ETH Price: $1,772.67 (+4.00%)

Contract

0x704c73C020B3A96e720a305232244F19C45444AE

Overview

ETH Balance

0 ETH

ETH Value

$0.00

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

1 Internal Transaction found.

Latest 1 internal transaction

Advanced mode:
Parent Transaction Hash Block From To
1348309502025-04-21 18:37:5744 hrs ago1745260677  Contract Creation0 ETH

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
AxelarBridgeRouteConstants

Compiler Version
v0.8.26+commit.8a97fa7a

Optimization Enabled:
Yes with 999999 runs

Other Settings:
london EvmVersion
File 1 of 34 : AxelarBridgeRouteConstants.sol
// SPDX-License-Identifier: GPL-3.0-or-later
  pragma solidity ^0.8.12;
  
  import "../../src/DaimoPayAxelarBridger.sol";
  
  // @title AxelarBridgeRouteConstants
  // @notice Auto-generated constants for Axelar bridge routes
  library AxelarBridgeRouteConstants {
      // Return all Axelar bridge routes for the given source chain.
      // Configures bridged tokens to be sent to the provided axelarReceiver
      // address on the destination chain.
      function getAxelarBridgeRoutes(
          uint256 sourceChainId,
          address axelarReceiver
      )
          public
          pure
          returns (
              uint256[] memory chainIds,
              DaimoPayAxelarBridger.AxelarBridgeRoute[] memory bridgeRoutes
          )
      {
          // Source chain 1
          if (sourceChainId == 1) {
              chainIds = new uint256[](2);
              bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2);
              
              // 1 -> 56
              chainIds[0] = 56;
              bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "binance",
                  bridgeTokenIn: 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48,
                  bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  tokenSymbol: "USDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 500000000000000
              });
            // 1 -> 5000
              chainIds[1] = 5000;
              bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "mantle",
                  bridgeTokenIn: 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "USDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 500000000000000
              });
              
              return (chainIds, bridgeRoutes);
          }

        // Source chain 10
          if (sourceChainId == 10) {
              chainIds = new uint256[](2);
              bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2);
              
              // 10 -> 56
              chainIds[0] = 56;
              bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "binance",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 500000000000000
              });
            // 10 -> 5000
              chainIds[1] = 5000;
              bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "mantle",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 500000000000000
              });
              
              return (chainIds, bridgeRoutes);
          }

        // Source chain 56
          if (sourceChainId == 56) {
              chainIds = new uint256[](7);
              bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](7);
              
              // 56 -> 1
              chainIds[0] = 1;
              bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "ethereum",
                  bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  bridgeTokenOut: 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 2000000000000000
              });
            // 56 -> 10
              chainIds[1] = 10;
              bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "optimism",
                  bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 2000000000000000
              });
            // 56 -> 137
              chainIds[2] = 137;
              bridgeRoutes[2] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "polygon",
                  bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  bridgeTokenOut: 0x750e4C4984a9e0f12978eA6742Bc1c5D248f40ed,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 2000000000000000
              });
            // 56 -> 5000
              chainIds[3] = 5000;
              bridgeRoutes[3] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "mantle",
                  bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 2000000000000000
              });
            // 56 -> 8453
              chainIds[4] = 8453;
              bridgeRoutes[4] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "base",
                  bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 2000000000000000
              });
            // 56 -> 42161
              chainIds[5] = 42161;
              bridgeRoutes[5] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "arbitrum",
                  bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 2000000000000000
              });
            // 56 -> 59144
              chainIds[6] = 59144;
              bridgeRoutes[6] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "linea",
                  bridgeTokenIn: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 2000000000000000
              });
              
              return (chainIds, bridgeRoutes);
          }

        // Source chain 137
          if (sourceChainId == 137) {
              chainIds = new uint256[](2);
              bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2);
              
              // 137 -> 56
              chainIds[0] = 56;
              bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "binance",
                  bridgeTokenIn: 0x750e4C4984a9e0f12978eA6742Bc1c5D248f40ed,
                  bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 4000000000000000000
              });
            // 137 -> 5000
              chainIds[1] = 5000;
              bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "mantle",
                  bridgeTokenIn: 0x750e4C4984a9e0f12978eA6742Bc1c5D248f40ed,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 4000000000000000000
              });
              
              return (chainIds, bridgeRoutes);
          }

        // Source chain 5000
          if (sourceChainId == 5000) {
              chainIds = new uint256[](7);
              bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](7);
              
              // 5000 -> 1
              chainIds[0] = 1;
              bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "ethereum",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 1200000000000000000
              });
            // 5000 -> 10
              chainIds[1] = 10;
              bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "optimism",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 1200000000000000000
              });
            // 5000 -> 56
              chainIds[2] = 56;
              bridgeRoutes[2] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "binance",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 1200000000000000000
              });
            // 5000 -> 137
              chainIds[3] = 137;
              bridgeRoutes[3] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "polygon",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0x750e4C4984a9e0f12978eA6742Bc1c5D248f40ed,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 1200000000000000000
              });
            // 5000 -> 8453
              chainIds[4] = 8453;
              bridgeRoutes[4] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "base",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 1200000000000000000
              });
            // 5000 -> 42161
              chainIds[5] = 42161;
              bridgeRoutes[5] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "arbitrum",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 1200000000000000000
              });
            // 5000 -> 59144
              chainIds[6] = 59144;
              bridgeRoutes[6] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "linea",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 1200000000000000000
              });
              
              return (chainIds, bridgeRoutes);
          }

        // Source chain 8453
          if (sourceChainId == 8453) {
              chainIds = new uint256[](2);
              bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2);
              
              // 8453 -> 56
              chainIds[0] = 56;
              bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "binance",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 500000000000000
              });
            // 8453 -> 5000
              chainIds[1] = 5000;
              bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "mantle",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 500000000000000
              });
              
              return (chainIds, bridgeRoutes);
          }

        // Source chain 42161
          if (sourceChainId == 42161) {
              chainIds = new uint256[](2);
              bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2);
              
              // 42161 -> 56
              chainIds[0] = 56;
              bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "binance",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 500000000000000
              });
            // 42161 -> 5000
              chainIds[1] = 5000;
              bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "mantle",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 500000000000000
              });
              
              return (chainIds, bridgeRoutes);
          }

        // Source chain 59144
          if (sourceChainId == 59144) {
              chainIds = new uint256[](2);
              bridgeRoutes = new DaimoPayAxelarBridger.AxelarBridgeRoute[](2);
              
              // 59144 -> 56
              chainIds[0] = 56;
              bridgeRoutes[0] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "binance",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0x4268B8F0B87b6Eae5d897996E6b845ddbD99Adf3,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 500000000000000
              });
            // 59144 -> 5000
              chainIds[1] = 5000;
              bridgeRoutes[1] = DaimoPayAxelarBridger.AxelarBridgeRoute({
                  destChainName: "mantle",
                  bridgeTokenIn: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  bridgeTokenOut: 0xEB466342C4d449BC9f53A865D5Cb90586f405215,
                  tokenSymbol: "axlUSDC",
                  receiverContract: axelarReceiver,
                  nativeFee: 500000000000000
              });
              
              return (chainIds, bridgeRoutes);
          }
  
          // If source chain not found, revert
          revert("Source chain not found");
      }
  }

File 2 of 34 : DaimoPayAxelarBridger.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.12;

import {AxelarExpressExecutableWithToken} from "@axelar-network/contracts/express/AxelarExpressExecutableWithToken.sol";
import {IAxelarGatewayWithToken} from "@axelar-network/contracts/interfaces/IAxelarGatewayWithToken.sol";
import {IAxelarGasService} from "@axelar-network/contracts/interfaces/IAxelarGasService.sol";
import "@openzeppelin/contracts/utils/Strings.sol";
import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";

import "./interfaces/IDaimoPayBridger.sol";

/// @author Daimo, Inc
/// @custom:security-contact [email protected]
///
/// @notice Bridges assets to a destination chain using Axelar Protocol. Makes
/// the assumption that the local token is an ERC20 token and has a 1 to 1 price
/// with the corresponding destination token.
///
/// @dev Axelar protocol requires the bridge recipient to be a contract
/// implementing the AxelarExecutableWithToken interface. This contract
/// fulfills that requirement and acts as the receiver on the destination chain.
contract DaimoPayAxelarBridger is
    IDaimoPayBridger,
    AxelarExpressExecutableWithToken
{
    using SafeERC20 for IERC20;

    struct AxelarBridgeRoute {
        /// Axelar requires the name of the destination chain, e.g. "base",
        /// "binance".
        string destChainName;
        address bridgeTokenIn;
        address bridgeTokenOut;
        /// Axelar requires the symbol name of bridgeTokenIn, e.g. "axlUSDC" or
        /// "USDC".
        string tokenSymbol;
        /// When bridging with an Axelar contract call, the receiver on the
        /// destination chain must be a contract that implements the
        /// AxelarExecutableWithToken interface.
        address receiverContract;
        /// Fee paid in native token on the source chain for Axelar's bridging
        /// gas fee.
        uint256 nativeFee;
    }

    struct ExtraData {
        /// Address to refund excess gas fees to.
        address gasRefundAddress;
        /// Whether to use Axelar Express bridging.
        bool useExpress;
    }

    /// Axelar contracts for this chain.
    IAxelarGatewayWithToken public immutable axelarGateway;
    IAxelarGasService public immutable axelarGasService;

    /// Mapping from destination chain and token to the corresponding token on
    /// the current chain.
    mapping(uint256 toChainId => AxelarBridgeRoute bridgeRoute)
        public bridgeRouteMapping;

    /// Specify the localToken mapping to destination chains and tokens
    constructor(
        IAxelarGatewayWithToken _axelarGateway,
        IAxelarGasService _axelarGasService,
        uint256[] memory _toChainIds,
        AxelarBridgeRoute[] memory _bridgeRoutes
    ) AxelarExpressExecutableWithToken(address(_axelarGateway)) {
        axelarGateway = _axelarGateway;
        axelarGasService = _axelarGasService;

        uint256 n = _toChainIds.length;
        require(n == _bridgeRoutes.length, "DPAB: wrong bridgeRoutes length");
        for (uint256 i = 0; i < n; ++i) {
            bridgeRouteMapping[_toChainIds[i]] = _bridgeRoutes[i];
        }
    }

    // ----- AXELAR EXECUTABLE FUNCTIONS -----

    /// Part of the AxelarExpressExecutableWithToken interface. Used to make
    /// a contract call on the destination chain without tokens. Not supported
    /// by this implementation because we will always be bridging tokens.
    function _execute(
        bytes32 /* commandId */,
        string calldata /* sourceChain */,
        string calldata /* sourceAddress */,
        bytes calldata /* payload */
    ) internal pure override {
        revert("DPAxB: _execute not supported");
    }

    /// Part of the AxelarExpressExecutableWithToken interface. Used to make
    /// a contract call on the destination chain with tokens. In this case, it
    /// will always be used to transfer tokens to the intent address on the
    /// destination chain.
    function _executeWithToken(
        bytes32 /* commandId */,
        string calldata /* sourceChain */,
        string calldata /* sourceAddress */,
        bytes calldata payload,
        string calldata tokenSymbol,
        uint256 amount
    ) internal override {
        address recipient = abi.decode(payload, (address));
        address tokenAddress = axelarGateway.tokenAddresses(tokenSymbol);

        IERC20(tokenAddress).safeTransfer(recipient, amount);
    }

    // ----- BRIDGING FUNCTIONS -----

    /// Given a list of bridge token options, find the index of the bridge token
    /// that matches the correct bridge token out. Return the length of the array
    /// if no match is found.
    function _findBridgeTokenOut(
        TokenAmount[] calldata bridgeTokenOutOptions,
        address bridgeTokenOut
    ) internal pure returns (uint256 index) {
        uint256 n = bridgeTokenOutOptions.length;
        for (uint256 i = 0; i < n; ++i) {
            if (address(bridgeTokenOutOptions[i].token) == bridgeTokenOut) {
                return i;
            }
        }
        return n;
    }

    /// Retrieves the necessary data for bridging tokens from the current chain
    /// to a specified destination chain using Axelar Protocol.
    function _getBridgeData(
        uint256 toChainId,
        TokenAmount[] calldata bridgeTokenOutOptions
    )
        internal
        view
        returns (
            address inToken,
            uint256 inAmount,
            address outToken,
            string memory outTokenSymbol,
            uint256 outAmount,
            string memory destChainName,
            address receiverContract,
            uint256 nativeFee
        )
    {
        AxelarBridgeRoute memory bridgeRoute = bridgeRouteMapping[toChainId];
        require(
            bridgeRoute.bridgeTokenOut != address(0),
            "DPAB: bridge route not found"
        );

        uint256 index = _findBridgeTokenOut(
            bridgeTokenOutOptions,
            bridgeRoute.bridgeTokenOut
        );
        // If the index is the length of the array, then the bridge token out
        // was not found in the list of options.
        require(index < bridgeTokenOutOptions.length, "DPAB: bad bridge token");

        inToken = bridgeRoute.bridgeTokenIn;
        // Assumes the input token has a 1 to 1 price with the destination token.
        // Gas fees are charged in native token and paid separately.
        inAmount = bridgeTokenOutOptions[index].amount;

        outToken = bridgeRoute.bridgeTokenOut;
        outTokenSymbol = bridgeRoute.tokenSymbol;
        outAmount = bridgeTokenOutOptions[index].amount;

        destChainName = bridgeRoute.destChainName;
        receiverContract = bridgeRoute.receiverContract;
        nativeFee = bridgeRoute.nativeFee;
    }

    /// Determine the input token and amount required for bridging to
    /// another chain.
    function getBridgeTokenIn(
        uint256 toChainId,
        TokenAmount[] calldata bridgeTokenOutOptions
    ) public view returns (address bridgeTokenIn, uint256 inAmount) {
        (bridgeTokenIn, inAmount, , , , , , ) = _getBridgeData(
            toChainId,
            bridgeTokenOutOptions
        );
    }

    /// Initiate a bridge to a destination chain using Axelar Protocol.
    function sendToChain(
        uint256 toChainId,
        address toAddress,
        TokenAmount[] calldata bridgeTokenOutOptions,
        bytes calldata extraData
    ) public {
        require(toChainId != block.chainid, "DPAxB: same chain");

        (
            address inToken,
            uint256 inAmount,
            address outToken,
            string memory outTokenSymbol,
            uint256 outAmount,
            string memory destChainName,
            address receiverContract,
            uint256 nativeFee
        ) = _getBridgeData(toChainId, bridgeTokenOutOptions);
        require(outAmount > 0, "DPAxB: zero amount");

        // Parse remaining arguments from extraData
        ExtraData memory extra;
        extra = abi.decode(extraData, (ExtraData));

        // Move input token from caller to this contract
        IERC20(inToken).safeTransferFrom({
            from: msg.sender,
            to: address(this),
            value: inAmount
        });

        // Pay for Axelar's bridging gas fee.
        if (extra.useExpress) {
            axelarGasService.payNativeGasForExpressCallWithToken{
                value: nativeFee
            }(
                address(this),
                destChainName,
                Strings.toHexString(receiverContract),
                abi.encode(toAddress),
                outTokenSymbol,
                outAmount,
                extra.gasRefundAddress
            );
        } else {
            axelarGasService.payNativeGasForContractCallWithToken{
                value: nativeFee
            }(
                address(this),
                destChainName,
                Strings.toHexString(receiverContract),
                abi.encode(toAddress),
                outTokenSymbol,
                outAmount,
                extra.gasRefundAddress
            );
        }

        // Approve the AxelarGateway contract and initiate the bridge. Send the
        // tokens to the receiverContract on the destination chain. The
        // _executeWithToken function will be called on the destination chain.
        IERC20(inToken).forceApprove({
            spender: address(axelarGateway),
            value: inAmount
        });
        axelarGateway.callContractWithToken(
            destChainName,
            Strings.toHexString(receiverContract),
            abi.encode(toAddress),
            outTokenSymbol,
            outAmount
        );

        emit BridgeInitiated({
            fromAddress: msg.sender,
            fromToken: inToken,
            fromAmount: inAmount,
            toChainId: toChainId,
            toAddress: toAddress,
            toToken: outToken,
            toAmount: outAmount
        });
    }

    receive() external payable {}
}

File 3 of 34 : AxelarExpressExecutableWithToken.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { AxelarExecutable } from '../executable/AxelarExecutable.sol';
import { AxelarExecutableWithToken } from '../executable/AxelarExecutableWithToken.sol';
import { IAxelarExecutable } from '../interfaces/IAxelarExecutable.sol';
import { IAxelarExecutableWithToken } from '../interfaces/IAxelarExecutableWithToken.sol';
import { IAxelarExpressExecutableWithToken } from '../interfaces/IAxelarExpressExecutableWithToken.sol';
import { ExpressExecutorTracker } from './ExpressExecutorTracker.sol';
import { SafeTokenTransferFrom, SafeTokenTransfer } from '../libs/SafeTransfer.sol';
import { IERC20 } from '../interfaces/IERC20.sol';

abstract contract AxelarExpressExecutableWithToken is
    IAxelarExpressExecutableWithToken,
    ExpressExecutorTracker,
    AxelarExecutableWithToken
{
    using SafeTokenTransfer for IERC20;
    using SafeTokenTransferFrom for IERC20;

    constructor(address gateway_) AxelarExecutableWithToken(gateway_) {}

    function execute(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload
    ) external override(AxelarExecutable, IAxelarExecutable) {
        bytes32 payloadHash = keccak256(payload);

        if (!gateway().validateContractCall(commandId, sourceChain, sourceAddress, payloadHash))
            revert NotApprovedByGateway();

        address expressExecutor = _popExpressExecutor(commandId, sourceChain, sourceAddress, payloadHash);

        if (expressExecutor != address(0)) {
            // slither-disable-next-line reentrancy-events
            emit ExpressExecutionFulfilled(commandId, sourceChain, sourceAddress, payloadHash, expressExecutor);
        } else {
            _execute(commandId, sourceChain, sourceAddress, payload);
        }
    }

    function executeWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload,
        string calldata tokenSymbol,
        uint256 amount
    ) external override(AxelarExecutableWithToken, IAxelarExecutableWithToken) {
        bytes32 payloadHash = keccak256(payload);
        if (
            !gatewayWithToken().validateContractCallAndMint(
                commandId,
                sourceChain,
                sourceAddress,
                payloadHash,
                tokenSymbol,
                amount
            )
        ) revert NotApprovedByGateway();

        address expressExecutor = _popExpressExecutorWithToken(
            commandId,
            sourceChain,
            sourceAddress,
            payloadHash,
            tokenSymbol,
            amount
        );

        if (expressExecutor != address(0)) {
            // slither-disable-next-line reentrancy-events
            emit ExpressExecutionWithTokenFulfilled(
                commandId,
                sourceChain,
                sourceAddress,
                payloadHash,
                tokenSymbol,
                amount,
                expressExecutor
            );

            address gatewayToken = gatewayWithToken().tokenAddresses(tokenSymbol);
            IERC20(gatewayToken).safeTransfer(expressExecutor, amount);
        } else {
            _executeWithToken(commandId, sourceChain, sourceAddress, payload, tokenSymbol, amount);
        }
    }

    function expressExecute(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload
    ) external payable virtual {
        if (gateway().isCommandExecuted(commandId)) revert AlreadyExecuted();

        address expressExecutor = msg.sender;
        bytes32 payloadHash = keccak256(payload);

        emit ExpressExecuted(commandId, sourceChain, sourceAddress, payloadHash, expressExecutor);

        _setExpressExecutor(commandId, sourceChain, sourceAddress, payloadHash, expressExecutor);

        _execute(commandId, sourceChain, sourceAddress, payload);
    }

    function expressExecuteWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload,
        string calldata symbol,
        uint256 amount
    ) external payable virtual {
        if (gatewayWithToken().isCommandExecuted(commandId)) revert AlreadyExecuted();

        address expressExecutor = msg.sender;
        address gatewayToken = gatewayWithToken().tokenAddresses(symbol);
        bytes32 payloadHash = keccak256(payload);

        emit ExpressExecutedWithToken(
            commandId,
            sourceChain,
            sourceAddress,
            payloadHash,
            symbol,
            amount,
            expressExecutor
        );

        _setExpressExecutorWithToken(
            commandId,
            sourceChain,
            sourceAddress,
            payloadHash,
            symbol,
            amount,
            expressExecutor
        );

        IERC20(gatewayToken).safeTransferFrom(expressExecutor, address(this), amount);

        _executeWithToken(commandId, sourceChain, sourceAddress, payload, symbol, amount);
    }

    /**
     * @notice Returns the express executor for a given command.
     * @param commandId The commandId for the contractCall.
     * @param sourceChain The source chain.
     * @param sourceAddress The source address.
     * @param payloadHash The hash of the payload.
     * @return expressExecutor The address of the express executor.
     */
    function getExpressExecutor(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash
    ) external view returns (address expressExecutor) {
        expressExecutor = _getExpressExecutor(commandId, sourceChain, sourceAddress, payloadHash);
    }

    /**
     * @notice Returns the express executor with token for a given command.
     * @param commandId The commandId for the contractCallWithToken.
     * @param sourceChain The source chain.
     * @param sourceAddress The source address.
     * @param payloadHash The hash of the payload.
     * @param symbol The token symbol.
     * @param amount The amount of tokens.
     * @return expressExecutor The address of the express executor.
     */
    function getExpressExecutorWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash,
        string calldata symbol,
        uint256 amount
    ) external view returns (address expressExecutor) {
        expressExecutor = _getExpressExecutorWithToken(
            commandId,
            sourceChain,
            sourceAddress,
            payloadHash,
            symbol,
            amount
        );
    }
}

File 4 of 34 : IAxelarGatewayWithToken.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IAxelarGateway } from './IAxelarGateway.sol';

/**
 * @title IAxelarGatewayWithToken
 * @dev Interface for the Axelar Gateway that supports cross-chain token transfers coupled with general message passing.
 * It extends IAxelarGateway to include token-related functionality.
 */
interface IAxelarGatewayWithToken is IAxelarGateway {
    /**
     * @notice Emitted when a token is sent to another chain.
     * @dev Logs the attempt to send tokens to a recipient on another chain.
     * @param sender The address of the sender who initiated the token transfer.
     * @param destinationChain The name of the destination chain.
     * @param destinationAddress The address of the recipient on the destination chain.
     * @param symbol The symbol of the token being transferred.
     * @param amount The amount of the tokens being transferred.
     */
    event TokenSent(
        address indexed sender,
        string destinationChain,
        string destinationAddress,
        string symbol,
        uint256 amount
    );

    /**
     * @notice Emitted when a contract call is made through the gateway along with a token transfer.
     * @dev Logs the attempt to call a contract on another chain with an associated token transfer.
     * @param sender The address of the sender who initiated the contract call with token.
     * @param destinationChain The name of the destination chain.
     * @param destinationContractAddress The address of the contract on the destination chain.
     * @param payloadHash The keccak256 hash of the sent payload data.
     * @param payload The payload data used for the contract call.
     * @param symbol The symbol of the token being transferred.
     * @param amount The amount of the tokens being transferred.
     */
    event ContractCallWithToken(
        address indexed sender,
        string destinationChain,
        string destinationContractAddress,
        bytes32 indexed payloadHash,
        bytes payload,
        string symbol,
        uint256 amount
    );

    /**
     * @notice Emitted when a contract call with a token minting is approved.
     * @dev Logs the approval of a contract call that originated from another chain and involves a token minting process.
     * @param commandId The identifier of the command to execute.
     * @param sourceChain The name of the source chain from whence the command came.
     * @param sourceAddress The address of the sender on the source chain.
     * @param contractAddress The address of the contract where the call will be executed.
     * @param payloadHash The keccak256 hash of the approved payload data.
     * @param symbol The symbol of the token being minted.
     * @param amount The amount of the tokens being minted.
     * @param sourceTxHash The hash of the source transaction on the source chain.
     * @param sourceEventIndex The index of the event in the source transaction logs.
     */
    event ContractCallApprovedWithMint(
        bytes32 indexed commandId,
        string sourceChain,
        string sourceAddress,
        address indexed contractAddress,
        bytes32 indexed payloadHash,
        string symbol,
        uint256 amount,
        bytes32 sourceTxHash,
        uint256 sourceEventIndex
    );

    /**
     * @notice Sends tokens to another chain.
     * @dev Initiates a cross-chain token transfer through the gateway to the specified destination chain and recipient.
     * @param destinationChain The name of the destination chain.
     * @param destinationAddress The address of the recipient on the destination chain.
     * @param symbol The symbol of the token being transferred.
     * @param amount The amount of the tokens being transferred.
     */
    function sendToken(
        string calldata destinationChain,
        string calldata destinationAddress,
        string calldata symbol,
        uint256 amount
    ) external;

    /**
     * @notice Makes a contract call on another chain with an associated token transfer.
     * @dev Initiates a cross-chain contract call through the gateway that includes a token transfer to the specified contract on the destination chain.
     * @param destinationChain The name of the destination chain.
     * @param contractAddress The address of the contract on the destination chain.
     * @param payload The payload data to be used in the contract call.
     * @param symbol The symbol of the token being transferred.
     * @param amount The amount of the tokens being transferred.
     */
    function callContractWithToken(
        string calldata destinationChain,
        string calldata contractAddress,
        bytes calldata payload,
        string calldata symbol,
        uint256 amount
    ) external;

    /**
     * @notice Checks if a contract call with token minting is approved.
     * @dev Determines whether a given contract call, identified by the commandId and payloadHash, involving token minting is approved.
     * @param commandId The identifier of the command to check.
     * @param sourceChain The name of the source chain.
     * @param sourceAddress The address of the sender on the source chain.
     * @param contractAddress The address of the contract where the call will be executed.
     * @param payloadHash The keccak256 hash of the payload data.
     * @param symbol The symbol of the token associated with the minting.
     * @param amount The amount of the tokens to be minted.
     * @return True if the contract call with token minting is approved, false otherwise.
     */
    function isContractCallAndMintApproved(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        address contractAddress,
        bytes32 payloadHash,
        string calldata symbol,
        uint256 amount
    ) external view returns (bool);

    /**
     * @notice Validates and approves a contract call with token minting.
     * @dev Validates the given contract call information and marks it as approved if valid. It also involves the minting of tokens.
     * @param commandId The identifier of the command to validate.
     * @param sourceChain The name of the source chain.
     * @param sourceAddress The address of the sender on the source chain.
     * @param payloadHash The keccak256 hash of the payload data.
     * @param symbol The symbol of the token associated with the minting.
     * @param amount The amount of the tokens to be minted.
     * @return True if the contract call with token minting is validated and approved, false otherwise.
     */
    function validateContractCallAndMint(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash,
        string calldata symbol,
        uint256 amount
    ) external returns (bool);

    /**
     * @notice Retrieves the address of a token given its symbol.
     * @dev Gets the contract address of the token registered with the given symbol.
     * @param symbol The symbol of the token to retrieve the address for.
     * @return The contract address of the token corresponding to the given symbol.
     */
    function tokenAddresses(string memory symbol) external view returns (address);
}

File 5 of 34 : IAxelarGasService.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { GasInfo } from '../types/GasEstimationTypes.sol';
import { IInterchainGasEstimation } from './IInterchainGasEstimation.sol';
import { IUpgradable } from './IUpgradable.sol';

/**
 * @title IAxelarGasService Interface
 * @notice This is an interface for the AxelarGasService contract which manages gas payments
 * and refunds for cross-chain communication on the Axelar network.
 * @dev This interface inherits IUpgradable
 */
interface IAxelarGasService is IInterchainGasEstimation, IUpgradable {
    error InvalidAddress();
    error NotCollector();
    error InvalidAmounts();
    error InvalidGasUpdates();
    error InvalidParams();
    error InsufficientGasPayment(uint256 required, uint256 provided);

    event GasPaidForContractCall(
        address indexed sourceAddress,
        string destinationChain,
        string destinationAddress,
        bytes32 indexed payloadHash,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event GasPaidForContractCallWithToken(
        address indexed sourceAddress,
        string destinationChain,
        string destinationAddress,
        bytes32 indexed payloadHash,
        string symbol,
        uint256 amount,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event NativeGasPaidForContractCall(
        address indexed sourceAddress,
        string destinationChain,
        string destinationAddress,
        bytes32 indexed payloadHash,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event NativeGasPaidForContractCallWithToken(
        address indexed sourceAddress,
        string destinationChain,
        string destinationAddress,
        bytes32 indexed payloadHash,
        string symbol,
        uint256 amount,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event GasPaidForExpressCall(
        address indexed sourceAddress,
        string destinationChain,
        string destinationAddress,
        bytes32 indexed payloadHash,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event GasPaidForExpressCallWithToken(
        address indexed sourceAddress,
        string destinationChain,
        string destinationAddress,
        bytes32 indexed payloadHash,
        string symbol,
        uint256 amount,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event NativeGasPaidForExpressCall(
        address indexed sourceAddress,
        string destinationChain,
        string destinationAddress,
        bytes32 indexed payloadHash,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event NativeGasPaidForExpressCallWithToken(
        address indexed sourceAddress,
        string destinationChain,
        string destinationAddress,
        bytes32 indexed payloadHash,
        string symbol,
        uint256 amount,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event GasAdded(
        bytes32 indexed txHash,
        uint256 indexed logIndex,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event NativeGasAdded(bytes32 indexed txHash, uint256 indexed logIndex, uint256 gasFeeAmount, address refundAddress);

    event ExpressGasAdded(
        bytes32 indexed txHash,
        uint256 indexed logIndex,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event NativeExpressGasAdded(
        bytes32 indexed txHash,
        uint256 indexed logIndex,
        uint256 gasFeeAmount,
        address refundAddress
    );

    event Refunded(
        bytes32 indexed txHash,
        uint256 indexed logIndex,
        address payable receiver,
        address token,
        uint256 amount
    );

    /**
     * @notice Pay for gas for any type of contract execution on a destination chain.
     * @dev This function is called on the source chain before calling the gateway to execute a remote contract.
     * @dev If estimateOnChain is true, the function will estimate the gas cost and revert if the payment is insufficient.
     * @param sender The address making the payment
     * @param destinationChain The target chain where the contract call will be made
     * @param destinationAddress The target address on the destination chain
     * @param payload Data payload for the contract call
     * @param executionGasLimit The gas limit for the contract call
     * @param estimateOnChain Flag to enable on-chain gas estimation
     * @param refundAddress The address where refunds, if any, should be sent
     * @param params Additional parameters for gas payment. This can be left empty for normal contract call payments.
     */
    function payGas(
        address sender,
        string calldata destinationChain,
        string calldata destinationAddress,
        bytes calldata payload,
        uint256 executionGasLimit,
        bool estimateOnChain,
        address refundAddress,
        bytes calldata params
    ) external payable;

    /**
     * @notice Pay for gas using ERC20 tokens for a contract call on a destination chain.
     * @dev This function is called on the source chain before calling the gateway to execute a remote contract.
     * @param sender The address making the payment
     * @param destinationChain The target chain where the contract call will be made
     * @param destinationAddress The target address on the destination chain
     * @param payload Data payload for the contract call
     * @param gasToken The address of the ERC20 token used to pay for gas
     * @param gasFeeAmount The amount of tokens to pay for gas
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function payGasForContractCall(
        address sender,
        string calldata destinationChain,
        string calldata destinationAddress,
        bytes calldata payload,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    ) external;

    /**
     * @notice Pay for gas using ERC20 tokens for a contract call with tokens on a destination chain.
     * @dev This function is called on the source chain before calling the gateway to execute a remote contract.
     * @param sender The address making the payment
     * @param destinationChain The target chain where the contract call with tokens will be made
     * @param destinationAddress The target address on the destination chain
     * @param payload Data payload for the contract call with tokens
     * @param symbol The symbol of the token to be sent with the call
     * @param amount The amount of tokens to be sent with the call
     * @param gasToken The address of the ERC20 token used to pay for gas
     * @param gasFeeAmount The amount of tokens to pay for gas
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function payGasForContractCallWithToken(
        address sender,
        string calldata destinationChain,
        string calldata destinationAddress,
        bytes calldata payload,
        string calldata symbol,
        uint256 amount,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    ) external;

    /**
     * @notice Pay for gas using native currency for a contract call on a destination chain.
     * @dev This function is called on the source chain before calling the gateway to execute a remote contract.
     * @param sender The address making the payment
     * @param destinationChain The target chain where the contract call will be made
     * @param destinationAddress The target address on the destination chain
     * @param payload Data payload for the contract call
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function payNativeGasForContractCall(
        address sender,
        string calldata destinationChain,
        string calldata destinationAddress,
        bytes calldata payload,
        address refundAddress
    ) external payable;

    /**
     * @notice Pay for gas using native currency for a contract call with tokens on a destination chain.
     * @dev This function is called on the source chain before calling the gateway to execute a remote contract.
     * @param sender The address making the payment
     * @param destinationChain The target chain where the contract call with tokens will be made
     * @param destinationAddress The target address on the destination chain
     * @param payload Data payload for the contract call with tokens
     * @param symbol The symbol of the token to be sent with the call
     * @param amount The amount of tokens to be sent with the call
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function payNativeGasForContractCallWithToken(
        address sender,
        string calldata destinationChain,
        string calldata destinationAddress,
        bytes calldata payload,
        string calldata symbol,
        uint256 amount,
        address refundAddress
    ) external payable;

    /**
     * @notice Pay for gas using ERC20 tokens for an express contract call on a destination chain.
     * @dev This function is called on the source chain before calling the gateway to express execute a remote contract.
     * @param sender The address making the payment
     * @param destinationChain The target chain where the contract call will be made
     * @param destinationAddress The target address on the destination chain
     * @param payload Data payload for the contract call
     * @param gasToken The address of the ERC20 token used to pay for gas
     * @param gasFeeAmount The amount of tokens to pay for gas
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function payGasForExpressCall(
        address sender,
        string calldata destinationChain,
        string calldata destinationAddress,
        bytes calldata payload,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    ) external;

    /**
     * @notice Pay for gas using ERC20 tokens for an express contract call with tokens on a destination chain.
     * @dev This function is called on the source chain before calling the gateway to express execute a remote contract.
     * @param sender The address making the payment
     * @param destinationChain The target chain where the contract call with tokens will be made
     * @param destinationAddress The target address on the destination chain
     * @param payload Data payload for the contract call with tokens
     * @param symbol The symbol of the token to be sent with the call
     * @param amount The amount of tokens to be sent with the call
     * @param gasToken The address of the ERC20 token used to pay for gas
     * @param gasFeeAmount The amount of tokens to pay for gas
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function payGasForExpressCallWithToken(
        address sender,
        string calldata destinationChain,
        string calldata destinationAddress,
        bytes calldata payload,
        string calldata symbol,
        uint256 amount,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    ) external;

    /**
     * @notice Pay for gas using native currency for an express contract call on a destination chain.
     * @dev This function is called on the source chain before calling the gateway to execute a remote contract.
     * @param sender The address making the payment
     * @param destinationChain The target chain where the contract call will be made
     * @param destinationAddress The target address on the destination chain
     * @param payload Data payload for the contract call
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function payNativeGasForExpressCall(
        address sender,
        string calldata destinationChain,
        string calldata destinationAddress,
        bytes calldata payload,
        address refundAddress
    ) external payable;

    /**
     * @notice Pay for gas using native currency for an express contract call with tokens on a destination chain.
     * @dev This function is called on the source chain before calling the gateway to execute a remote contract.
     * @param sender The address making the payment
     * @param destinationChain The target chain where the contract call with tokens will be made
     * @param destinationAddress The target address on the destination chain
     * @param payload Data payload for the contract call with tokens
     * @param symbol The symbol of the token to be sent with the call
     * @param amount The amount of tokens to be sent with the call
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function payNativeGasForExpressCallWithToken(
        address sender,
        string calldata destinationChain,
        string calldata destinationAddress,
        bytes calldata payload,
        string calldata symbol,
        uint256 amount,
        address refundAddress
    ) external payable;

    /**
     * @notice Add additional gas payment using ERC20 tokens after initiating a cross-chain call.
     * @dev This function can be called on the source chain after calling the gateway to execute a remote contract.
     * @param txHash The transaction hash of the cross-chain call
     * @param logIndex The log index for the cross-chain call
     * @param gasToken The ERC20 token address used to add gas
     * @param gasFeeAmount The amount of tokens to add as gas
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function addGas(
        bytes32 txHash,
        uint256 logIndex,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    ) external;

    /**
     * @notice Add additional gas payment using native currency after initiating a cross-chain call.
     * @dev This function can be called on the source chain after calling the gateway to execute a remote contract.
     * @param txHash The transaction hash of the cross-chain call
     * @param logIndex The log index for the cross-chain call
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function addNativeGas(
        bytes32 txHash,
        uint256 logIndex,
        address refundAddress
    ) external payable;

    /**
     * @notice Add additional gas payment using ERC20 tokens after initiating an express cross-chain call.
     * @dev This function can be called on the source chain after calling the gateway to express execute a remote contract.
     * @param txHash The transaction hash of the cross-chain call
     * @param logIndex The log index for the cross-chain call
     * @param gasToken The ERC20 token address used to add gas
     * @param gasFeeAmount The amount of tokens to add as gas
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function addExpressGas(
        bytes32 txHash,
        uint256 logIndex,
        address gasToken,
        uint256 gasFeeAmount,
        address refundAddress
    ) external;

    /**
     * @notice Add additional gas payment using native currency after initiating an express cross-chain call.
     * @dev This function can be called on the source chain after calling the gateway to express execute a remote contract.
     * @param txHash The transaction hash of the cross-chain call
     * @param logIndex The log index for the cross-chain call
     * @param refundAddress The address where refunds, if any, should be sent
     */
    function addNativeExpressGas(
        bytes32 txHash,
        uint256 logIndex,
        address refundAddress
    ) external payable;

    /**
     * @notice Updates the gas price for a specific chain.
     * @dev This function is called by the gas oracle to update the gas prices for a specific chains.
     * @param chains Array of chain names
     * @param gasUpdates Array of gas updates
     */
    function updateGasInfo(string[] calldata chains, GasInfo[] calldata gasUpdates) external;

    /**
     * @notice Allows the gasCollector to collect accumulated fees from the contract.
     * @dev Use address(0) as the token address for native currency.
     * @param receiver The address to receive the collected fees
     * @param tokens Array of token addresses to be collected
     * @param amounts Array of amounts to be collected for each respective token address
     */
    function collectFees(
        address payable receiver,
        address[] calldata tokens,
        uint256[] calldata amounts
    ) external;

    /**
     * @notice Refunds gas payment to the receiver in relation to a specific cross-chain transaction.
     * @dev Only callable by the gasCollector.
     * @dev Use address(0) as the token address to refund native currency.
     * @param txHash The transaction hash of the cross-chain call
     * @param logIndex The log index for the cross-chain call
     * @param receiver The address to receive the refund
     * @param token The token address to be refunded
     * @param amount The amount to refund
     */
    function refund(
        bytes32 txHash,
        uint256 logIndex,
        address payable receiver,
        address token,
        uint256 amount
    ) external;

    /**
     * @notice Returns the address of the designated gas collector.
     * @return address of the gas collector
     */
    function gasCollector() external returns (address);
}

File 6 of 34 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SafeCast} from "./math/SafeCast.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    using SafeCast for *;

    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;
    uint256 private constant SPECIAL_CHARS_LOOKUP =
        (1 << 0x08) | // backspace
            (1 << 0x09) | // tab
            (1 << 0x0a) | // newline
            (1 << 0x0c) | // form feed
            (1 << 0x0d) | // carriage return
            (1 << 0x22) | // double quote
            (1 << 0x5c); // backslash

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev The string being parsed contains characters that are not in scope of the given base.
     */
    error StringsInvalidChar();

    /**
     * @dev The string being parsed is not a properly formatted address.
     */
    error StringsInvalidAddressFormat();

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            assembly ("memory-safe") {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                assembly ("memory-safe") {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its checksummed ASCII `string` hexadecimal
     * representation, according to EIP-55.
     */
    function toChecksumHexString(address addr) internal pure returns (string memory) {
        bytes memory buffer = bytes(toHexString(addr));

        // hash the hex part of buffer (skip length + 2 bytes, length 40)
        uint256 hashValue;
        assembly ("memory-safe") {
            hashValue := shr(96, keccak256(add(buffer, 0x22), 40))
        }

        for (uint256 i = 41; i > 1; --i) {
            // possible values for buffer[i] are 48 (0) to 57 (9) and 97 (a) to 102 (f)
            if (hashValue & 0xf > 7 && uint8(buffer[i]) > 96) {
                // case shift by xoring with 0x20
                buffer[i] ^= 0x20;
            }
            hashValue >>= 4;
        }
        return string(buffer);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }

    /**
     * @dev Parse a decimal string and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input) internal pure returns (uint256) {
        return parseUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[0-9]*`
     * - The result must fit into an `uint256` type
     */
    function parseUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseUint-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        uint256 result = 0;
        for (uint256 i = begin; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 9) return (false, 0);
            result *= 10;
            result += chr;
        }
        return (true, result);
    }

    /**
     * @dev Parse a decimal string and returns the value as a `int256`.
     *
     * Requirements:
     * - The string must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input) internal pure returns (int256) {
        return parseInt(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseInt-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `[-+]?[0-9]*`
     * - The result must fit in an `int256` type.
     */
    function parseInt(string memory input, uint256 begin, uint256 end) internal pure returns (int256) {
        (bool success, int256 value) = tryParseInt(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseInt-string} that returns false if the parsing fails because of an invalid character or if
     * the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(string memory input) internal pure returns (bool success, int256 value) {
        return _tryParseIntUncheckedBounds(input, 0, bytes(input).length);
    }

    uint256 private constant ABS_MIN_INT256 = 2 ** 255;

    /**
     * @dev Variant of {parseInt-string-uint256-uint256} that returns false if the parsing fails because of an invalid
     * character or if the result does not fit in a `int256`.
     *
     * NOTE: This function will revert if the absolute value of the result does not fit in a `uint256`.
     */
    function tryParseInt(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, int256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseIntUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseInt-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseIntUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, int256 value) {
        bytes memory buffer = bytes(input);

        // Check presence of a negative sign.
        bytes1 sign = begin == end ? bytes1(0) : bytes1(_unsafeReadBytesOffset(buffer, begin)); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        bool positiveSign = sign == bytes1("+");
        bool negativeSign = sign == bytes1("-");
        uint256 offset = (positiveSign || negativeSign).toUint();

        (bool absSuccess, uint256 absValue) = tryParseUint(input, begin + offset, end);

        if (absSuccess && absValue < ABS_MIN_INT256) {
            return (true, negativeSign ? -int256(absValue) : int256(absValue));
        } else if (absSuccess && negativeSign && absValue == ABS_MIN_INT256) {
            return (true, type(int256).min);
        } else return (false, 0);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as a `uint256`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input) internal pure returns (uint256) {
        return parseHexUint(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]*`
     * - The result must fit in an `uint256` type.
     */
    function parseHexUint(string memory input, uint256 begin, uint256 end) internal pure returns (uint256) {
        (bool success, uint256 value) = tryParseHexUint(input, begin, end);
        if (!success) revert StringsInvalidChar();
        return value;
    }

    /**
     * @dev Variant of {parseHexUint-string} that returns false if the parsing fails because of an invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(string memory input) internal pure returns (bool success, uint256 value) {
        return _tryParseHexUintUncheckedBounds(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseHexUint-string-uint256-uint256} that returns false if the parsing fails because of an
     * invalid character.
     *
     * NOTE: This function will revert if the result does not fit in a `uint256`.
     */
    function tryParseHexUint(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, uint256 value) {
        if (end > bytes(input).length || begin > end) return (false, 0);
        return _tryParseHexUintUncheckedBounds(input, begin, end);
    }

    /**
     * @dev Implementation of {tryParseHexUint-string-uint256-uint256} that does not check bounds. Caller should make sure that
     * `begin <= end <= input.length`. Other inputs would result in undefined behavior.
     */
    function _tryParseHexUintUncheckedBounds(
        string memory input,
        uint256 begin,
        uint256 end
    ) private pure returns (bool success, uint256 value) {
        bytes memory buffer = bytes(input);

        // skip 0x prefix if present
        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(buffer, begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 offset = hasPrefix.toUint() * 2;

        uint256 result = 0;
        for (uint256 i = begin + offset; i < end; ++i) {
            uint8 chr = _tryParseChr(bytes1(_unsafeReadBytesOffset(buffer, i)));
            if (chr > 15) return (false, 0);
            result *= 16;
            unchecked {
                // Multiplying by 16 is equivalent to a shift of 4 bits (with additional overflow check).
                // This guarantees that adding a value < 16 will not cause an overflow, hence the unchecked.
                result += chr;
            }
        }
        return (true, result);
    }

    /**
     * @dev Parse a hexadecimal string (with or without "0x" prefix), and returns the value as an `address`.
     *
     * Requirements:
     * - The string must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input) internal pure returns (address) {
        return parseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string} that parses a substring of `input` located between position `begin` (included) and
     * `end` (excluded).
     *
     * Requirements:
     * - The substring must be formatted as `(0x)?[0-9a-fA-F]{40}`
     */
    function parseAddress(string memory input, uint256 begin, uint256 end) internal pure returns (address) {
        (bool success, address value) = tryParseAddress(input, begin, end);
        if (!success) revert StringsInvalidAddressFormat();
        return value;
    }

    /**
     * @dev Variant of {parseAddress-string} that returns false if the parsing fails because the input is not a properly
     * formatted address. See {parseAddress-string} requirements.
     */
    function tryParseAddress(string memory input) internal pure returns (bool success, address value) {
        return tryParseAddress(input, 0, bytes(input).length);
    }

    /**
     * @dev Variant of {parseAddress-string-uint256-uint256} that returns false if the parsing fails because input is not a properly
     * formatted address. See {parseAddress-string-uint256-uint256} requirements.
     */
    function tryParseAddress(
        string memory input,
        uint256 begin,
        uint256 end
    ) internal pure returns (bool success, address value) {
        if (end > bytes(input).length || begin > end) return (false, address(0));

        bool hasPrefix = (end > begin + 1) && bytes2(_unsafeReadBytesOffset(bytes(input), begin)) == bytes2("0x"); // don't do out-of-bound (possibly unsafe) read if sub-string is empty
        uint256 expectedLength = 40 + hasPrefix.toUint() * 2;

        // check that input is the correct length
        if (end - begin == expectedLength) {
            // length guarantees that this does not overflow, and value is at most type(uint160).max
            (bool s, uint256 v) = _tryParseHexUintUncheckedBounds(input, begin, end);
            return (s, address(uint160(v)));
        } else {
            return (false, address(0));
        }
    }

    function _tryParseChr(bytes1 chr) private pure returns (uint8) {
        uint8 value = uint8(chr);

        // Try to parse `chr`:
        // - Case 1: [0-9]
        // - Case 2: [a-f]
        // - Case 3: [A-F]
        // - otherwise not supported
        unchecked {
            if (value > 47 && value < 58) value -= 48;
            else if (value > 96 && value < 103) value -= 87;
            else if (value > 64 && value < 71) value -= 55;
            else return type(uint8).max;
        }

        return value;
    }

    /**
     * @dev Escape special characters in JSON strings. This can be useful to prevent JSON injection in NFT metadata.
     *
     * WARNING: This function should only be used in double quoted JSON strings. Single quotes are not escaped.
     */
    function escapeJSON(string memory input) internal pure returns (string memory) {
        bytes memory buffer = bytes(input);
        bytes memory output = new bytes(2 * buffer.length); // worst case scenario
        uint256 outputLength = 0;

        for (uint256 i; i < buffer.length; ++i) {
            bytes1 char = bytes1(_unsafeReadBytesOffset(buffer, i));
            if (((SPECIAL_CHARS_LOOKUP & (1 << uint8(char))) != 0)) {
                output[outputLength++] = "\\";
                if (char == 0x08) output[outputLength++] = "b";
                else if (char == 0x09) output[outputLength++] = "t";
                else if (char == 0x0a) output[outputLength++] = "n";
                else if (char == 0x0c) output[outputLength++] = "f";
                else if (char == 0x0d) output[outputLength++] = "r";
                else if (char == 0x5c) output[outputLength++] = "\\";
                else if (char == 0x22) {
                    // solhint-disable-next-line quotes
                    output[outputLength++] = '"';
                }
            } else {
                output[outputLength++] = char;
            }
        }
        // write the actual length and deallocate unused memory
        assembly ("memory-safe") {
            mstore(output, outputLength)
            mstore(0x40, add(output, shl(5, shr(5, add(outputLength, 63)))))
        }

        return string(output);
    }

    /**
     * @dev Reads a bytes32 from a bytes array without bounds checking.
     *
     * NOTE: making this function internal would mean it could be used with memory unsafe offset, and marking the
     * assembly block as such would prevent some optimizations.
     */
    function _unsafeReadBytesOffset(bytes memory buffer, uint256 offset) private pure returns (bytes32 value) {
        // This is not memory safe in the general case, but all calls to this private function are within bounds.
        assembly ("memory-safe") {
            value := mload(add(buffer, add(0x20, offset)))
        }
    }
}

File 7 of 34 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (token/ERC20/IERC20.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-20 standard as defined in the ERC.
 */
interface IERC20 {
    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);

    /**
     * @dev Returns the value of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the value of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address to, uint256 value) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the
     * allowance mechanism. `value` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address from, address to, uint256 value) external returns (bool);
}

File 8 of 34 : SafeERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.2.0) (token/ERC20/utils/SafeERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../IERC20.sol";
import {IERC1363} from "../../../interfaces/IERC1363.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC-20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    /**
     * @dev An operation with an ERC-20 token failed.
     */
    error SafeERC20FailedOperation(address token);

    /**
     * @dev Indicates a failed `decreaseAllowance` request.
     */
    error SafeERC20FailedDecreaseAllowance(address spender, uint256 currentAllowance, uint256 requestedDecrease);

    /**
     * @dev Transfer `value` amount of `token` from the calling contract to `to`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     */
    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Transfer `value` amount of `token` from `from` to `to`, spending the approval given by `from` to the
     * calling contract. If `token` returns no value, non-reverting calls are assumed to be successful.
     */
    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Variant of {safeTransfer} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransfer(IERC20 token, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transfer, (to, value)));
    }

    /**
     * @dev Variant of {safeTransferFrom} that returns a bool instead of reverting if the operation is not successful.
     */
    function trySafeTransferFrom(IERC20 token, address from, address to, uint256 value) internal returns (bool) {
        return _callOptionalReturnBool(token, abi.encodeCall(token.transferFrom, (from, to, value)));
    }

    /**
     * @dev Increase the calling contract's allowance toward `spender` by `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 oldAllowance = token.allowance(address(this), spender);
        forceApprove(token, spender, oldAllowance + value);
    }

    /**
     * @dev Decrease the calling contract's allowance toward `spender` by `requestedDecrease`. If `token` returns no
     * value, non-reverting calls are assumed to be successful.
     *
     * IMPORTANT: If the token implements ERC-7674 (ERC-20 with temporary allowance), and if the "client"
     * smart contract uses ERC-7674 to set temporary allowances, then the "client" smart contract should avoid using
     * this function. Performing a {safeIncreaseAllowance} or {safeDecreaseAllowance} operation on a token contract
     * that has a non-zero temporary allowance (for that particular owner-spender) will result in unexpected behavior.
     */
    function safeDecreaseAllowance(IERC20 token, address spender, uint256 requestedDecrease) internal {
        unchecked {
            uint256 currentAllowance = token.allowance(address(this), spender);
            if (currentAllowance < requestedDecrease) {
                revert SafeERC20FailedDecreaseAllowance(spender, currentAllowance, requestedDecrease);
            }
            forceApprove(token, spender, currentAllowance - requestedDecrease);
        }
    }

    /**
     * @dev Set the calling contract's allowance toward `spender` to `value`. If `token` returns no value,
     * non-reverting calls are assumed to be successful. Meant to be used with tokens that require the approval
     * to be set to zero before setting it to a non-zero value, such as USDT.
     *
     * NOTE: If the token implements ERC-7674, this function will not modify any temporary allowance. This function
     * only sets the "standard" allowance. Any temporary allowance will remain active, in addition to the value being
     * set here.
     */
    function forceApprove(IERC20 token, address spender, uint256 value) internal {
        bytes memory approvalCall = abi.encodeCall(token.approve, (spender, value));

        if (!_callOptionalReturnBool(token, approvalCall)) {
            _callOptionalReturn(token, abi.encodeCall(token.approve, (spender, 0)));
            _callOptionalReturn(token, approvalCall);
        }
    }

    /**
     * @dev Performs an {ERC1363} transferAndCall, with a fallback to the simple {ERC20} transfer if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            safeTransfer(token, to, value);
        } else if (!token.transferAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} transferFromAndCall, with a fallback to the simple {ERC20} transferFrom if the target
     * has no code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * Reverts if the returned value is other than `true`.
     */
    function transferFromAndCallRelaxed(
        IERC1363 token,
        address from,
        address to,
        uint256 value,
        bytes memory data
    ) internal {
        if (to.code.length == 0) {
            safeTransferFrom(token, from, to, value);
        } else if (!token.transferFromAndCall(from, to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Performs an {ERC1363} approveAndCall, with a fallback to the simple {ERC20} approve if the target has no
     * code. This can be used to implement an {ERC721}-like safe transfer that rely on {ERC1363} checks when
     * targeting contracts.
     *
     * NOTE: When the recipient address (`to`) has no code (i.e. is an EOA), this function behaves as {forceApprove}.
     * Opposedly, when the recipient address (`to`) has code, this function only attempts to call {ERC1363-approveAndCall}
     * once without retrying, and relies on the returned value to be true.
     *
     * Reverts if the returned value is other than `true`.
     */
    function approveAndCallRelaxed(IERC1363 token, address to, uint256 value, bytes memory data) internal {
        if (to.code.length == 0) {
            forceApprove(token, to, value);
        } else if (!token.approveAndCall(to, value, data)) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturnBool} that reverts if call fails to meet the requirements.
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            let success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            // bubble errors
            if iszero(success) {
                let ptr := mload(0x40)
                returndatacopy(ptr, 0, returndatasize())
                revert(ptr, returndatasize())
            }
            returnSize := returndatasize()
            returnValue := mload(0)
        }

        if (returnSize == 0 ? address(token).code.length == 0 : returnValue != 1) {
            revert SafeERC20FailedOperation(address(token));
        }
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     *
     * This is a variant of {_callOptionalReturn} that silently catches all reverts and returns a bool instead.
     */
    function _callOptionalReturnBool(IERC20 token, bytes memory data) private returns (bool) {
        bool success;
        uint256 returnSize;
        uint256 returnValue;
        assembly ("memory-safe") {
            success := call(gas(), token, 0, add(data, 0x20), mload(data), 0, 0x20)
            returnSize := returndatasize()
            returnValue := mload(0)
        }
        return success && (returnSize == 0 ? address(token).code.length > 0 : returnValue == 1);
    }
}

File 9 of 34 : IDaimoPayBridger.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.12;

import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";

import "../TokenUtils.sol";

/// @author Daimo, Inc
/// @custom:security-contact [email protected]
/// @notice Bridges assets. Specifically, it lets any relayer initiate a bridge
/// transaction to another chain.
interface IDaimoPayBridger {
    /// Emitted when a bridge transaction is initiated
    event BridgeInitiated(
        address fromAddress,
        address fromToken,
        uint256 fromAmount,
        uint256 toChainId,
        address toAddress,
        address toToken,
        uint256 toAmount
    );

    /// Determine the input token and amount required to achieve one of the
    /// given output options on a given chain.
    function getBridgeTokenIn(
        uint256 toChainId,
        TokenAmount[] memory bridgeTokenOutOptions
    ) external view returns (address bridgeTokenIn, uint256 inAmount);

    /// Initiate a bridge. Guarantee that one of the bridge token options
    /// (bridgeTokenOut, outAmount) shows up at toAddress on toChainId.
    /// Otherwise, revert.
    function sendToChain(
        uint256 toChainId,
        address toAddress,
        TokenAmount[] calldata bridgeTokenOutOptions,
        bytes calldata extraData
    ) external;
}

File 10 of 34 : AxelarExecutable.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IAxelarGateway } from '../interfaces/IAxelarGateway.sol';
import { IAxelarExecutable } from '../interfaces/IAxelarExecutable.sol';

/**
 * @title AxelarExecutable
 * @dev Abstract contract to be inherited by contracts that need to execute cross-chain commands via Axelar's Gateway.
 * It implements the IAxelarExecutable interface.
 */
abstract contract AxelarExecutable is IAxelarExecutable {
    /// @dev Reference to the Axelar Gateway contract.
    address internal immutable gatewayAddress;

    /**
     * @dev Contract constructor that sets the Axelar Gateway address.
     * Reverts if the provided address is the zero address.
     * @param gateway_ The address of the Axelar Gateway contract.
     */
    constructor(address gateway_) {
        if (gateway_ == address(0)) revert InvalidAddress();

        gatewayAddress = gateway_;
    }

    /**
     * @notice Executes the cross-chain command after validating it with the Axelar Gateway.
     * @dev This function ensures the call is approved by Axelar Gateway before execution.
     * It uses a hash of the payload for validation and internally calls _execute for the actual command execution.
     * Reverts if the validation fails.
     * @param commandId The unique identifier of the cross-chain message being executed.
     * @param sourceChain The name of the source chain from which the message originated.
     * @param sourceAddress The address on the source chain that sent the message.
     * @param payload The payload of the message payload.
     */
    function execute(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload
    ) external virtual {
        bytes32 payloadHash = keccak256(payload);

        if (!gateway().validateContractCall(commandId, sourceChain, sourceAddress, payloadHash))
            revert NotApprovedByGateway();

        _execute(commandId, sourceChain, sourceAddress, payload);
    }

    /**
     * @dev Internal virtual function to be overridden by child contracts to execute the command.
     * It allows child contracts to define their custom command execution logic.
     * @param commandId The identifier of the command to execute.
     * @param sourceChain The name of the source chain from which the command originated.
     * @param sourceAddress The address on the source chain that sent the command.
     * @param payload The payload of the command to be executed.
     */
    function _execute(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload
    ) internal virtual;

    /**
     * @notice Returns the address of the AxelarGateway contract.
     * @return The Axelar Gateway instance.
     */
    function gateway() public view returns (IAxelarGateway) {
        return IAxelarGateway(gatewayAddress);
    }
}

File 11 of 34 : AxelarExecutableWithToken.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IAxelarGatewayWithToken } from '../interfaces/IAxelarGatewayWithToken.sol';
import { IAxelarExecutableWithToken } from '../interfaces/IAxelarExecutableWithToken.sol';
import { AxelarExecutable } from './AxelarExecutable.sol';

/**
 * @title AxelarExecutableWithToken
 * @dev Abstract contract to be inherited by contracts that need to execute cross-chain commands involving tokens via Axelar's Gateway.
 * It extends AxelarExecutable and implements the IAxelarExecutableWithToken interface.
 */
abstract contract AxelarExecutableWithToken is IAxelarExecutableWithToken, AxelarExecutable {
    /**
     * @dev Contract constructor that sets the Axelar Gateway With Token address and initializes AxelarExecutable.
     * @param gateway_ The address of the Axelar Gateway With Token contract.
     */
    constructor(address gateway_) AxelarExecutable(gateway_) {}

    /**
     * @notice Executes the cross-chain command with token transfer after validating it with the Axelar Gateway.
     * @dev This function ensures the call is approved by Axelar Gateway With Token before execution.
     * It uses a hash of the payload for validation and calls _executeWithToken for the actual command execution.
     * Reverts if the validation fails.
     * @param commandId The unique identifier of the cross-chain message being executed.
     * @param sourceChain The name of the source chain from which the message originated.
     * @param sourceAddress The address on the source chain that sent the message.
     * @param payload The payload of the message payload.
     * @param tokenSymbol The symbol of the token to be transferred.
     * @param amount The amount of tokens to be transferred.
     */
    function executeWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload,
        string calldata tokenSymbol,
        uint256 amount
    ) external virtual {
        bytes32 payloadHash = keccak256(payload);

        if (
            !gatewayWithToken().validateContractCallAndMint(
                commandId,
                sourceChain,
                sourceAddress,
                payloadHash,
                tokenSymbol,
                amount
            )
        ) revert NotApprovedByGateway();

        _executeWithToken(commandId, sourceChain, sourceAddress, payload, tokenSymbol, amount);
    }

    /**
     * @dev Internal virtual function to be overridden by child contracts to execute the command with token transfer.
     * It allows child contracts to define their custom command execution logic involving tokens.
     * @param commandId The unique identifier of the cross-chain message being executed.
     * @param sourceChain The name of the source chain from which the message originated.
     * @param sourceAddress The address on the source chain that sent the message.
     * @param payload The payload of the message payload.
     * @param tokenSymbol The symbol of the token to be transferred.
     * @param amount The amount of tokens to be transferred.
     */
    function _executeWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload,
        string calldata tokenSymbol,
        uint256 amount
    ) internal virtual;

    /**
     * @notice Returns the address of the IAxelarGatewayWithToken contract.
     * @return The Axelar Gateway with Token instance.
     */
    function gatewayWithToken() internal view returns (IAxelarGatewayWithToken) {
        return IAxelarGatewayWithToken(gatewayAddress);
    }
}

File 12 of 34 : IAxelarExecutable.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IAxelarGateway } from './IAxelarGateway.sol';

/**
 * @title IAxelarExecutable
 * @dev Interface for a contract that is executable by Axelar Gateway's cross-chain message passing.
 * It defines a standard interface to execute commands sent from another chain.
 */
interface IAxelarExecutable {
    /**
     * @dev Thrown when a function is called with an invalid address.
     */
    error InvalidAddress();

    /**
     * @dev Thrown when the call is not approved by the Axelar Gateway.
     */
    error NotApprovedByGateway();

    /**
     * @notice Returns the address of the AxelarGateway contract.
     * @return The Axelar Gateway contract associated with this executable contract.
     */
    function gateway() external view returns (IAxelarGateway);

    /**
     * @notice Executes the specified command sent from another chain.
     * @dev This function is called by the Axelar Gateway to carry out cross-chain commands.
     * Reverts if the call is not approved by the gateway or other checks fail.
     * @param commandId The identifier of the command to execute.
     * @param sourceChain The name of the source chain from where the command originated.
     * @param sourceAddress The address on the source chain that sent the command.
     * @param payload The payload of the command to be executed. This typically includes the function selector and encoded arguments.
     */
    function execute(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload
    ) external;
}

File 13 of 34 : IAxelarExecutableWithToken.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IAxelarExecutable } from './IAxelarExecutable.sol';

/**
 * @title IAxelarExecutableWithToken
 * @dev Interface for a contract that can execute commands from Axelar Gateway involving token transfers.
 * It extends IAxelarExecutable to include token-related functionality.
 */
interface IAxelarExecutableWithToken is IAxelarExecutable {
    /**
     * @notice Executes the specified command sent from another chain and includes a token transfer.
     * @dev This function should be implemented to handle incoming commands that include token transfers.
     * It will be called by an implementation of `IAxelarGatewayWithToken`.
     * @param commandId The identifier of the command to execute.
     * @param sourceChain The name of the source chain from where the command originated.
     * @param sourceAddress The address on the source chain that sent the command.
     * @param payload The payload of the command to be executed.
     * @param tokenSymbol The symbol of the token to be transferred with this command.
     * @param amount The amount of tokens to be transferred with this command.
     */
    function executeWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload,
        string calldata tokenSymbol,
        uint256 amount
    ) external;
}

File 14 of 34 : IAxelarExpressExecutableWithToken.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IAxelarExpressExecutable } from './IAxelarExpressExecutable.sol';
import { IAxelarExecutableWithToken } from './IAxelarExecutableWithToken.sol';

/**
 * @title IAxelarExpressExecutableWithToken
 * @notice Interface for the Axelar Express Executable contract with token.
 */
interface IAxelarExpressExecutableWithToken is IAxelarExpressExecutable, IAxelarExecutableWithToken {
    /**
     * @notice Emitted when an express execution with a token is successfully performed.
     * @param commandId The unique identifier for the command.
     * @param sourceChain The source chain.
     * @param sourceAddress The source address.
     * @param payloadHash The hash of the payload.
     * @param symbol The token symbol.
     * @param amount The amount of tokens.
     * @param expressExecutor The address of the express executor.
     */
    event ExpressExecutedWithToken(
        bytes32 indexed commandId,
        string sourceChain,
        string sourceAddress,
        bytes32 payloadHash,
        string symbol,
        uint256 indexed amount,
        address indexed expressExecutor
    );

    /**
     * @notice Emitted when an express execution with a token is fulfilled.
     * @param commandId The commandId for the contractCallWithToken.
     * @param sourceChain The source chain.
     * @param sourceAddress The source address.
     * @param payloadHash The hash of the payload.
     * @param symbol The token symbol.
     * @param amount The amount of tokens.
     * @param expressExecutor The address of the express executor.
     */
    event ExpressExecutionWithTokenFulfilled(
        bytes32 indexed commandId,
        string sourceChain,
        string sourceAddress,
        bytes32 payloadHash,
        string symbol,
        uint256 indexed amount,
        address indexed expressExecutor
    );

    /**
     * @notice Returns the express executor with token for a given command.
     * @param commandId The commandId for the contractCallWithToken.
     * @param sourceChain The source chain.
     * @param sourceAddress The source address.
     * @param payloadHash The hash of the payload.
     * @param symbol The token symbol.
     * @param amount The amount of tokens.
     * @return expressExecutor The address of the express executor.
     */
    function getExpressExecutorWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash,
        string calldata symbol,
        uint256 amount
    ) external view returns (address expressExecutor);

    /**
     * @notice Express executes a contract call with token.
     * @param commandId The commandId for the contractCallWithToken.
     * @param sourceChain The source chain.
     * @param sourceAddress The source address.
     * @param payload The payload data.
     * @param symbol The token symbol.
     * @param amount The amount of token.
     */
    function expressExecuteWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload,
        string calldata symbol,
        uint256 amount
    ) external payable;
}

File 15 of 34 : ExpressExecutorTracker.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

abstract contract ExpressExecutorTracker {
    error ExpressExecutorAlreadySet();

    bytes32 internal constant PREFIX_EXPRESS_EXECUTE = keccak256('express-execute');
    bytes32 internal constant PREFIX_EXPRESS_EXECUTE_WITH_TOKEN = keccak256('express-execute-with-token');

    function _expressExecuteSlot(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash
    ) internal pure returns (bytes32 slot) {
        slot = keccak256(abi.encode(PREFIX_EXPRESS_EXECUTE, commandId, sourceChain, sourceAddress, payloadHash));
    }

    function _expressExecuteWithTokenSlot(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash,
        string calldata symbol,
        uint256 amount
    ) internal pure returns (bytes32 slot) {
        slot = keccak256(
            abi.encode(
                PREFIX_EXPRESS_EXECUTE_WITH_TOKEN,
                commandId,
                sourceChain,
                sourceAddress,
                payloadHash,
                symbol,
                amount
            )
        );
    }

    function _getExpressExecutor(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash
    ) internal view returns (address expressExecutor) {
        bytes32 slot = _expressExecuteSlot(commandId, sourceChain, sourceAddress, payloadHash);

        assembly {
            expressExecutor := sload(slot)
        }
    }

    function _getExpressExecutorWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash,
        string calldata symbol,
        uint256 amount
    ) internal view returns (address expressExecutor) {
        bytes32 slot = _expressExecuteWithTokenSlot(commandId, sourceChain, sourceAddress, payloadHash, symbol, amount);

        assembly {
            expressExecutor := sload(slot)
        }
    }

    function _setExpressExecutor(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash,
        address expressExecutor
    ) internal {
        bytes32 slot = _expressExecuteSlot(commandId, sourceChain, sourceAddress, payloadHash);
        address currentExecutor;

        assembly {
            currentExecutor := sload(slot)
        }

        if (currentExecutor != address(0)) revert ExpressExecutorAlreadySet();

        assembly {
            sstore(slot, expressExecutor)
        }
    }

    function _setExpressExecutorWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash,
        string calldata symbol,
        uint256 amount,
        address expressExecutor
    ) internal {
        bytes32 slot = _expressExecuteWithTokenSlot(commandId, sourceChain, sourceAddress, payloadHash, symbol, amount);
        address currentExecutor;

        assembly {
            currentExecutor := sload(slot)
        }

        if (currentExecutor != address(0)) revert ExpressExecutorAlreadySet();

        assembly {
            sstore(slot, expressExecutor)
        }
    }

    function _popExpressExecutor(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash
    ) internal returns (address expressExecutor) {
        bytes32 slot = _expressExecuteSlot(commandId, sourceChain, sourceAddress, payloadHash);

        assembly {
            expressExecutor := sload(slot)
            if expressExecutor {
                sstore(slot, 0)
            }
        }
    }

    function _popExpressExecutorWithToken(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash,
        string calldata symbol,
        uint256 amount
    ) internal returns (address expressExecutor) {
        bytes32 slot = _expressExecuteWithTokenSlot(commandId, sourceChain, sourceAddress, payloadHash, symbol, amount);

        assembly {
            expressExecutor := sload(slot)
            if expressExecutor {
                sstore(slot, 0)
            }
        }
    }
}

File 16 of 34 : SafeTransfer.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IERC20 } from '../interfaces/IERC20.sol';

error TokenTransferFailed();

/*
 * @title SafeTokenCall
 * @dev This library is used for performing safe token transfers.
 */
library SafeTokenCall {
    /*
     * @notice Make a safe call to a token contract.
     * @param token The token contract to interact with.
     * @param callData The function call data.
     * @throws TokenTransferFailed error if transfer of token is not successful.
     */
    function safeCall(IERC20 token, bytes memory callData) internal {
        (bool success, bytes memory returnData) = address(token).call(callData);
        bool transferred = success && (returnData.length == uint256(0) || abi.decode(returnData, (bool)));

        if (!transferred || address(token).code.length == 0) revert TokenTransferFailed();
    }
}

/*
 * @title SafeTokenTransfer
 * @dev This library safely transfers tokens from the contract to a recipient.
 */
library SafeTokenTransfer {
    /*
     * @notice Transfer tokens to a recipient.
     * @param token The token contract.
     * @param receiver The recipient of the tokens.
     * @param amount The amount of tokens to transfer.
     */
    function safeTransfer(
        IERC20 token,
        address receiver,
        uint256 amount
    ) internal {
        SafeTokenCall.safeCall(token, abi.encodeWithSelector(IERC20.transfer.selector, receiver, amount));
    }
}

/*
 * @title SafeTokenTransferFrom
 * @dev This library helps to safely transfer tokens on behalf of a token holder.
 */
library SafeTokenTransferFrom {
    /*
     * @notice Transfer tokens on behalf of a token holder.
     * @param token The token contract.
     * @param from The address of the token holder.
     * @param to The address the tokens are to be sent to.
     * @param amount The amount of tokens to be transferred.
     */
    function safeTransferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        SafeTokenCall.safeCall(token, abi.encodeWithSelector(IERC20.transferFrom.selector, from, to, amount));
    }
}

File 17 of 34 : IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    error InvalidAccount();

    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 18 of 34 : IAxelarGateway.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IAxelarGateway
 * @dev Interface for the Axelar Gateway that supports general message passing and contract call execution.
 */
interface IAxelarGateway {
    /**
     * @notice Emitted when a contract call is made through the gateway.
     * @dev Logs the attempt to call a contract on another chain.
     * @param sender The address of the sender who initiated the contract call.
     * @param destinationChain The name of the destination chain.
     * @param destinationContractAddress The address of the contract on the destination chain.
     * @param payloadHash The keccak256 hash of the sent payload data.
     * @param payload The payload data used for the contract call.
     */
    event ContractCall(
        address indexed sender,
        string destinationChain,
        string destinationContractAddress,
        bytes32 indexed payloadHash,
        bytes payload
    );

    /**
     * @notice Sends a contract call to another chain.
     * @dev Initiates a cross-chain contract call through the gateway to the specified destination chain and contract.
     * @param destinationChain The name of the destination chain.
     * @param contractAddress The address of the contract on the destination chain.
     * @param payload The payload data to be used in the contract call.
     */
    function callContract(
        string calldata destinationChain,
        string calldata contractAddress,
        bytes calldata payload
    ) external;

    /**
     * @notice Checks if a contract call is approved.
     * @dev Determines whether a given contract call, identified by the commandId and payloadHash, is approved.
     * @param commandId The identifier of the command to check.
     * @param sourceChain The name of the source chain.
     * @param sourceAddress The address of the sender on the source chain.
     * @param contractAddress The address of the contract where the call will be executed.
     * @param payloadHash The keccak256 hash of the payload data.
     * @return True if the contract call is approved, false otherwise.
     */
    function isContractCallApproved(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        address contractAddress,
        bytes32 payloadHash
    ) external view returns (bool);

    /**
     * @notice Validates and approves a contract call.
     * @dev Validates the given contract call information and marks it as approved if valid.
     * @param commandId The identifier of the command to validate.
     * @param sourceChain The name of the source chain.
     * @param sourceAddress The address of the sender on the source chain.
     * @param payloadHash The keccak256 hash of the payload data.
     * @return True if the contract call is validated and approved, false otherwise.
     */
    function validateContractCall(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash
    ) external returns (bool);

    /**
     * @notice Checks if a command has been executed.
     * @dev Determines whether a command, identified by the commandId, has been executed.
     * @param commandId The identifier of the command to check.
     * @return True if the command has been executed, false otherwise.
     */
    function isCommandExecuted(bytes32 commandId) external view returns (bool);
}

File 19 of 34 : GasEstimationTypes.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title GasEstimationType
 * @notice This enum represents the gas estimation types for different chains.
 */
enum GasEstimationType {
    Default,
    OptimismEcotone,
    OptimismBedrock,
    Arbitrum,
    Scroll
}

/**
 * @title GasInfo
 * @notice This struct represents the gas pricing information for a specific chain.
 * @dev Smaller uint types are used for efficient struct packing to save storage costs.
 */
struct GasInfo {
    /// @dev Custom gas pricing rule, such as L1 data fee on L2s
    uint64 gasEstimationType;
    /// @dev Scalar value needed for specific gas estimation types, expected to be less than 1e10
    uint64 l1FeeScalar;
    /// @dev Axelar base fee for cross-chain message approval on destination, in terms of source native gas token
    uint128 axelarBaseFee;
    /// @dev Gas price of destination chain, in terms of the source chain token, i.e dest_gas_price * dest_token_market_price / src_token_market_price
    uint128 relativeGasPrice;
    /// @dev Needed for specific gas estimation types. Blob base fee of destination chain, in terms of the source chain token, i.e dest_blob_base_fee * dest_token_market_price / src_token_market_price
    uint128 relativeBlobBaseFee;
    /// @dev Axelar express fee for express execution, in terms of source chain token
    uint128 expressFee;
}

File 20 of 34 : IInterchainGasEstimation.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { GasEstimationType, GasInfo } from '../types/GasEstimationTypes.sol';

/**
 * @title IInterchainGasEstimation Interface
 * @notice This is an interface for the InterchainGasEstimation contract
 * which allows for estimating gas fees for cross-chain communication on the Axelar network.
 */
interface IInterchainGasEstimation {
    error UnsupportedEstimationType(GasEstimationType gasEstimationType);

    /**
     * @notice Event emitted when the gas price for a specific chain is updated.
     * @param chain The name of the chain
     * @param info The gas info for the chain
     */
    event GasInfoUpdated(string chain, GasInfo info);

    /**
     * @notice Returns the gas price for a specific chain.
     * @param chain The name of the chain
     * @return gasInfo The gas info for the chain
     */
    function getGasInfo(string calldata chain) external view returns (GasInfo memory);

    /**
     * @notice Estimates the gas fee for a cross-chain contract call.
     * @param destinationChain Axelar registered name of the destination chain
     * @param destinationAddress Destination contract address being called
     * @param executionGasLimit The gas limit to be used for the destination contract execution,
     *        e.g. pass in 200k if your app consumes needs upto 200k for this contract call
     * @param params Additional parameters for the gas estimation
     * @return gasEstimate The cross-chain gas estimate, in terms of source chain's native gas token that should be forwarded to the gas service.
     */
    function estimateGasFee(
        string calldata destinationChain,
        string calldata destinationAddress,
        bytes calldata payload,
        uint256 executionGasLimit,
        bytes calldata params
    ) external view returns (uint256 gasEstimate);
}

File 21 of 34 : IUpgradable.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IOwnable } from './IOwnable.sol';
import { IImplementation } from './IImplementation.sol';

// General interface for upgradable contracts
interface IUpgradable is IOwnable, IImplementation {
    error InvalidCodeHash();
    error InvalidImplementation();
    error SetupFailed();

    event Upgraded(address indexed newImplementation);

    function implementation() external view returns (address);

    function upgrade(
        address newImplementation,
        bytes32 newImplementationCodeHash,
        bytes calldata params
    ) external;
}

File 22 of 34 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

import {Panic} from "../Panic.sol";
import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Return the 512-bit addition of two uint256.
     *
     * The result is stored in two 256 variables such that sum = high * 2²⁵⁶ + low.
     */
    function add512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        assembly ("memory-safe") {
            low := add(a, b)
            high := lt(low, a)
        }
    }

    /**
     * @dev Return the 512-bit multiplication of two uint256.
     *
     * The result is stored in two 256 variables such that product = high * 2²⁵⁶ + low.
     */
    function mul512(uint256 a, uint256 b) internal pure returns (uint256 high, uint256 low) {
        // 512-bit multiply [high low] = x * y. Compute the product mod 2²⁵⁶ and mod 2²⁵⁶ - 1, then use
        // the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
        // variables such that product = high * 2²⁵⁶ + low.
        assembly ("memory-safe") {
            let mm := mulmod(a, b, not(0))
            low := mul(a, b)
            high := sub(sub(mm, low), lt(mm, low))
        }
    }

    /**
     * @dev Returns the addition of two unsigned integers, with a success flag (no overflow).
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a + b;
            success = c >= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with a success flag (no overflow).
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a - b;
            success = c <= a;
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with a success flag (no overflow).
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            uint256 c = a * b;
            assembly ("memory-safe") {
                // Only true when the multiplication doesn't overflow
                // (c / a == b) || (a == 0)
                success := or(eq(div(c, a), b), iszero(a))
            }
            // equivalent to: success ? c : 0
            result = c * SafeCast.toUint(success);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a success flag (no division by zero).
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `DIV` opcode returns zero when the denominator is 0.
                result := div(a, b)
            }
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a success flag (no division by zero).
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool success, uint256 result) {
        unchecked {
            success = b > 0;
            assembly ("memory-safe") {
                // The `MOD` opcode returns zero when the denominator is 0.
                result := mod(a, b)
            }
        }
    }

    /**
     * @dev Unsigned saturating addition, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingAdd(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryAdd(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Unsigned saturating subtraction, bounds to zero instead of overflowing.
     */
    function saturatingSub(uint256 a, uint256 b) internal pure returns (uint256) {
        (, uint256 result) = trySub(a, b);
        return result;
    }

    /**
     * @dev Unsigned saturating multiplication, bounds to `2²⁵⁶ - 1` instead of overflowing.
     */
    function saturatingMul(uint256 a, uint256 b) internal pure returns (uint256) {
        (bool success, uint256 result) = tryMul(a, b);
        return ternary(success, result, type(uint256).max);
    }

    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, uint256 a, uint256 b) internal pure returns (uint256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * SafeCast.toUint(condition));
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }

        // The following calculation ensures accurate ceiling division without overflow.
        // Since a is non-zero, (a - 1) / b will not overflow.
        // The largest possible result occurs when (a - 1) / b is type(uint256).max,
        // but the largest value we can obtain is type(uint256).max - 1, which happens
        // when a = type(uint256).max and b = 1.
        unchecked {
            return SafeCast.toUint(a > 0) * ((a - 1) / b + 1);
        }
    }

    /**
     * @dev Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     *
     * Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);

            // Handle non-overflow cases, 256 by 256 division.
            if (high == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return low / denominator;
            }

            // Make sure the result is less than 2²⁵⁶. Also prevents denominator == 0.
            if (denominator <= high) {
                Panic.panic(ternary(denominator == 0, Panic.DIVISION_BY_ZERO, Panic.UNDER_OVERFLOW));
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [high low].
            uint256 remainder;
            assembly ("memory-safe") {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                high := sub(high, gt(remainder, low))
                low := sub(low, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly ("memory-safe") {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [high low] by twos.
                low := div(low, twos)

                // Flip twos such that it is 2²⁵⁶ / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from high into low.
            low |= high * twos;

            // Invert denominator mod 2²⁵⁶. Now that denominator is an odd number, it has an inverse modulo 2²⁵⁶ such
            // that denominator * inv ≡ 1 mod 2²⁵⁶. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv ≡ 1 mod 2⁴.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2¹⁶
            inverse *= 2 - denominator * inverse; // inverse mod 2³²
            inverse *= 2 - denominator * inverse; // inverse mod 2⁶⁴
            inverse *= 2 - denominator * inverse; // inverse mod 2¹²⁸
            inverse *= 2 - denominator * inverse; // inverse mod 2²⁵⁶

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2²⁵⁶. Since the preconditions guarantee that the outcome is
            // less than 2²⁵⁶, this is the final result. We don't need to compute the high bits of the result and high
            // is no longer required.
            result = low * inverse;
            return result;
        }
    }

    /**
     * @dev Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        return mulDiv(x, y, denominator) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0);
    }

    /**
     * @dev Calculates floor(x * y >> n) with full precision. Throws if result overflows a uint256.
     */
    function mulShr(uint256 x, uint256 y, uint8 n) internal pure returns (uint256 result) {
        unchecked {
            (uint256 high, uint256 low) = mul512(x, y);
            if (high >= 1 << n) {
                Panic.panic(Panic.UNDER_OVERFLOW);
            }
            return (high << (256 - n)) | (low >> n);
        }
    }

    /**
     * @dev Calculates x * y >> n with full precision, following the selected rounding direction.
     */
    function mulShr(uint256 x, uint256 y, uint8 n, Rounding rounding) internal pure returns (uint256) {
        return mulShr(x, y, n) + SafeCast.toUint(unsignedRoundsUp(rounding) && mulmod(x, y, 1 << n) > 0);
    }

    /**
     * @dev Calculate the modular multiplicative inverse of a number in Z/nZ.
     *
     * If n is a prime, then Z/nZ is a field. In that case all elements are inversible, except 0.
     * If n is not a prime, then Z/nZ is not a field, and some elements might not be inversible.
     *
     * If the input value is not inversible, 0 is returned.
     *
     * NOTE: If you know for sure that n is (big) a prime, it may be cheaper to use Fermat's little theorem and get the
     * inverse using `Math.modExp(a, n - 2, n)`. See {invModPrime}.
     */
    function invMod(uint256 a, uint256 n) internal pure returns (uint256) {
        unchecked {
            if (n == 0) return 0;

            // The inverse modulo is calculated using the Extended Euclidean Algorithm (iterative version)
            // Used to compute integers x and y such that: ax + ny = gcd(a, n).
            // When the gcd is 1, then the inverse of a modulo n exists and it's x.
            // ax + ny = 1
            // ax = 1 + (-y)n
            // ax ≡ 1 (mod n) # x is the inverse of a modulo n

            // If the remainder is 0 the gcd is n right away.
            uint256 remainder = a % n;
            uint256 gcd = n;

            // Therefore the initial coefficients are:
            // ax + ny = gcd(a, n) = n
            // 0a + 1n = n
            int256 x = 0;
            int256 y = 1;

            while (remainder != 0) {
                uint256 quotient = gcd / remainder;

                (gcd, remainder) = (
                    // The old remainder is the next gcd to try.
                    remainder,
                    // Compute the next remainder.
                    // Can't overflow given that (a % gcd) * (gcd // (a % gcd)) <= gcd
                    // where gcd is at most n (capped to type(uint256).max)
                    gcd - remainder * quotient
                );

                (x, y) = (
                    // Increment the coefficient of a.
                    y,
                    // Decrement the coefficient of n.
                    // Can overflow, but the result is casted to uint256 so that the
                    // next value of y is "wrapped around" to a value between 0 and n - 1.
                    x - y * int256(quotient)
                );
            }

            if (gcd != 1) return 0; // No inverse exists.
            return ternary(x < 0, n - uint256(-x), uint256(x)); // Wrap the result if it's negative.
        }
    }

    /**
     * @dev Variant of {invMod}. More efficient, but only works if `p` is known to be a prime greater than `2`.
     *
     * From https://en.wikipedia.org/wiki/Fermat%27s_little_theorem[Fermat's little theorem], we know that if p is
     * prime, then `a**(p-1) ≡ 1 mod p`. As a consequence, we have `a * a**(p-2) ≡ 1 mod p`, which means that
     * `a**(p-2)` is the modular multiplicative inverse of a in Fp.
     *
     * NOTE: this function does NOT check that `p` is a prime greater than `2`.
     */
    function invModPrime(uint256 a, uint256 p) internal view returns (uint256) {
        unchecked {
            return Math.modExp(a, p - 2, p);
        }
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m)
     *
     * Requirements:
     * - modulus can't be zero
     * - underlying staticcall to precompile must succeed
     *
     * IMPORTANT: The result is only valid if the underlying call succeeds. When using this function, make
     * sure the chain you're using it on supports the precompiled contract for modular exponentiation
     * at address 0x05 as specified in https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise,
     * the underlying function will succeed given the lack of a revert, but the result may be incorrectly
     * interpreted as 0.
     */
    function modExp(uint256 b, uint256 e, uint256 m) internal view returns (uint256) {
        (bool success, uint256 result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Returns the modular exponentiation of the specified base, exponent and modulus (b ** e % m).
     * It includes a success flag indicating if the operation succeeded. Operation will be marked as failed if trying
     * to operate modulo 0 or if the underlying precompile reverted.
     *
     * IMPORTANT: The result is only valid if the success flag is true. When using this function, make sure the chain
     * you're using it on supports the precompiled contract for modular exponentiation at address 0x05 as specified in
     * https://eips.ethereum.org/EIPS/eip-198[EIP-198]. Otherwise, the underlying function will succeed given the lack
     * of a revert, but the result may be incorrectly interpreted as 0.
     */
    function tryModExp(uint256 b, uint256 e, uint256 m) internal view returns (bool success, uint256 result) {
        if (m == 0) return (false, 0);
        assembly ("memory-safe") {
            let ptr := mload(0x40)
            // | Offset    | Content    | Content (Hex)                                                      |
            // |-----------|------------|--------------------------------------------------------------------|
            // | 0x00:0x1f | size of b  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x20:0x3f | size of e  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x40:0x5f | size of m  | 0x0000000000000000000000000000000000000000000000000000000000000020 |
            // | 0x60:0x7f | value of b | 0x<.............................................................b> |
            // | 0x80:0x9f | value of e | 0x<.............................................................e> |
            // | 0xa0:0xbf | value of m | 0x<.............................................................m> |
            mstore(ptr, 0x20)
            mstore(add(ptr, 0x20), 0x20)
            mstore(add(ptr, 0x40), 0x20)
            mstore(add(ptr, 0x60), b)
            mstore(add(ptr, 0x80), e)
            mstore(add(ptr, 0xa0), m)

            // Given the result < m, it's guaranteed to fit in 32 bytes,
            // so we can use the memory scratch space located at offset 0.
            success := staticcall(gas(), 0x05, ptr, 0xc0, 0x00, 0x20)
            result := mload(0x00)
        }
    }

    /**
     * @dev Variant of {modExp} that supports inputs of arbitrary length.
     */
    function modExp(bytes memory b, bytes memory e, bytes memory m) internal view returns (bytes memory) {
        (bool success, bytes memory result) = tryModExp(b, e, m);
        if (!success) {
            Panic.panic(Panic.DIVISION_BY_ZERO);
        }
        return result;
    }

    /**
     * @dev Variant of {tryModExp} that supports inputs of arbitrary length.
     */
    function tryModExp(
        bytes memory b,
        bytes memory e,
        bytes memory m
    ) internal view returns (bool success, bytes memory result) {
        if (_zeroBytes(m)) return (false, new bytes(0));

        uint256 mLen = m.length;

        // Encode call args in result and move the free memory pointer
        result = abi.encodePacked(b.length, e.length, mLen, b, e, m);

        assembly ("memory-safe") {
            let dataPtr := add(result, 0x20)
            // Write result on top of args to avoid allocating extra memory.
            success := staticcall(gas(), 0x05, dataPtr, mload(result), dataPtr, mLen)
            // Overwrite the length.
            // result.length > returndatasize() is guaranteed because returndatasize() == m.length
            mstore(result, mLen)
            // Set the memory pointer after the returned data.
            mstore(0x40, add(dataPtr, mLen))
        }
    }

    /**
     * @dev Returns whether the provided byte array is zero.
     */
    function _zeroBytes(bytes memory byteArray) private pure returns (bool) {
        for (uint256 i = 0; i < byteArray.length; ++i) {
            if (byteArray[i] != 0) {
                return false;
            }
        }
        return true;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * This method is based on Newton's method for computing square roots; the algorithm is restricted to only
     * using integer operations.
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        unchecked {
            // Take care of easy edge cases when a == 0 or a == 1
            if (a <= 1) {
                return a;
            }

            // In this function, we use Newton's method to get a root of `f(x) := x² - a`. It involves building a
            // sequence x_n that converges toward sqrt(a). For each iteration x_n, we also define the error between
            // the current value as `ε_n = | x_n - sqrt(a) |`.
            //
            // For our first estimation, we consider `e` the smallest power of 2 which is bigger than the square root
            // of the target. (i.e. `2**(e-1) ≤ sqrt(a) < 2**e`). We know that `e ≤ 128` because `(2¹²⁸)² = 2²⁵⁶` is
            // bigger than any uint256.
            //
            // By noticing that
            // `2**(e-1) ≤ sqrt(a) < 2**e → (2**(e-1))² ≤ a < (2**e)² → 2**(2*e-2) ≤ a < 2**(2*e)`
            // we can deduce that `e - 1` is `log2(a) / 2`. We can thus compute `x_n = 2**(e-1)` using a method similar
            // to the msb function.
            uint256 aa = a;
            uint256 xn = 1;

            if (aa >= (1 << 128)) {
                aa >>= 128;
                xn <<= 64;
            }
            if (aa >= (1 << 64)) {
                aa >>= 64;
                xn <<= 32;
            }
            if (aa >= (1 << 32)) {
                aa >>= 32;
                xn <<= 16;
            }
            if (aa >= (1 << 16)) {
                aa >>= 16;
                xn <<= 8;
            }
            if (aa >= (1 << 8)) {
                aa >>= 8;
                xn <<= 4;
            }
            if (aa >= (1 << 4)) {
                aa >>= 4;
                xn <<= 2;
            }
            if (aa >= (1 << 2)) {
                xn <<= 1;
            }

            // We now have x_n such that `x_n = 2**(e-1) ≤ sqrt(a) < 2**e = 2 * x_n`. This implies ε_n ≤ 2**(e-1).
            //
            // We can refine our estimation by noticing that the middle of that interval minimizes the error.
            // If we move x_n to equal 2**(e-1) + 2**(e-2), then we reduce the error to ε_n ≤ 2**(e-2).
            // This is going to be our x_0 (and ε_0)
            xn = (3 * xn) >> 1; // ε_0 := | x_0 - sqrt(a) | ≤ 2**(e-2)

            // From here, Newton's method give us:
            // x_{n+1} = (x_n + a / x_n) / 2
            //
            // One should note that:
            // x_{n+1}² - a = ((x_n + a / x_n) / 2)² - a
            //              = ((x_n² + a) / (2 * x_n))² - a
            //              = (x_n⁴ + 2 * a * x_n² + a²) / (4 * x_n²) - a
            //              = (x_n⁴ + 2 * a * x_n² + a² - 4 * a * x_n²) / (4 * x_n²)
            //              = (x_n⁴ - 2 * a * x_n² + a²) / (4 * x_n²)
            //              = (x_n² - a)² / (2 * x_n)²
            //              = ((x_n² - a) / (2 * x_n))²
            //              ≥ 0
            // Which proves that for all n ≥ 1, sqrt(a) ≤ x_n
            //
            // This gives us the proof of quadratic convergence of the sequence:
            // ε_{n+1} = | x_{n+1} - sqrt(a) |
            //         = | (x_n + a / x_n) / 2 - sqrt(a) |
            //         = | (x_n² + a - 2*x_n*sqrt(a)) / (2 * x_n) |
            //         = | (x_n - sqrt(a))² / (2 * x_n) |
            //         = | ε_n² / (2 * x_n) |
            //         = ε_n² / | (2 * x_n) |
            //
            // For the first iteration, we have a special case where x_0 is known:
            // ε_1 = ε_0² / | (2 * x_0) |
            //     ≤ (2**(e-2))² / (2 * (2**(e-1) + 2**(e-2)))
            //     ≤ 2**(2*e-4) / (3 * 2**(e-1))
            //     ≤ 2**(e-3) / 3
            //     ≤ 2**(e-3-log2(3))
            //     ≤ 2**(e-4.5)
            //
            // For the following iterations, we use the fact that, 2**(e-1) ≤ sqrt(a) ≤ x_n:
            // ε_{n+1} = ε_n² / | (2 * x_n) |
            //         ≤ (2**(e-k))² / (2 * 2**(e-1))
            //         ≤ 2**(2*e-2*k) / 2**e
            //         ≤ 2**(e-2*k)
            xn = (xn + a / xn) >> 1; // ε_1 := | x_1 - sqrt(a) | ≤ 2**(e-4.5)  -- special case, see above
            xn = (xn + a / xn) >> 1; // ε_2 := | x_2 - sqrt(a) | ≤ 2**(e-9)    -- general case with k = 4.5
            xn = (xn + a / xn) >> 1; // ε_3 := | x_3 - sqrt(a) | ≤ 2**(e-18)   -- general case with k = 9
            xn = (xn + a / xn) >> 1; // ε_4 := | x_4 - sqrt(a) | ≤ 2**(e-36)   -- general case with k = 18
            xn = (xn + a / xn) >> 1; // ε_5 := | x_5 - sqrt(a) | ≤ 2**(e-72)   -- general case with k = 36
            xn = (xn + a / xn) >> 1; // ε_6 := | x_6 - sqrt(a) | ≤ 2**(e-144)  -- general case with k = 72

            // Because e ≤ 128 (as discussed during the first estimation phase), we know have reached a precision
            // ε_6 ≤ 2**(e-144) < 1. Given we're operating on integers, then we can ensure that xn is now either
            // sqrt(a) or sqrt(a) + 1.
            return xn - SafeCast.toUint(xn > a / xn);
        }
    }

    /**
     * @dev Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && result * result < a);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // If upper 8 bits of 16-bit half set, add 8 to result
        r |= SafeCast.toUint((x >> r) > 0xff) << 3;
        // If upper 4 bits of 8-bit half set, add 4 to result
        r |= SafeCast.toUint((x >> r) > 0xf) << 2;

        // Shifts value right by the current result and use it as an index into this lookup table:
        //
        // | x (4 bits) |  index  | table[index] = MSB position |
        // |------------|---------|-----------------------------|
        // |    0000    |    0    |        table[0] = 0         |
        // |    0001    |    1    |        table[1] = 0         |
        // |    0010    |    2    |        table[2] = 1         |
        // |    0011    |    3    |        table[3] = 1         |
        // |    0100    |    4    |        table[4] = 2         |
        // |    0101    |    5    |        table[5] = 2         |
        // |    0110    |    6    |        table[6] = 2         |
        // |    0111    |    7    |        table[7] = 2         |
        // |    1000    |    8    |        table[8] = 3         |
        // |    1001    |    9    |        table[9] = 3         |
        // |    1010    |   10    |        table[10] = 3        |
        // |    1011    |   11    |        table[11] = 3        |
        // |    1100    |   12    |        table[12] = 3        |
        // |    1101    |   13    |        table[13] = 3        |
        // |    1110    |   14    |        table[14] = 3        |
        // |    1111    |   15    |        table[15] = 3        |
        //
        // The lookup table is represented as a 32-byte value with the MSB positions for 0-15 in the last 16 bytes.
        assembly ("memory-safe") {
            r := or(r, byte(shr(r, x), 0x0000010102020202030303030303030300000000000000000000000000000000))
        }
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << result < value);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 10 ** result < value);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 x) internal pure returns (uint256 r) {
        // If value has upper 128 bits set, log2 result is at least 128
        r = SafeCast.toUint(x > 0xffffffffffffffffffffffffffffffff) << 7;
        // If upper 64 bits of 128-bit half set, add 64 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffffffffffff) << 6;
        // If upper 32 bits of 64-bit half set, add 32 to result
        r |= SafeCast.toUint((x >> r) > 0xffffffff) << 5;
        // If upper 16 bits of 32-bit half set, add 16 to result
        r |= SafeCast.toUint((x >> r) > 0xffff) << 4;
        // Add 1 if upper 8 bits of 16-bit half set, and divide accumulated result by 8
        return (r >> 3) | SafeCast.toUint((x >> r) > 0xff);
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + SafeCast.toUint(unsignedRoundsUp(rounding) && 1 << (result << 3) < value);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 23 of 34 : SafeCast.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SafeCast.sol)
// This file was procedurally generated from scripts/generate/templates/SafeCast.js.

pragma solidity ^0.8.20;

/**
 * @dev Wrappers over Solidity's uintXX/intXX/bool casting operators with added overflow
 * checks.
 *
 * Downcasting from uint256/int256 in Solidity does not revert on overflow. This can
 * easily result in undesired exploitation or bugs, since developers usually
 * assume that overflows raise errors. `SafeCast` restores this intuition by
 * reverting the transaction when such an operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeCast {
    /**
     * @dev Value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedUintDowncast(uint8 bits, uint256 value);

    /**
     * @dev An int value doesn't fit in an uint of `bits` size.
     */
    error SafeCastOverflowedIntToUint(int256 value);

    /**
     * @dev Value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedIntDowncast(uint8 bits, int256 value);

    /**
     * @dev An uint value doesn't fit in an int of `bits` size.
     */
    error SafeCastOverflowedUintToInt(uint256 value);

    /**
     * @dev Returns the downcasted uint248 from uint256, reverting on
     * overflow (when the input is greater than largest uint248).
     *
     * Counterpart to Solidity's `uint248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toUint248(uint256 value) internal pure returns (uint248) {
        if (value > type(uint248).max) {
            revert SafeCastOverflowedUintDowncast(248, value);
        }
        return uint248(value);
    }

    /**
     * @dev Returns the downcasted uint240 from uint256, reverting on
     * overflow (when the input is greater than largest uint240).
     *
     * Counterpart to Solidity's `uint240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toUint240(uint256 value) internal pure returns (uint240) {
        if (value > type(uint240).max) {
            revert SafeCastOverflowedUintDowncast(240, value);
        }
        return uint240(value);
    }

    /**
     * @dev Returns the downcasted uint232 from uint256, reverting on
     * overflow (when the input is greater than largest uint232).
     *
     * Counterpart to Solidity's `uint232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toUint232(uint256 value) internal pure returns (uint232) {
        if (value > type(uint232).max) {
            revert SafeCastOverflowedUintDowncast(232, value);
        }
        return uint232(value);
    }

    /**
     * @dev Returns the downcasted uint224 from uint256, reverting on
     * overflow (when the input is greater than largest uint224).
     *
     * Counterpart to Solidity's `uint224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toUint224(uint256 value) internal pure returns (uint224) {
        if (value > type(uint224).max) {
            revert SafeCastOverflowedUintDowncast(224, value);
        }
        return uint224(value);
    }

    /**
     * @dev Returns the downcasted uint216 from uint256, reverting on
     * overflow (when the input is greater than largest uint216).
     *
     * Counterpart to Solidity's `uint216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toUint216(uint256 value) internal pure returns (uint216) {
        if (value > type(uint216).max) {
            revert SafeCastOverflowedUintDowncast(216, value);
        }
        return uint216(value);
    }

    /**
     * @dev Returns the downcasted uint208 from uint256, reverting on
     * overflow (when the input is greater than largest uint208).
     *
     * Counterpart to Solidity's `uint208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toUint208(uint256 value) internal pure returns (uint208) {
        if (value > type(uint208).max) {
            revert SafeCastOverflowedUintDowncast(208, value);
        }
        return uint208(value);
    }

    /**
     * @dev Returns the downcasted uint200 from uint256, reverting on
     * overflow (when the input is greater than largest uint200).
     *
     * Counterpart to Solidity's `uint200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toUint200(uint256 value) internal pure returns (uint200) {
        if (value > type(uint200).max) {
            revert SafeCastOverflowedUintDowncast(200, value);
        }
        return uint200(value);
    }

    /**
     * @dev Returns the downcasted uint192 from uint256, reverting on
     * overflow (when the input is greater than largest uint192).
     *
     * Counterpart to Solidity's `uint192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toUint192(uint256 value) internal pure returns (uint192) {
        if (value > type(uint192).max) {
            revert SafeCastOverflowedUintDowncast(192, value);
        }
        return uint192(value);
    }

    /**
     * @dev Returns the downcasted uint184 from uint256, reverting on
     * overflow (when the input is greater than largest uint184).
     *
     * Counterpart to Solidity's `uint184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toUint184(uint256 value) internal pure returns (uint184) {
        if (value > type(uint184).max) {
            revert SafeCastOverflowedUintDowncast(184, value);
        }
        return uint184(value);
    }

    /**
     * @dev Returns the downcasted uint176 from uint256, reverting on
     * overflow (when the input is greater than largest uint176).
     *
     * Counterpart to Solidity's `uint176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toUint176(uint256 value) internal pure returns (uint176) {
        if (value > type(uint176).max) {
            revert SafeCastOverflowedUintDowncast(176, value);
        }
        return uint176(value);
    }

    /**
     * @dev Returns the downcasted uint168 from uint256, reverting on
     * overflow (when the input is greater than largest uint168).
     *
     * Counterpart to Solidity's `uint168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toUint168(uint256 value) internal pure returns (uint168) {
        if (value > type(uint168).max) {
            revert SafeCastOverflowedUintDowncast(168, value);
        }
        return uint168(value);
    }

    /**
     * @dev Returns the downcasted uint160 from uint256, reverting on
     * overflow (when the input is greater than largest uint160).
     *
     * Counterpart to Solidity's `uint160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toUint160(uint256 value) internal pure returns (uint160) {
        if (value > type(uint160).max) {
            revert SafeCastOverflowedUintDowncast(160, value);
        }
        return uint160(value);
    }

    /**
     * @dev Returns the downcasted uint152 from uint256, reverting on
     * overflow (when the input is greater than largest uint152).
     *
     * Counterpart to Solidity's `uint152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toUint152(uint256 value) internal pure returns (uint152) {
        if (value > type(uint152).max) {
            revert SafeCastOverflowedUintDowncast(152, value);
        }
        return uint152(value);
    }

    /**
     * @dev Returns the downcasted uint144 from uint256, reverting on
     * overflow (when the input is greater than largest uint144).
     *
     * Counterpart to Solidity's `uint144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toUint144(uint256 value) internal pure returns (uint144) {
        if (value > type(uint144).max) {
            revert SafeCastOverflowedUintDowncast(144, value);
        }
        return uint144(value);
    }

    /**
     * @dev Returns the downcasted uint136 from uint256, reverting on
     * overflow (when the input is greater than largest uint136).
     *
     * Counterpart to Solidity's `uint136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toUint136(uint256 value) internal pure returns (uint136) {
        if (value > type(uint136).max) {
            revert SafeCastOverflowedUintDowncast(136, value);
        }
        return uint136(value);
    }

    /**
     * @dev Returns the downcasted uint128 from uint256, reverting on
     * overflow (when the input is greater than largest uint128).
     *
     * Counterpart to Solidity's `uint128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toUint128(uint256 value) internal pure returns (uint128) {
        if (value > type(uint128).max) {
            revert SafeCastOverflowedUintDowncast(128, value);
        }
        return uint128(value);
    }

    /**
     * @dev Returns the downcasted uint120 from uint256, reverting on
     * overflow (when the input is greater than largest uint120).
     *
     * Counterpart to Solidity's `uint120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toUint120(uint256 value) internal pure returns (uint120) {
        if (value > type(uint120).max) {
            revert SafeCastOverflowedUintDowncast(120, value);
        }
        return uint120(value);
    }

    /**
     * @dev Returns the downcasted uint112 from uint256, reverting on
     * overflow (when the input is greater than largest uint112).
     *
     * Counterpart to Solidity's `uint112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toUint112(uint256 value) internal pure returns (uint112) {
        if (value > type(uint112).max) {
            revert SafeCastOverflowedUintDowncast(112, value);
        }
        return uint112(value);
    }

    /**
     * @dev Returns the downcasted uint104 from uint256, reverting on
     * overflow (when the input is greater than largest uint104).
     *
     * Counterpart to Solidity's `uint104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toUint104(uint256 value) internal pure returns (uint104) {
        if (value > type(uint104).max) {
            revert SafeCastOverflowedUintDowncast(104, value);
        }
        return uint104(value);
    }

    /**
     * @dev Returns the downcasted uint96 from uint256, reverting on
     * overflow (when the input is greater than largest uint96).
     *
     * Counterpart to Solidity's `uint96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toUint96(uint256 value) internal pure returns (uint96) {
        if (value > type(uint96).max) {
            revert SafeCastOverflowedUintDowncast(96, value);
        }
        return uint96(value);
    }

    /**
     * @dev Returns the downcasted uint88 from uint256, reverting on
     * overflow (when the input is greater than largest uint88).
     *
     * Counterpart to Solidity's `uint88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toUint88(uint256 value) internal pure returns (uint88) {
        if (value > type(uint88).max) {
            revert SafeCastOverflowedUintDowncast(88, value);
        }
        return uint88(value);
    }

    /**
     * @dev Returns the downcasted uint80 from uint256, reverting on
     * overflow (when the input is greater than largest uint80).
     *
     * Counterpart to Solidity's `uint80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toUint80(uint256 value) internal pure returns (uint80) {
        if (value > type(uint80).max) {
            revert SafeCastOverflowedUintDowncast(80, value);
        }
        return uint80(value);
    }

    /**
     * @dev Returns the downcasted uint72 from uint256, reverting on
     * overflow (when the input is greater than largest uint72).
     *
     * Counterpart to Solidity's `uint72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toUint72(uint256 value) internal pure returns (uint72) {
        if (value > type(uint72).max) {
            revert SafeCastOverflowedUintDowncast(72, value);
        }
        return uint72(value);
    }

    /**
     * @dev Returns the downcasted uint64 from uint256, reverting on
     * overflow (when the input is greater than largest uint64).
     *
     * Counterpart to Solidity's `uint64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toUint64(uint256 value) internal pure returns (uint64) {
        if (value > type(uint64).max) {
            revert SafeCastOverflowedUintDowncast(64, value);
        }
        return uint64(value);
    }

    /**
     * @dev Returns the downcasted uint56 from uint256, reverting on
     * overflow (when the input is greater than largest uint56).
     *
     * Counterpart to Solidity's `uint56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toUint56(uint256 value) internal pure returns (uint56) {
        if (value > type(uint56).max) {
            revert SafeCastOverflowedUintDowncast(56, value);
        }
        return uint56(value);
    }

    /**
     * @dev Returns the downcasted uint48 from uint256, reverting on
     * overflow (when the input is greater than largest uint48).
     *
     * Counterpart to Solidity's `uint48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toUint48(uint256 value) internal pure returns (uint48) {
        if (value > type(uint48).max) {
            revert SafeCastOverflowedUintDowncast(48, value);
        }
        return uint48(value);
    }

    /**
     * @dev Returns the downcasted uint40 from uint256, reverting on
     * overflow (when the input is greater than largest uint40).
     *
     * Counterpart to Solidity's `uint40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toUint40(uint256 value) internal pure returns (uint40) {
        if (value > type(uint40).max) {
            revert SafeCastOverflowedUintDowncast(40, value);
        }
        return uint40(value);
    }

    /**
     * @dev Returns the downcasted uint32 from uint256, reverting on
     * overflow (when the input is greater than largest uint32).
     *
     * Counterpart to Solidity's `uint32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toUint32(uint256 value) internal pure returns (uint32) {
        if (value > type(uint32).max) {
            revert SafeCastOverflowedUintDowncast(32, value);
        }
        return uint32(value);
    }

    /**
     * @dev Returns the downcasted uint24 from uint256, reverting on
     * overflow (when the input is greater than largest uint24).
     *
     * Counterpart to Solidity's `uint24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toUint24(uint256 value) internal pure returns (uint24) {
        if (value > type(uint24).max) {
            revert SafeCastOverflowedUintDowncast(24, value);
        }
        return uint24(value);
    }

    /**
     * @dev Returns the downcasted uint16 from uint256, reverting on
     * overflow (when the input is greater than largest uint16).
     *
     * Counterpart to Solidity's `uint16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toUint16(uint256 value) internal pure returns (uint16) {
        if (value > type(uint16).max) {
            revert SafeCastOverflowedUintDowncast(16, value);
        }
        return uint16(value);
    }

    /**
     * @dev Returns the downcasted uint8 from uint256, reverting on
     * overflow (when the input is greater than largest uint8).
     *
     * Counterpart to Solidity's `uint8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toUint8(uint256 value) internal pure returns (uint8) {
        if (value > type(uint8).max) {
            revert SafeCastOverflowedUintDowncast(8, value);
        }
        return uint8(value);
    }

    /**
     * @dev Converts a signed int256 into an unsigned uint256.
     *
     * Requirements:
     *
     * - input must be greater than or equal to 0.
     */
    function toUint256(int256 value) internal pure returns (uint256) {
        if (value < 0) {
            revert SafeCastOverflowedIntToUint(value);
        }
        return uint256(value);
    }

    /**
     * @dev Returns the downcasted int248 from int256, reverting on
     * overflow (when the input is less than smallest int248 or
     * greater than largest int248).
     *
     * Counterpart to Solidity's `int248` operator.
     *
     * Requirements:
     *
     * - input must fit into 248 bits
     */
    function toInt248(int256 value) internal pure returns (int248 downcasted) {
        downcasted = int248(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(248, value);
        }
    }

    /**
     * @dev Returns the downcasted int240 from int256, reverting on
     * overflow (when the input is less than smallest int240 or
     * greater than largest int240).
     *
     * Counterpart to Solidity's `int240` operator.
     *
     * Requirements:
     *
     * - input must fit into 240 bits
     */
    function toInt240(int256 value) internal pure returns (int240 downcasted) {
        downcasted = int240(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(240, value);
        }
    }

    /**
     * @dev Returns the downcasted int232 from int256, reverting on
     * overflow (when the input is less than smallest int232 or
     * greater than largest int232).
     *
     * Counterpart to Solidity's `int232` operator.
     *
     * Requirements:
     *
     * - input must fit into 232 bits
     */
    function toInt232(int256 value) internal pure returns (int232 downcasted) {
        downcasted = int232(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(232, value);
        }
    }

    /**
     * @dev Returns the downcasted int224 from int256, reverting on
     * overflow (when the input is less than smallest int224 or
     * greater than largest int224).
     *
     * Counterpart to Solidity's `int224` operator.
     *
     * Requirements:
     *
     * - input must fit into 224 bits
     */
    function toInt224(int256 value) internal pure returns (int224 downcasted) {
        downcasted = int224(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(224, value);
        }
    }

    /**
     * @dev Returns the downcasted int216 from int256, reverting on
     * overflow (when the input is less than smallest int216 or
     * greater than largest int216).
     *
     * Counterpart to Solidity's `int216` operator.
     *
     * Requirements:
     *
     * - input must fit into 216 bits
     */
    function toInt216(int256 value) internal pure returns (int216 downcasted) {
        downcasted = int216(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(216, value);
        }
    }

    /**
     * @dev Returns the downcasted int208 from int256, reverting on
     * overflow (when the input is less than smallest int208 or
     * greater than largest int208).
     *
     * Counterpart to Solidity's `int208` operator.
     *
     * Requirements:
     *
     * - input must fit into 208 bits
     */
    function toInt208(int256 value) internal pure returns (int208 downcasted) {
        downcasted = int208(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(208, value);
        }
    }

    /**
     * @dev Returns the downcasted int200 from int256, reverting on
     * overflow (when the input is less than smallest int200 or
     * greater than largest int200).
     *
     * Counterpart to Solidity's `int200` operator.
     *
     * Requirements:
     *
     * - input must fit into 200 bits
     */
    function toInt200(int256 value) internal pure returns (int200 downcasted) {
        downcasted = int200(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(200, value);
        }
    }

    /**
     * @dev Returns the downcasted int192 from int256, reverting on
     * overflow (when the input is less than smallest int192 or
     * greater than largest int192).
     *
     * Counterpart to Solidity's `int192` operator.
     *
     * Requirements:
     *
     * - input must fit into 192 bits
     */
    function toInt192(int256 value) internal pure returns (int192 downcasted) {
        downcasted = int192(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(192, value);
        }
    }

    /**
     * @dev Returns the downcasted int184 from int256, reverting on
     * overflow (when the input is less than smallest int184 or
     * greater than largest int184).
     *
     * Counterpart to Solidity's `int184` operator.
     *
     * Requirements:
     *
     * - input must fit into 184 bits
     */
    function toInt184(int256 value) internal pure returns (int184 downcasted) {
        downcasted = int184(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(184, value);
        }
    }

    /**
     * @dev Returns the downcasted int176 from int256, reverting on
     * overflow (when the input is less than smallest int176 or
     * greater than largest int176).
     *
     * Counterpart to Solidity's `int176` operator.
     *
     * Requirements:
     *
     * - input must fit into 176 bits
     */
    function toInt176(int256 value) internal pure returns (int176 downcasted) {
        downcasted = int176(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(176, value);
        }
    }

    /**
     * @dev Returns the downcasted int168 from int256, reverting on
     * overflow (when the input is less than smallest int168 or
     * greater than largest int168).
     *
     * Counterpart to Solidity's `int168` operator.
     *
     * Requirements:
     *
     * - input must fit into 168 bits
     */
    function toInt168(int256 value) internal pure returns (int168 downcasted) {
        downcasted = int168(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(168, value);
        }
    }

    /**
     * @dev Returns the downcasted int160 from int256, reverting on
     * overflow (when the input is less than smallest int160 or
     * greater than largest int160).
     *
     * Counterpart to Solidity's `int160` operator.
     *
     * Requirements:
     *
     * - input must fit into 160 bits
     */
    function toInt160(int256 value) internal pure returns (int160 downcasted) {
        downcasted = int160(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(160, value);
        }
    }

    /**
     * @dev Returns the downcasted int152 from int256, reverting on
     * overflow (when the input is less than smallest int152 or
     * greater than largest int152).
     *
     * Counterpart to Solidity's `int152` operator.
     *
     * Requirements:
     *
     * - input must fit into 152 bits
     */
    function toInt152(int256 value) internal pure returns (int152 downcasted) {
        downcasted = int152(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(152, value);
        }
    }

    /**
     * @dev Returns the downcasted int144 from int256, reverting on
     * overflow (when the input is less than smallest int144 or
     * greater than largest int144).
     *
     * Counterpart to Solidity's `int144` operator.
     *
     * Requirements:
     *
     * - input must fit into 144 bits
     */
    function toInt144(int256 value) internal pure returns (int144 downcasted) {
        downcasted = int144(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(144, value);
        }
    }

    /**
     * @dev Returns the downcasted int136 from int256, reverting on
     * overflow (when the input is less than smallest int136 or
     * greater than largest int136).
     *
     * Counterpart to Solidity's `int136` operator.
     *
     * Requirements:
     *
     * - input must fit into 136 bits
     */
    function toInt136(int256 value) internal pure returns (int136 downcasted) {
        downcasted = int136(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(136, value);
        }
    }

    /**
     * @dev Returns the downcasted int128 from int256, reverting on
     * overflow (when the input is less than smallest int128 or
     * greater than largest int128).
     *
     * Counterpart to Solidity's `int128` operator.
     *
     * Requirements:
     *
     * - input must fit into 128 bits
     */
    function toInt128(int256 value) internal pure returns (int128 downcasted) {
        downcasted = int128(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(128, value);
        }
    }

    /**
     * @dev Returns the downcasted int120 from int256, reverting on
     * overflow (when the input is less than smallest int120 or
     * greater than largest int120).
     *
     * Counterpart to Solidity's `int120` operator.
     *
     * Requirements:
     *
     * - input must fit into 120 bits
     */
    function toInt120(int256 value) internal pure returns (int120 downcasted) {
        downcasted = int120(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(120, value);
        }
    }

    /**
     * @dev Returns the downcasted int112 from int256, reverting on
     * overflow (when the input is less than smallest int112 or
     * greater than largest int112).
     *
     * Counterpart to Solidity's `int112` operator.
     *
     * Requirements:
     *
     * - input must fit into 112 bits
     */
    function toInt112(int256 value) internal pure returns (int112 downcasted) {
        downcasted = int112(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(112, value);
        }
    }

    /**
     * @dev Returns the downcasted int104 from int256, reverting on
     * overflow (when the input is less than smallest int104 or
     * greater than largest int104).
     *
     * Counterpart to Solidity's `int104` operator.
     *
     * Requirements:
     *
     * - input must fit into 104 bits
     */
    function toInt104(int256 value) internal pure returns (int104 downcasted) {
        downcasted = int104(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(104, value);
        }
    }

    /**
     * @dev Returns the downcasted int96 from int256, reverting on
     * overflow (when the input is less than smallest int96 or
     * greater than largest int96).
     *
     * Counterpart to Solidity's `int96` operator.
     *
     * Requirements:
     *
     * - input must fit into 96 bits
     */
    function toInt96(int256 value) internal pure returns (int96 downcasted) {
        downcasted = int96(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(96, value);
        }
    }

    /**
     * @dev Returns the downcasted int88 from int256, reverting on
     * overflow (when the input is less than smallest int88 or
     * greater than largest int88).
     *
     * Counterpart to Solidity's `int88` operator.
     *
     * Requirements:
     *
     * - input must fit into 88 bits
     */
    function toInt88(int256 value) internal pure returns (int88 downcasted) {
        downcasted = int88(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(88, value);
        }
    }

    /**
     * @dev Returns the downcasted int80 from int256, reverting on
     * overflow (when the input is less than smallest int80 or
     * greater than largest int80).
     *
     * Counterpart to Solidity's `int80` operator.
     *
     * Requirements:
     *
     * - input must fit into 80 bits
     */
    function toInt80(int256 value) internal pure returns (int80 downcasted) {
        downcasted = int80(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(80, value);
        }
    }

    /**
     * @dev Returns the downcasted int72 from int256, reverting on
     * overflow (when the input is less than smallest int72 or
     * greater than largest int72).
     *
     * Counterpart to Solidity's `int72` operator.
     *
     * Requirements:
     *
     * - input must fit into 72 bits
     */
    function toInt72(int256 value) internal pure returns (int72 downcasted) {
        downcasted = int72(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(72, value);
        }
    }

    /**
     * @dev Returns the downcasted int64 from int256, reverting on
     * overflow (when the input is less than smallest int64 or
     * greater than largest int64).
     *
     * Counterpart to Solidity's `int64` operator.
     *
     * Requirements:
     *
     * - input must fit into 64 bits
     */
    function toInt64(int256 value) internal pure returns (int64 downcasted) {
        downcasted = int64(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(64, value);
        }
    }

    /**
     * @dev Returns the downcasted int56 from int256, reverting on
     * overflow (when the input is less than smallest int56 or
     * greater than largest int56).
     *
     * Counterpart to Solidity's `int56` operator.
     *
     * Requirements:
     *
     * - input must fit into 56 bits
     */
    function toInt56(int256 value) internal pure returns (int56 downcasted) {
        downcasted = int56(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(56, value);
        }
    }

    /**
     * @dev Returns the downcasted int48 from int256, reverting on
     * overflow (when the input is less than smallest int48 or
     * greater than largest int48).
     *
     * Counterpart to Solidity's `int48` operator.
     *
     * Requirements:
     *
     * - input must fit into 48 bits
     */
    function toInt48(int256 value) internal pure returns (int48 downcasted) {
        downcasted = int48(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(48, value);
        }
    }

    /**
     * @dev Returns the downcasted int40 from int256, reverting on
     * overflow (when the input is less than smallest int40 or
     * greater than largest int40).
     *
     * Counterpart to Solidity's `int40` operator.
     *
     * Requirements:
     *
     * - input must fit into 40 bits
     */
    function toInt40(int256 value) internal pure returns (int40 downcasted) {
        downcasted = int40(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(40, value);
        }
    }

    /**
     * @dev Returns the downcasted int32 from int256, reverting on
     * overflow (when the input is less than smallest int32 or
     * greater than largest int32).
     *
     * Counterpart to Solidity's `int32` operator.
     *
     * Requirements:
     *
     * - input must fit into 32 bits
     */
    function toInt32(int256 value) internal pure returns (int32 downcasted) {
        downcasted = int32(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(32, value);
        }
    }

    /**
     * @dev Returns the downcasted int24 from int256, reverting on
     * overflow (when the input is less than smallest int24 or
     * greater than largest int24).
     *
     * Counterpart to Solidity's `int24` operator.
     *
     * Requirements:
     *
     * - input must fit into 24 bits
     */
    function toInt24(int256 value) internal pure returns (int24 downcasted) {
        downcasted = int24(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(24, value);
        }
    }

    /**
     * @dev Returns the downcasted int16 from int256, reverting on
     * overflow (when the input is less than smallest int16 or
     * greater than largest int16).
     *
     * Counterpart to Solidity's `int16` operator.
     *
     * Requirements:
     *
     * - input must fit into 16 bits
     */
    function toInt16(int256 value) internal pure returns (int16 downcasted) {
        downcasted = int16(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(16, value);
        }
    }

    /**
     * @dev Returns the downcasted int8 from int256, reverting on
     * overflow (when the input is less than smallest int8 or
     * greater than largest int8).
     *
     * Counterpart to Solidity's `int8` operator.
     *
     * Requirements:
     *
     * - input must fit into 8 bits
     */
    function toInt8(int256 value) internal pure returns (int8 downcasted) {
        downcasted = int8(value);
        if (downcasted != value) {
            revert SafeCastOverflowedIntDowncast(8, value);
        }
    }

    /**
     * @dev Converts an unsigned uint256 into a signed int256.
     *
     * Requirements:
     *
     * - input must be less than or equal to maxInt256.
     */
    function toInt256(uint256 value) internal pure returns (int256) {
        // Note: Unsafe cast below is okay because `type(int256).max` is guaranteed to be positive
        if (value > uint256(type(int256).max)) {
            revert SafeCastOverflowedUintToInt(value);
        }
        return int256(value);
    }

    /**
     * @dev Cast a boolean (false or true) to a uint256 (0 or 1) with no jump.
     */
    function toUint(bool b) internal pure returns (uint256 u) {
        assembly ("memory-safe") {
            u := iszero(iszero(b))
        }
    }
}

File 24 of 34 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

import {SafeCast} from "./SafeCast.sol";

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Branchless ternary evaluation for `a ? b : c`. Gas costs are constant.
     *
     * IMPORTANT: This function may reduce bytecode size and consume less gas when used standalone.
     * However, the compiler may optimize Solidity ternary operations (i.e. `a ? b : c`) to only compute
     * one branch when needed, making this function more expensive.
     */
    function ternary(bool condition, int256 a, int256 b) internal pure returns (int256) {
        unchecked {
            // branchless ternary works because:
            // b ^ (a ^ b) == a
            // b ^ 0 == b
            return b ^ ((a ^ b) * int256(SafeCast.toUint(condition)));
        }
    }

    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a > b, a, b);
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return ternary(a < b, a, b);
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // Formula from the "Bit Twiddling Hacks" by Sean Eron Anderson.
            // Since `n` is a signed integer, the generated bytecode will use the SAR opcode to perform the right shift,
            // taking advantage of the most significant (or "sign" bit) in two's complement representation.
            // This opcode adds new most significant bits set to the value of the previous most significant bit. As a result,
            // the mask will either be `bytes32(0)` (if n is positive) or `~bytes32(0)` (if n is negative).
            int256 mask = n >> 255;

            // A `bytes32(0)` mask leaves the input unchanged, while a `~bytes32(0)` mask complements it.
            return uint256((n + mask) ^ mask);
        }
    }
}

File 25 of 34 : IERC1363.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (interfaces/IERC1363.sol)

pragma solidity ^0.8.20;

import {IERC20} from "./IERC20.sol";
import {IERC165} from "./IERC165.sol";

/**
 * @title IERC1363
 * @dev Interface of the ERC-1363 standard as defined in the https://eips.ethereum.org/EIPS/eip-1363[ERC-1363].
 *
 * Defines an extension interface for ERC-20 tokens that supports executing code on a recipient contract
 * after `transfer` or `transferFrom`, or code on a spender contract after `approve`, in a single transaction.
 */
interface IERC1363 is IERC20, IERC165 {
    /*
     * Note: the ERC-165 identifier for this interface is 0xb0202a11.
     * 0xb0202a11 ===
     *   bytes4(keccak256('transferAndCall(address,uint256)')) ^
     *   bytes4(keccak256('transferAndCall(address,uint256,bytes)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256)')) ^
     *   bytes4(keccak256('transferFromAndCall(address,address,uint256,bytes)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256)')) ^
     *   bytes4(keccak256('approveAndCall(address,uint256,bytes)'))
     */

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from the caller's account to `to`
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferAndCall(address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value) external returns (bool);

    /**
     * @dev Moves a `value` amount of tokens from `from` to `to` using the allowance mechanism
     * and then calls {IERC1363Receiver-onTransferReceived} on `to`.
     * @param from The address which you want to send tokens from.
     * @param to The address which you want to transfer to.
     * @param value The amount of tokens to be transferred.
     * @param data Additional data with no specified format, sent in call to `to`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function transferFromAndCall(address from, address to, uint256 value, bytes calldata data) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value) external returns (bool);

    /**
     * @dev Sets a `value` amount of tokens as the allowance of `spender` over the
     * caller's tokens and then calls {IERC1363Spender-onApprovalReceived} on `spender`.
     * @param spender The address which will spend the funds.
     * @param value The amount of tokens to be spent.
     * @param data Additional data with no specified format, sent in call to `spender`.
     * @return A boolean value indicating whether the operation succeeded unless throwing.
     */
    function approveAndCall(address spender, uint256 value, bytes calldata data) external returns (bool);
}

File 26 of 34 : TokenUtils.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.12;

import "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";

/// Asset amount, e.g. $100 USDC or 0.1 ETH
struct TokenAmount {
    /// Zero address = native asset, e.g. ETH
    IERC20 token;
    uint256 amount;
}

/// Represents a destination address + optional arbitrary contract call
struct Call {
    /// Destination receiving address or contract
    address to;
    /// Native token amount for call, or 0
    uint256 value;
    /// Calldata for call, or empty = no contract call
    bytes data;
}

/// Utility functions that work for both ERC20 and native tokens.
library TokenUtils {
    using SafeERC20 for IERC20;

    /// Returns ERC20 or ETH balance.
    function getBalanceOf(
        IERC20 token,
        address addr
    ) internal view returns (uint256) {
        if (address(token) == address(0)) {
            return addr.balance;
        } else {
            return token.balanceOf(addr);
        }
    }

    /// Approves a token transfer.
    function approve(IERC20 token, address spender, uint256 amount) internal {
        if (address(token) != address(0)) {
            token.approve({spender: spender, value: amount});
        } // Do nothing for native token.
    }

    /// Sends an ERC20 or ETH transfer. For ETH, verify call success.
    function transfer(
        IERC20 token,
        address payable recipient,
        uint256 amount
    ) internal {
        if (address(token) != address(0)) {
            token.safeTransfer({to: recipient, value: amount});
        } else {
            // Native token transfer
            (bool success, ) = recipient.call{value: amount}("");
            require(success, "TokenUtils: ETH transfer failed");
        }
    }

    /// Sends an ERC20 or ETH transfer. Returns true if successful.
    function tryTransfer(
        IERC20 token,
        address recipient,
        uint256 amount
    ) internal returns (bool) {
        if (address(token) != address(0)) {
            return token.trySafeTransfer({to: recipient, value: amount});
        } else {
            (bool success, ) = recipient.call{value: amount}("");
            return success;
        }
    }

    /// Sends an ERC20 transfer.
    function transferFrom(
        IERC20 token,
        address from,
        address to,
        uint256 amount
    ) internal {
        require(
            address(token) != address(0),
            "TokenUtils: ETH transferFrom must be caller"
        );
        token.safeTransferFrom({from: from, to: to, value: amount});
    }

    /// Sends any token balance in the contract to the recipient.
    function transferBalance(
        IERC20 token,
        address payable recipient
    ) internal returns (uint256) {
        uint256 balance = getBalanceOf({token: token, addr: address(this)});
        if (balance > 0) {
            transfer({token: token, recipient: recipient, amount: balance});
        }
        return balance;
    }
}

File 27 of 34 : IAxelarExpressExecutable.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IAxelarExecutable } from './IAxelarExecutable.sol';

/**
 * @title IAxelarExpressExecutable
 * @notice Interface for the Axelar Express Executable contract.
 */
interface IAxelarExpressExecutable is IAxelarExecutable {
    // Custom errors
    error AlreadyExecuted();
    error InsufficientValue();

    /**
     * @notice Emitted when an express execution is successfully performed.
     * @param commandId The unique identifier for the command.
     * @param sourceChain The source chain.
     * @param sourceAddress The source address.
     * @param payloadHash The hash of the payload.
     * @param expressExecutor The address of the express executor.
     */
    event ExpressExecuted(
        bytes32 indexed commandId,
        string sourceChain,
        string sourceAddress,
        bytes32 payloadHash,
        address indexed expressExecutor
    );

    /**
     * @notice Emitted when an express execution is fulfilled.
     * @param commandId The commandId for the contractCall.
     * @param sourceChain The source chain.
     * @param sourceAddress The source address.
     * @param payloadHash The hash of the payload.
     * @param expressExecutor The address of the express executor.
     */
    event ExpressExecutionFulfilled(
        bytes32 indexed commandId,
        string sourceChain,
        string sourceAddress,
        bytes32 payloadHash,
        address indexed expressExecutor
    );

    /**
     * @notice Returns the express executor for a given command.
     * @param commandId The commandId for the contractCall.
     * @param sourceChain The source chain.
     * @param sourceAddress The source address.
     * @param payloadHash The hash of the payload.
     * @return expressExecutor The address of the express executor.
     */
    function getExpressExecutor(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes32 payloadHash
    ) external view returns (address expressExecutor);

    /**
     * @notice Express executes a contract call.
     * @param commandId The commandId for the contractCall.
     * @param sourceChain The source chain.
     * @param sourceAddress The source address.
     * @param payload The payload data.
     */
    function expressExecute(
        bytes32 commandId,
        string calldata sourceChain,
        string calldata sourceAddress,
        bytes calldata payload
    ) external payable;
}

File 28 of 34 : IOwnable.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

/**
 * @title IOwnable Interface
 * @notice IOwnable is an interface that abstracts the implementation of a
 * contract with ownership control features. It's commonly used in upgradable
 * contracts and includes the functionality to get current owner, transfer
 * ownership, and propose and accept ownership.
 */
interface IOwnable {
    error NotOwner();
    error InvalidOwner();
    error InvalidOwnerAddress();

    event OwnershipTransferStarted(address indexed newOwner);
    event OwnershipTransferred(address indexed newOwner);

    /**
     * @notice Returns the current owner of the contract.
     * @return address The address of the current owner
     */
    function owner() external view returns (address);

    /**
     * @notice Returns the address of the pending owner of the contract.
     * @return address The address of the pending owner
     */
    function pendingOwner() external view returns (address);

    /**
     * @notice Transfers ownership of the contract to a new address
     * @param newOwner The address to transfer ownership to
     */
    function transferOwnership(address newOwner) external;

    /**
     * @notice Proposes to transfer the contract's ownership to a new address.
     * The new owner needs to accept the ownership explicitly.
     * @param newOwner The address to transfer ownership to
     */
    function proposeOwnership(address newOwner) external;

    /**
     * @notice Transfers ownership to the pending owner.
     * @dev Can only be called by the pending owner
     */
    function acceptOwnership() external;
}

File 29 of 34 : IImplementation.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

import { IContractIdentifier } from './IContractIdentifier.sol';

interface IImplementation is IContractIdentifier {
    error NotProxy();

    function setup(bytes calldata data) external;
}

File 30 of 34 : Panic.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/Panic.sol)

pragma solidity ^0.8.20;

/**
 * @dev Helper library for emitting standardized panic codes.
 *
 * ```solidity
 * contract Example {
 *      using Panic for uint256;
 *
 *      // Use any of the declared internal constants
 *      function foo() { Panic.GENERIC.panic(); }
 *
 *      // Alternatively
 *      function foo() { Panic.panic(Panic.GENERIC); }
 * }
 * ```
 *
 * Follows the list from https://github.com/ethereum/solidity/blob/v0.8.24/libsolutil/ErrorCodes.h[libsolutil].
 *
 * _Available since v5.1._
 */
// slither-disable-next-line unused-state
library Panic {
    /// @dev generic / unspecified error
    uint256 internal constant GENERIC = 0x00;
    /// @dev used by the assert() builtin
    uint256 internal constant ASSERT = 0x01;
    /// @dev arithmetic underflow or overflow
    uint256 internal constant UNDER_OVERFLOW = 0x11;
    /// @dev division or modulo by zero
    uint256 internal constant DIVISION_BY_ZERO = 0x12;
    /// @dev enum conversion error
    uint256 internal constant ENUM_CONVERSION_ERROR = 0x21;
    /// @dev invalid encoding in storage
    uint256 internal constant STORAGE_ENCODING_ERROR = 0x22;
    /// @dev empty array pop
    uint256 internal constant EMPTY_ARRAY_POP = 0x31;
    /// @dev array out of bounds access
    uint256 internal constant ARRAY_OUT_OF_BOUNDS = 0x32;
    /// @dev resource error (too large allocation or too large array)
    uint256 internal constant RESOURCE_ERROR = 0x41;
    /// @dev calling invalid internal function
    uint256 internal constant INVALID_INTERNAL_FUNCTION = 0x51;

    /// @dev Reverts with a panic code. Recommended to use with
    /// the internal constants with predefined codes.
    function panic(uint256 code) internal pure {
        assembly ("memory-safe") {
            mstore(0x00, 0x4e487b71)
            mstore(0x20, code)
            revert(0x1c, 0x24)
        }
    }
}

File 31 of 34 : IERC20.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC20.sol)

pragma solidity ^0.8.20;

import {IERC20} from "../token/ERC20/IERC20.sol";

File 32 of 34 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (interfaces/IERC165.sol)

pragma solidity ^0.8.20;

import {IERC165} from "../utils/introspection/IERC165.sol";

File 33 of 34 : IContractIdentifier.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.0;

// General interface for upgradable contracts
interface IContractIdentifier {
    /**
     * @notice Returns the contract ID. It can be used as a check during upgrades.
     * @dev Meant to be overridden in derived contracts.
     * @return bytes32 The contract ID
     */
    function contractId() external pure returns (bytes32);
}

File 34 of 34 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.1.0) (utils/introspection/IERC165.sol)

pragma solidity ^0.8.20;

/**
 * @dev Interface of the ERC-165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[ERC].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[ERC section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

Settings
{
  "remappings": [
    "@axelar-network/=lib/axelar-gmp-sdk-solidity/",
    "forge-std/=lib/forge-std/src/",
    "openzeppelin-contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/",
    "@openzeppelin/contracts/=lib/openzeppelin-contracts-upgradeable/lib/openzeppelin-contracts/contracts/",
    "@openzeppelin/contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/contracts/",
    "axelar-gmp-sdk-solidity/=lib/axelar-gmp-sdk-solidity/contracts/",
    "ds-test/=lib/solmate/lib/ds-test/src/",
    "erc4626-tests/=lib/openzeppelin-contracts-upgradeable/lib/erc4626-tests/",
    "halmos-cheatcodes/=lib/openzeppelin-contracts-upgradeable/lib/halmos-cheatcodes/src/",
    "openzeppelin-contracts-upgradeable/=lib/openzeppelin-contracts-upgradeable/",
    "solmate/=lib/solmate/src/"
  ],
  "optimizer": {
    "enabled": true,
    "runs": 999999
  },
  "metadata": {
    "useLiteralContent": false,
    "bytecodeHash": "ipfs",
    "appendCBOR": true
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "evmVersion": "london",
  "viaIR": true,
  "libraries": {
    "script/constants/AxelarBridgeRouteConstants.sol": {
      "AxelarBridgeRouteConstants": "0x704c73C020B3A96e720a305232244F19C45444AE"
    }
  }
}

Contract Security Audit

Contract ABI

API
[{"inputs":[{"internalType":"uint256","name":"sourceChainId","type":"uint256"},{"internalType":"address","name":"axelarReceiver","type":"address"}],"name":"getAxelarBridgeRoutes","outputs":[{"internalType":"uint256[]","name":"chainIds","type":"uint256[]"},{"components":[{"internalType":"string","name":"destChainName","type":"string"},{"internalType":"address","name":"bridgeTokenIn","type":"address"},{"internalType":"address","name":"bridgeTokenOut","type":"address"},{"internalType":"string","name":"tokenSymbol","type":"string"},{"internalType":"address","name":"receiverContract","type":"address"},{"internalType":"uint256","name":"nativeFee","type":"uint256"}],"internalType":"struct DaimoPayAxelarBridger.AxelarBridgeRoute[]","name":"bridgeRoutes","type":"tuple[]"}],"stateMutability":"pure","type":"function"}]

6080806040523460195761184c908161001f823930815050f35b600080fdfe6080604052600436101561001257600080fd5b60003560e01c6350c6cc001461002757600080fd5b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c75760243573ffffffffffffffffffffffffffffffffffffffff811681036101c75761007d90600435610459565b906040519182916040830160408452815180915260206060850192019060005b8181106101ae575050508281036020840152815180825260208201916020808360051b8301019401926000915b8383106100d75786860387f35b919395509193602080827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0856001950301865288519060a080610176610126855160c0865260c08601906101cc565b73ffffffffffffffffffffffffffffffffffffffff87870151168786015273ffffffffffffffffffffffffffffffffffffffff6040870151166040860152606086015185820360608701526101cc565b9373ffffffffffffffffffffffffffffffffffffffff60808201511660808501520151910152970193019301909286959492936100ca565b825184528695506020938401939092019160010161009d565b600080fd5b919082519283825260005b8481106102165750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8460006020809697860101520116010190565b806020809284010151828286010152016101d7565b6040519060c0820182811067ffffffffffffffff82111761024b57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f604051930116820182811067ffffffffffffffff82111761024b57604052565b6060906102ca8261027a565b60028152917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0018260005b82811061030157505050565b60209061030c61022b565b606081526000838201526000604082015260608082015260006080820152600060a0820152828285010152016102f5565b6101009061034a8261027a565b60078152917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0018260005b82811061038157505050565b60209061038c61022b565b606081526000838201526000604082015260608082015260006080820152600060a082015282828501015201610375565b8051156103ca5760200190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b8051600110156103ca5760400190565b8051600210156103ca5760600190565b8051600310156103ca5760800190565b8051600410156103ca5760a00190565b8051600510156103ca5760c00190565b8051600610156103ca5760e00190565b9190916001811461160b57600a81146107165760388114610fa55760898114610d985761138881146107225761210581146107165761a4b181146107165761e708146104fd5760646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f536f7572636520636861696e206e6f7420666f756e64000000000000000000006044820152fd5b60606105088161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810136602084013761053e6102be565b93603861054a846103bd565b5273ffffffffffffffffffffffffffffffffffffffff61056861022b565b91610573604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f4052156020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408401526105dd604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201528484015216908160808201526601c6bf5263400060a0820152610629866103bd565b52610633856103bd565b50611388610640846103f9565b5261064961022b565b91610654604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f405215602084015273eb466342c4d449bc9f53a865d5cb90586f40521560408401526106be604061027a565b90600782527f61786c5553444300000000000000000000000000000000000000000000000000602083015283015260808201526601c6bf5263400060a0820152610707846103f9565b52610711836103f9565b509190565b5060606105088161027a565b506101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe06107508261027a565b91600783520136602083013761076461033d565b926001610770836103bd565b5273ffffffffffffffffffffffffffffffffffffffff61078e61022b565b91610799604061027a565b600881527f657468657265756d0000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f405215602084015273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486040840152610803604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606084015216908160808201526710a741a46278000060a0820152610851856103bd565b5261085b846103bd565b50600a610867836103f9565b5261087061022b565b61087a604061027a565b600881527f6f7074696d69736d0000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f40521560408201526108e4604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610930856103f9565b5261093a846103f9565b50603861094683610409565b5261094f61022b565b610959604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f4052156020820152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408201526109c3604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610a0f85610409565b52610a1984610409565b506089610a2583610419565b52610a2e61022b565b610a38604061027a565b600781527f706f6c79676f6e000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6040820152610aa2604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610aee85610419565b52610af884610419565b50612105610b0583610429565b52610b0e61022b565b610b18604061027a565b600481527f62617365000000000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152610b82604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610bce85610429565b52610bd884610429565b5061a4b1610be583610439565b52610bee61022b565b610bf8604061027a565b600881527f617262697472756d0000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152610c62604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610cae85610439565b52610cb884610439565b5061e708610cc583610449565b52610cce61022b565b90610cd9604061027a565b600581527f6c696e65610000000000000000000000000000000000000000000000000000006020820152825273eb466342c4d449bc9f53a865d5cb90586f405215602083015273eb466342c4d449bc9f53a865d5cb90586f4052156040830152610d43604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606083015260808201526710a741a46278000060a0820152610d8e84610449565b5261071183610449565b506060610da48161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101366020840137610dda6102be565b936038610de6846103bd565b5273ffffffffffffffffffffffffffffffffffffffff610e0461022b565b91610e0f604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf36040840152610e79604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152848401521690816080820152673782dace9d90000060a0820152610ec6866103bd565b52610ed0856103bd565b50611388610edd846103f9565b52610ee661022b565b91610ef1604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273750e4c4984a9e0f12978ea6742bc1c5d248f40ed602084015273eb466342c4d449bc9f53a865d5cb90586f4052156040840152610f5b604061027a565b90600782527f61786c555344430000000000000000000000000000000000000000000000000060208301528301526080820152673782dace9d90000060a0820152610707846103f9565b506101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0610fd38261027a565b916007835201366020830137610fe761033d565b926001610ff3836103bd565b5273ffffffffffffffffffffffffffffffffffffffff61101161022b565b9161101c604061027a565b600881527f657468657265756d00000000000000000000000000000000000000000000000060208201528352734268b8f0b87b6eae5d897996e6b845ddbd99adf3602084015273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486040840152611086604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201526060840152169081608082015266071afd498d000060a08201526110d3856103bd565b526110dd846103bd565b50600a6110e9836103f9565b526110f261022b565b6110fc604061027a565b600881527f6f7074696d69736d00000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611166604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a08201526111b1856103f9565b526111bb846103f9565b5060896111c783610409565b526111d061022b565b6111da604061027a565b600781527f706f6c79676f6e0000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6040820152611244604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261128f85610409565b5261129984610409565b506113886112a683610419565b526112af61022b565b6112b9604061027a565b600681527f6d616e746c65000000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611323604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261136e85610419565b5261137884610419565b5061210561138583610429565b5261138e61022b565b611398604061027a565b600481527f626173650000000000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611402604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261144d85610429565b5261145784610429565b5061a4b161146483610439565b5261146d61022b565b611477604061027a565b600881527f617262697472756d00000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f40521560408201526114e1604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261152c85610439565b5261153684610439565b5061e70861154383610449565b5261154c61022b565b90611557604061027a565b600581527f6c696e656100000000000000000000000000000000000000000000000000000060208201528252734268b8f0b87b6eae5d897996e6b845ddbd99adf3602083015273eb466342c4d449bc9f53a865d5cb90586f40521560408301526115c1604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201526060830152608082015266071afd498d000060a0820152610d8e84610449565b5060606116178161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810136602084013761164d6102be565b936038611659846103bd565b5273ffffffffffffffffffffffffffffffffffffffff61167761022b565b91611682604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408401526116ec604061027a565b600481527f555344430000000000000000000000000000000000000000000000000000000060208201528484015216908160808201526601c6bf5263400060a0820152611738866103bd565b52611742856103bd565b5061138861174f846103f9565b5261175861022b565b91611763604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48602084015273eb466342c4d449bc9f53a865d5cb90586f40521560408401526117cd604061027a565b90600482527f5553444300000000000000000000000000000000000000000000000000000000602083015283015260808201526601c6bf5263400060a0820152610707846103f956fea2646970667358221220342d1bd0a6e723b749045ebeea15364b7e5e8dcff15fffbd36bc89a5c9b0c85f64736f6c634300081a0033

Deployed Bytecode

0x6080604052600436101561001257600080fd5b60003560e01c6350c6cc001461002757600080fd5b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101c75760243573ffffffffffffffffffffffffffffffffffffffff811681036101c75761007d90600435610459565b906040519182916040830160408452815180915260206060850192019060005b8181106101ae575050508281036020840152815180825260208201916020808360051b8301019401926000915b8383106100d75786860387f35b919395509193602080827fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0856001950301865288519060a080610176610126855160c0865260c08601906101cc565b73ffffffffffffffffffffffffffffffffffffffff87870151168786015273ffffffffffffffffffffffffffffffffffffffff6040870151166040860152606086015185820360608701526101cc565b9373ffffffffffffffffffffffffffffffffffffffff60808201511660808501520151910152970193019301909286959492936100ca565b825184528695506020938401939092019160010161009d565b600080fd5b919082519283825260005b8481106102165750507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f8460006020809697860101520116010190565b806020809284010151828286010152016101d7565b6040519060c0820182811067ffffffffffffffff82111761024b57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f604051930116820182811067ffffffffffffffff82111761024b57604052565b6060906102ca8261027a565b60028152917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0018260005b82811061030157505050565b60209061030c61022b565b606081526000838201526000604082015260608082015260006080820152600060a0820152828285010152016102f5565b6101009061034a8261027a565b60078152917fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0018260005b82811061038157505050565b60209061038c61022b565b606081526000838201526000604082015260608082015260006080820152600060a082015282828501015201610375565b8051156103ca5760200190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b8051600110156103ca5760400190565b8051600210156103ca5760600190565b8051600310156103ca5760800190565b8051600410156103ca5760a00190565b8051600510156103ca5760c00190565b8051600610156103ca5760e00190565b9190916001811461160b57600a81146107165760388114610fa55760898114610d985761138881146107225761210581146107165761a4b181146107165761e708146104fd5760646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601660248201527f536f7572636520636861696e206e6f7420666f756e64000000000000000000006044820152fd5b60606105088161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810136602084013761053e6102be565b93603861054a846103bd565b5273ffffffffffffffffffffffffffffffffffffffff61056861022b565b91610573604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f4052156020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408401526105dd604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201528484015216908160808201526601c6bf5263400060a0820152610629866103bd565b52610633856103bd565b50611388610640846103f9565b5261064961022b565b91610654604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f405215602084015273eb466342c4d449bc9f53a865d5cb90586f40521560408401526106be604061027a565b90600782527f61786c5553444300000000000000000000000000000000000000000000000000602083015283015260808201526601c6bf5263400060a0820152610707846103f9565b52610711836103f9565b509190565b5060606105088161027a565b506101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe06107508261027a565b91600783520136602083013761076461033d565b926001610770836103bd565b5273ffffffffffffffffffffffffffffffffffffffff61078e61022b565b91610799604061027a565b600881527f657468657265756d0000000000000000000000000000000000000000000000006020820152835273eb466342c4d449bc9f53a865d5cb90586f405215602084015273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486040840152610803604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606084015216908160808201526710a741a46278000060a0820152610851856103bd565b5261085b846103bd565b50600a610867836103f9565b5261087061022b565b61087a604061027a565b600881527f6f7074696d69736d0000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f40521560408201526108e4604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610930856103f9565b5261093a846103f9565b50603861094683610409565b5261094f61022b565b610959604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f4052156020820152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408201526109c3604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610a0f85610409565b52610a1984610409565b506089610a2583610419565b52610a2e61022b565b610a38604061027a565b600781527f706f6c79676f6e000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6040820152610aa2604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610aee85610419565b52610af884610419565b50612105610b0583610429565b52610b0e61022b565b610b18604061027a565b600481527f62617365000000000000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152610b82604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610bce85610429565b52610bd884610429565b5061a4b1610be583610439565b52610bee61022b565b610bf8604061027a565b600881527f617262697472756d0000000000000000000000000000000000000000000000006020820152815273eb466342c4d449bc9f53a865d5cb90586f405215602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152610c62604061027a565b600781527f61786c5553444300000000000000000000000000000000000000000000000000602082015260608201528160808201526710a741a46278000060a0820152610cae85610439565b52610cb884610439565b5061e708610cc583610449565b52610cce61022b565b90610cd9604061027a565b600581527f6c696e65610000000000000000000000000000000000000000000000000000006020820152825273eb466342c4d449bc9f53a865d5cb90586f405215602083015273eb466342c4d449bc9f53a865d5cb90586f4052156040830152610d43604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606083015260808201526710a741a46278000060a0820152610d8e84610449565b5261071183610449565b506060610da48161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08101366020840137610dda6102be565b936038610de6846103bd565b5273ffffffffffffffffffffffffffffffffffffffff610e0461022b565b91610e0f604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf36040840152610e79604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152848401521690816080820152673782dace9d90000060a0820152610ec6866103bd565b52610ed0856103bd565b50611388610edd846103f9565b52610ee661022b565b91610ef1604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273750e4c4984a9e0f12978ea6742bc1c5d248f40ed602084015273eb466342c4d449bc9f53a865d5cb90586f4052156040840152610f5b604061027a565b90600782527f61786c555344430000000000000000000000000000000000000000000000000060208301528301526080820152673782dace9d90000060a0820152610707846103f9565b506101007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0610fd38261027a565b916007835201366020830137610fe761033d565b926001610ff3836103bd565b5273ffffffffffffffffffffffffffffffffffffffff61101161022b565b9161101c604061027a565b600881527f657468657265756d00000000000000000000000000000000000000000000000060208201528352734268b8f0b87b6eae5d897996e6b845ddbd99adf3602084015273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486040840152611086604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201526060840152169081608082015266071afd498d000060a08201526110d3856103bd565b526110dd846103bd565b50600a6110e9836103f9565b526110f261022b565b6110fc604061027a565b600881527f6f7074696d69736d00000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611166604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a08201526111b1856103f9565b526111bb846103f9565b5060896111c783610409565b526111d061022b565b6111da604061027a565b600781527f706f6c79676f6e0000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273750e4c4984a9e0f12978ea6742bc1c5d248f40ed6040820152611244604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261128f85610409565b5261129984610409565b506113886112a683610419565b526112af61022b565b6112b9604061027a565b600681527f6d616e746c65000000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611323604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261136e85610419565b5261137884610419565b5061210561138583610429565b5261138e61022b565b611398604061027a565b600481527f626173650000000000000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f4052156040820152611402604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261144d85610429565b5261145784610429565b5061a4b161146483610439565b5261146d61022b565b611477604061027a565b600881527f617262697472756d00000000000000000000000000000000000000000000000060208201528152734268b8f0b87b6eae5d897996e6b845ddbd99adf3602082015273eb466342c4d449bc9f53a865d5cb90586f40521560408201526114e1604061027a565b600781527f61786c55534443000000000000000000000000000000000000000000000000006020820152606082015281608082015266071afd498d000060a082015261152c85610439565b5261153684610439565b5061e70861154383610449565b5261154c61022b565b90611557604061027a565b600581527f6c696e656100000000000000000000000000000000000000000000000000000060208201528252734268b8f0b87b6eae5d897996e6b845ddbd99adf3602083015273eb466342c4d449bc9f53a865d5cb90586f40521560408301526115c1604061027a565b600781527f61786c555344430000000000000000000000000000000000000000000000000060208201526060830152608082015266071afd498d000060a0820152610d8e84610449565b5060606116178161027a565b90600282527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0810136602084013761164d6102be565b936038611659846103bd565b5273ffffffffffffffffffffffffffffffffffffffff61167761022b565b91611682604061027a565b600781527f62696e616e6365000000000000000000000000000000000000000000000000006020820152835273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb486020840152734268b8f0b87b6eae5d897996e6b845ddbd99adf360408401526116ec604061027a565b600481527f555344430000000000000000000000000000000000000000000000000000000060208201528484015216908160808201526601c6bf5263400060a0820152611738866103bd565b52611742856103bd565b5061138861174f846103f9565b5261175861022b565b91611763604061027a565b600681527f6d616e746c6500000000000000000000000000000000000000000000000000006020820152835273a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48602084015273eb466342c4d449bc9f53a865d5cb90586f40521560408401526117cd604061027a565b90600482527f5553444300000000000000000000000000000000000000000000000000000000602083015283015260808201526601c6bf5263400060a0820152610707846103f956fea2646970667358221220342d1bd0a6e723b749045ebeea15364b7e5e8dcff15fffbd36bc89a5c9b0c85f64736f6c634300081a0033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.