffffffffffffffffffffffffffffffffffffff60808201511660808501520151910152970193019301909286959492936100ca565b825184528695506020938401939092019160010161009d565b600080fd5b919082519283825260005b8481106102165750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8460006020809697860101520116010190565b806020809284010151828286010152016101d7565b6040519060c0820182811067ffffffffffffffff82111761024b57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f604051930116820182811067ffffffffffffffff82111761024b57604052565b6060906102ca8261027a565b60028152917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0018260005b82811061030157505050565b60209061030c61022b565b606081526000838201526000604082015260608082015260006080820152600060a0820152828285010152016102f5565b6101009061034a8261027a565b60078152917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0018260005b82811061038157505050565b60209061038c61022b565b606081526000838201526000604082015260608082015260006080820152600060a082015282828501015201610375565b8051156103ca5760200190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b8051600110156103ca5760400190565b8051600210156103ca5760600190565b8051600310156103ca5760800190565b8051600410156103ca5760a00190565b8051600510156103ca5760c00190565b8051600610156103ca5760e00190565b9190916001811461160b57600a81146107165760388114610fa55760898114610d985761138881146107225761210581146107165761a4b181146107165761e708146104fd5760646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f536f7572636520636861696e206e6f7420666f756e64000000000000000000006044820152fd5b60606105088161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810136602084013761053e6102be565b93603861054a846103bd565b5273ffffffffffffffffffffffffffffffffffffffff61056861022b565b91610573604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f4052156020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408401526105dd604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201528484015216908160808201526601c6bf5263400060a0820152610629866103bd565b52610633856103bd565b50611388610640846103f9565b5261064961022b565b91610654604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f405215602084015273eb466342c4d449bc9f53a865d5cb90586f40521560408401526106be604061027a565b90600782527f61786c5553444300000000000000000000000000000000000000000000000000602083015283015260808201526601c6bf5263400060a0820152610707846103f9565b52610711836103f9565b509190565b5060606105088161027a565b506101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe06107508261027a565b91600783520136602083013761076461033d565b926001610770836103bd565b5273ffffffffffffffffffffffffffffffffffffffff61078e61022b565b91610799604061027a565b600881527f657468657265756d0000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f405215602084015273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486040840152610803604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606084015216908160808201526710a741a46278000060a0820152610851856103bd565b5261085b846103bd565b50600a610867836103f9565b5261087061022b565b61087a604061027a565b600881527f6f7074696d69736d0000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f40521560408201526108e4604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610930856103f9565b5261093a846103f9565b50603861094683610409565b5261094f61022b565b610959604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f4052156020820152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408201526109c3604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610a0f85610409565b52610a1984610409565b506089610a2583610419565b52610a2e61022b565b610a38604061027a565b600781527f706f6c79676f6e000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6040820152610aa2604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610aee85610419565b52610af884610419565b50612105610b0583610429565b52610b0e61022b565b610b18604061027a565b600481527f62617365000000000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152610b82604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610bce85610429565b52610bd884610429565b5061a4b1610be583610439565b52610bee61022b565b610bf8604061027a565b600881527f617262697472756d0000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152610c62604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610cae85610439565b52610cb884610439565b5061e708610cc583610449565b52610cce61022b565b90610cd9604061027a565b600581527f6c696e65610000000000000000000000000000000000000000000000000000006020820152825273eb466342c4d449bc9f53a865d5cb90586f405215602083015273eb466342c4d449bc9f53a865d5cb90586f4052156040830152610d43604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606083015260808201526710a741a46278000060a0820152610d8e84610449565b5261071183610449565b506060610da48161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101366020840137610dda6102be565b936038610de6846103bd565b5273ffffffffffffffffffffffffffffffffffffffff610e0461022b565b91610e0f604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf36040840152610e79604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152848401521690816080820152673782dace9d90000060a0820152610ec6866103bd565b52610ed0856103bd565b50611388610edd846103f9565b52610ee661022b565b91610ef1604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273750e4c4984a9e0f12978ea6742bc1c5d248f40ed602084015273eb466342c4d449bc9f53a865d5cb90586f4052156040840152610f5b604061027a565b90600782527f61786c555344430000000000000000000000000000000000000000000000000060208301528301526080820152673782dace9d90000060a0820152610707846103f9565b506101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0610fd38261027a565b916007835201366020830137610fe761033d565b926001610ff3836103bd565b5273ffffffffffffffffffffffffffffffffffffffff61101161022b565b9161101c604061027a565b600881527f657468657265756d00000000000000000000000000000000000000000000000060208201528352734268b8f0b87b6eae5d897996e6b845ddbd99adf3602084015273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486040840152611086604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201526060840152169081608082015266071afd498d000060a08201526110d3856103bd565b526110dd846103bd565b50600a6110e9836103f9565b526110f261022b565b6110fc604061027a565b600881527f6f7074696d69736d00000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611166604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a08201526111b1856103f9565b526111bb846103f9565b5060896111c783610409565b526111d061022b565b6111da604061027a565b600781527f706f6c79676f6e0000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6040820152611244604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261128f85610409565b5261129984610409565b506113886112a683610419565b526112af61022b565b6112b9604061027a565b600681527f6d616e746c65000000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611323604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261136e85610419565b5261137884610419565b5061210561138583610429565b5261138e61022b565b611398604061027a565b600481527f626173650000000000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611402604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261144d85610429565b5261145784610429565b5061a4b161146483610439565b5261146d61022b565b611477604061027a565b600881527f617262697472756d00000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f40521560408201526114e1604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261152c85610439565b5261153684610439565b5061e70861154383610449565b5261154c61022b565b90611557604061027a565b600581527f6c696e656100000000000000000000000000000000000000000000000000000060208201528252734268b8f0b87b6eae5d897996e6b845ddbd99adf3602083015273eb466342c4d449bc9f53a865d5cb90586f40521560408301526115c1604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201526060830152608082015266071afd498d000060a0820152610d8e84610449565b5060606116178161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810136602084013761164d6102be565b936038611659846103bd565b5273ffffffffffffffffffffffffffffffffffffffff61167761022b565b91611682604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408401526116ec604061027a565b600481527f555344430000000000000000000000000000000000000000000000000000000060208201528484015216908160808201526601c6bf5263400060a0820152611738866103bd565b52611742856103bd565b5061138861174f846103f9565b5261175861022b565b91611763604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48602084015273eb466342c4d449bc9f53a865d5cb90586f40521560408401526117cd604061027a565b90600482527f5553444300000000000000000000000000000000000000000000000000000000602083015283015260808201526601c6bf5263400060a0820152610707846103f956fea2646970667358221220342d1bd0a6e723b749045ebeea15364b7e5e8dcff15fffbd36bc89a5c9b0c85f64736f6c634300081a0033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 34 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.