Contract 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e9 3

 
Txn Hash Method
Block
From
To
Value
0x7bd4dfc74ac37914dd10d5078c1b3440a95516236459980ae15a67519db58a3b0x614b426124036972022-01-18 15:38:45324 days 14 hrs ago0x5bdb37d0ddea3a90f233c7b7f6b9394b6b2eef34 IN  Create: MetaSwapUtils0 Ether0.0395800137380.001
[ Download CSV Export 
Latest 25 internal transaction
Parent Txn Hash Block From To Value
0x956cd109d21635065d6e941091682ccd228b2b69887f47bdcecfb158819420f6469569182022-12-09 2:29:143 hrs 19 mins ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xda40012ccce5351b5a7a43cd743171aa47859db9ba4a0328a4e2adeb24dfa619469569082022-12-09 2:29:143 hrs 19 mins ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x762ccd9a663b2ec967a91bc76c58ac6619806e70c6cbe6962b1a808871ea0357469569072022-12-09 2:29:143 hrs 19 mins ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x31c8e3a5c691123ea49c3371102dbb68221b09c027628eb31a9d55bd1f826e09469568562022-12-09 2:29:143 hrs 19 mins ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xf4b50e5d727653e4bd18221e89da82042bb49533c0ad11587f9a455ccfcd9b03469568542022-12-09 2:29:143 hrs 19 mins ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x985dab7648401d86ddeee7f39b9d2c6b3e60e2637f35041aa80bf5915bed21c0469568332022-12-09 2:28:593 hrs 19 mins ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xbf12690ef1d4b6b7a890e414f0cf6db6cdb3090b822c60edc6aa644e58d05a7d469567912022-12-09 2:28:593 hrs 19 mins ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xdcd99e2f873efda50d5fa338a657205058ecb9ce0525c4d3730239fef26ab766469567242022-12-09 2:28:443 hrs 20 mins ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xdfac399e6954033b9aecc6f87995ce1d09a37cbd531cfe86944ceb6fc25d2324464416082022-12-07 15:42:201 day 14 hrs ago 0xa9a84238098dc3d1529228e6c74dbe7ebdf117a5 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xa732f554395f313b99d40e9d0cc0a80c1c5f216acca2a074855eb895006bbab8464369212022-12-07 15:25:201 day 14 hrs ago 0xa9a84238098dc3d1529228e6c74dbe7ebdf117a5 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x67c0053f2c8f81389942dcba361780aeec42a5a8a0eb39fcdb2698120d673025464157382022-12-07 14:14:151 day 15 hrs ago 0xa9a84238098dc3d1529228e6c74dbe7ebdf117a5 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x3886145833bac964be69c81f9532511b5129f31ea299911d2fe635335ef1e265463577312022-12-07 11:12:111 day 18 hrs ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xc0c1cd3cce7448a01b431ed8ed1e679fd0cff93289f684c2de1f42b20133335c461393132022-12-06 19:38:592 days 10 hrs ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xe369a034bd39310b53bcb3e06411e296219da94addb2e4b06b5f3c1a72efb0d9460507902022-12-06 13:09:402 days 16 hrs ago 0xe184f7e575a5beb8f2409e8e2218cd770ddda2a6 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xb05fbd059303f03975e7520415c2bcacd3a13c1ea6c6ac97df9f308b4a33a476459238262022-12-06 6:57:242 days 22 hrs ago 0xc55e8c79e5a6c3216d4023769559d06fa9a7732e 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x3115934cdae3970ed05379fc26f4c8a7c587892628da21c5f17bebe66fcaa5f4459110382022-12-06 6:12:542 days 23 hrs ago 0xc55e8c79e5a6c3216d4023769559d06fa9a7732e 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x6f5f6fce6bf9948415a063c7253b61376751b2899c06312c1f18f52151919be3456448732022-12-05 11:46:533 days 18 hrs ago 0xa9a84238098dc3d1529228e6c74dbe7ebdf117a5 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x80346615cf9290667d2d6ef7cdf07dea2be46ca158658e035f34cb0a3fdade75456307772022-12-05 11:08:223 days 18 hrs ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xc3e854263cc418f8cfd69b3600547ec8bba52c4c27f1fb73ba29a272d5cd27ed456155622022-12-05 10:20:223 days 19 hrs ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xd462602941852ce7017ab5761d2e0573fa637bf6feaba8be9e9729cc63352ee6455590312022-12-05 7:48:333 days 22 hrs ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x587336620a5e1bf33c9713aeba1d5fe4c88b359a600cd664dedab738dcd106bf452865322022-12-04 12:54:574 days 16 hrs ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0xc32ac18d3075358d6a49510c40de0fb1e488106665622e93d76705501534d05d452566052022-12-04 11:31:254 days 18 hrs ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x43318ae83e11af7ebff042015b8bf91993b89b5ddbb1754bc2cd30eb0eee7cb3452556022022-12-04 11:28:104 days 18 hrs ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x6caaf9d6c662db2822afefbe74b3a9c4c00c3d47fc9e966e2b951df938857b16452539422022-12-04 11:22:404 days 18 hrs ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
0x7e6d26476c7bd71e9457b8695ef3328e6e921cc90dfd2d91cd0e87747e84e5e8452197782022-12-04 9:29:234 days 20 hrs ago 0x250184dddec6d38e28ac12b481c9016867226e9d 0xbea9f78090bdb9e662d8cb301a00ad09a5b756e90 Ether
[ Download CSV Export 
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
MetaSwapUtils

Compiler Version
v0.6.12+commit.27d51765

Optimization Enabled:
Yes with 10000 runs

Other Settings:
default evmVersion, MIT license
File 1 of 21 : OwnableUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../utils/ContextUpgradeable.sol";
import "../proxy/Initializable.sol";
/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    function __Ownable_init() internal initializer {
        __Context_init_unchained();
        __Ownable_init_unchained();
    }

    function __Ownable_init_unchained() internal initializer {
        address msgSender = _msgSender();
        _owner = msgSender;
        emit OwnershipTransferred(address(0), msgSender);
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
        _;
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        emit OwnershipTransferred(_owner, address(0));
        _owner = address(0);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        emit OwnershipTransferred(_owner, newOwner);
        _owner = newOwner;
    }
    uint256[49] private __gap;
}

File 2 of 21 : SafeMathUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMathUpgradeable {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        uint256 c = a + b;
        if (c < a) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b > a) return (false, 0);
        return (true, a - b);
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) return (true, 0);
        uint256 c = a * b;
        if (c / a != b) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a / b);
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a % b);
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= a, "SafeMath: subtraction overflow");
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");
        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: division by zero");
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: modulo by zero");
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        return a - b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryDiv}.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a % b;
    }
}

File 3 of 21 : Initializable.sol
// SPDX-License-Identifier: MIT

// solhint-disable-next-line compiler-version
pragma solidity >=0.4.24 <0.8.0;

import "../utils/AddressUpgradeable.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 */
abstract contract Initializable {

    /**
     * @dev Indicates that the contract has been initialized.
     */
    bool private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Modifier to protect an initializer function from being invoked twice.
     */
    modifier initializer() {
        require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");

        bool isTopLevelCall = !_initializing;
        if (isTopLevelCall) {
            _initializing = true;
            _initialized = true;
        }

        _;

        if (isTopLevelCall) {
            _initializing = false;
        }
    }

    /// @dev Returns true if and only if the function is running in the constructor
    function _isConstructor() private view returns (bool) {
        return !AddressUpgradeable.isContract(address(this));
    }
}

File 4 of 21 : ERC20BurnableUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../../utils/ContextUpgradeable.sol";
import "./ERC20Upgradeable.sol";
import "../../proxy/Initializable.sol";

/**
 * @dev Extension of {ERC20} that allows token holders to destroy both their own
 * tokens and those that they have an allowance for, in a way that can be
 * recognized off-chain (via event analysis).
 */
abstract contract ERC20BurnableUpgradeable is Initializable, ContextUpgradeable, ERC20Upgradeable {
    function __ERC20Burnable_init() internal initializer {
        __Context_init_unchained();
        __ERC20Burnable_init_unchained();
    }

    function __ERC20Burnable_init_unchained() internal initializer {
    }
    using SafeMathUpgradeable for uint256;

    /**
     * @dev Destroys `amount` tokens from the caller.
     *
     * See {ERC20-_burn}.
     */
    function burn(uint256 amount) public virtual {
        _burn(_msgSender(), amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, deducting from the caller's
     * allowance.
     *
     * See {ERC20-_burn} and {ERC20-allowance}.
     *
     * Requirements:
     *
     * - the caller must have allowance for ``accounts``'s tokens of at least
     * `amount`.
     */
    function burnFrom(address account, uint256 amount) public virtual {
        uint256 decreasedAllowance = allowance(account, _msgSender()).sub(amount, "ERC20: burn amount exceeds allowance");

        _approve(account, _msgSender(), decreasedAllowance);
        _burn(account, amount);
    }
    uint256[50] private __gap;
}

File 5 of 21 : ERC20Upgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../../utils/ContextUpgradeable.sol";
import "./IERC20Upgradeable.sol";
import "../../math/SafeMathUpgradeable.sol";
import "../../proxy/Initializable.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20Upgradeable is Initializable, ContextUpgradeable, IERC20Upgradeable {
    using SafeMathUpgradeable for uint256;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    function __ERC20_init(string memory name_, string memory symbol_) internal initializer {
        __Context_init_unchained();
        __ERC20_init_unchained(name_, symbol_);
    }

    function __ERC20_init_unchained(string memory name_, string memory symbol_) internal initializer {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal virtual {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
    uint256[44] private __gap;
}

File 6 of 21 : IERC20Upgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20Upgradeable {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 7 of 21 : AddressUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

/**
 * @dev Collection of functions related to the address type
 */
library AddressUpgradeable {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 8 of 21 : ContextUpgradeable.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;
import "../proxy/Initializable.sol";

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract ContextUpgradeable is Initializable {
    function __Context_init() internal initializer {
        __Context_init_unchained();
    }

    function __Context_init_unchained() internal initializer {
    }
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
    uint256[50] private __gap;
}

File 9 of 21 : SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        uint256 c = a + b;
        if (c < a) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the substraction of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b > a) return (false, 0);
        return (true, a - b);
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     *
     * _Available since v3.4._
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
        // benefit is lost if 'b' is also tested.
        // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
        if (a == 0) return (true, 0);
        uint256 c = a * b;
        if (c / a != b) return (false, 0);
        return (true, c);
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a / b);
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     *
     * _Available since v3.4._
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        if (b == 0) return (false, 0);
        return (true, a % b);
    }

    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        require(c >= a, "SafeMath: addition overflow");
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b <= a, "SafeMath: subtraction overflow");
        return a - b;
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `*` operator.
     *
     * Requirements:
     *
     * - Multiplication cannot overflow.
     */
    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a == 0) return 0;
        uint256 c = a * b;
        require(c / a == b, "SafeMath: multiplication overflow");
        return c;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting on
     * division by zero. The result is rounded towards zero.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: division by zero");
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting when dividing by zero.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b) internal pure returns (uint256) {
        require(b > 0, "SafeMath: modulo by zero");
        return a % b;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {trySub}.
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b <= a, errorMessage);
        return a - b;
    }

    /**
     * @dev Returns the integer division of two unsigned integers, reverting with custom message on
     * division by zero. The result is rounded towards zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryDiv}.
     *
     * Counterpart to Solidity's `/` operator. Note: this function uses a
     * `revert` opcode (which leaves remaining gas untouched) while Solidity
     * uses an invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a / b;
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
     * reverting with custom message when dividing by zero.
     *
     * CAUTION: This function is deprecated because it requires allocating memory for the error
     * message unnecessarily. For custom revert reasons use {tryMod}.
     *
     * Counterpart to Solidity's `%` operator. This function uses a `revert`
     * opcode (which leaves remaining gas untouched) while Solidity uses an
     * invalid opcode to revert (consuming all remaining gas).
     *
     * Requirements:
     *
     * - The divisor cannot be zero.
     */
    function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
        require(b > 0, errorMessage);
        return a % b;
    }
}

File 10 of 21 : ERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "../../utils/Context.sol";
import "./IERC20.sol";
import "../../math/SafeMath.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is Context, IERC20 {
    using SafeMath for uint256;

    mapping (address => uint256) private _balances;

    mapping (address => mapping (address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor (string memory name_, string memory symbol_) public {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view virtual returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view virtual returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view virtual returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view virtual override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view virtual override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(_msgSender(), recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(_msgSender(), spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance"));
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero"));
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(address sender, address recipient, uint256 amount) internal virtual {
        require(sender != address(0), "ERC20: transfer from the zero address");
        require(recipient != address(0), "ERC20: transfer to the zero address");

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance");
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: mint to the zero address");

        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        require(account != address(0), "ERC20: burn from the zero address");

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance");
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(address owner, address spender, uint256 amount) internal virtual {
        require(owner != address(0), "ERC20: approve from the zero address");
        require(spender != address(0), "ERC20: approve to the zero address");

        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal virtual {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { }
}

File 11 of 21 : IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 12 of 21 : SafeERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

import "./IERC20.sol";
import "../../math/SafeMath.sol";
import "../../utils/Address.sol";

/**
 * @title SafeERC20
 * @dev Wrappers around ERC20 operations that throw on failure (when the token
 * contract returns false). Tokens that return no value (and instead revert or
 * throw on failure) are also supported, non-reverting calls are assumed to be
 * successful.
 * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
 * which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
 */
library SafeERC20 {
    using SafeMath for uint256;
    using Address for address;

    function safeTransfer(IERC20 token, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value));
    }

    function safeTransferFrom(IERC20 token, address from, address to, uint256 value) internal {
        _callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value));
    }

    /**
     * @dev Deprecated. This function has issues similar to the ones found in
     * {IERC20-approve}, and its usage is discouraged.
     *
     * Whenever possible, use {safeIncreaseAllowance} and
     * {safeDecreaseAllowance} instead.
     */
    function safeApprove(IERC20 token, address spender, uint256 value) internal {
        // safeApprove should only be called when setting an initial allowance,
        // or when resetting it to zero. To increase and decrease it, use
        // 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
        // solhint-disable-next-line max-line-length
        require((value == 0) || (token.allowance(address(this), spender) == 0),
            "SafeERC20: approve from non-zero to non-zero allowance"
        );
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value));
    }

    function safeIncreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).add(value);
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    function safeDecreaseAllowance(IERC20 token, address spender, uint256 value) internal {
        uint256 newAllowance = token.allowance(address(this), spender).sub(value, "SafeERC20: decreased allowance below zero");
        _callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, newAllowance));
    }

    /**
     * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
     * on the return value: the return value is optional (but if data is returned, it must not be false).
     * @param token The token targeted by the call.
     * @param data The call data (encoded using abi.encode or one of its variants).
     */
    function _callOptionalReturn(IERC20 token, bytes memory data) private {
        // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
        // we're implementing it ourselves. We use {Address.functionCall} to perform this call, which verifies that
        // the target address contains contract code and also asserts for success in the low-level call.

        bytes memory returndata = address(token).functionCall(data, "SafeERC20: low-level call failed");
        if (returndata.length > 0) { // Return data is optional
            // solhint-disable-next-line max-line-length
            require(abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed");
        }
    }
}

File 13 of 21 : Address.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.2 <0.8.0;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize, which returns 0 for contracts in
        // construction, since the code is only stored at the end of the
        // constructor execution.

        uint256 size;
        // solhint-disable-next-line no-inline-assembly
        assembly { size := extcodesize(account) }
        return size > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        // solhint-disable-next-line avoid-low-level-calls, avoid-call-value
        (bool success, ) = recipient.call{ value: amount }("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain`call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
      return functionCall(target, data, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        require(isContract(target), "Address: call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.call{ value: value }(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
        require(isContract(target), "Address: static call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.staticcall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
        require(isContract(target), "Address: delegate call to non-contract");

        // solhint-disable-next-line avoid-low-level-calls
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return _verifyCallResult(success, returndata, errorMessage);
    }

    function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
        if (success) {
            return returndata;
        } else {
            // Look for revert reason and bubble it up if present
            if (returndata.length > 0) {
                // The easiest way to bubble the revert reason is using memory via assembly

                // solhint-disable-next-line no-inline-assembly
                assembly {
                    let returndata_size := mload(returndata)
                    revert(add(32, returndata), returndata_size)
                }
            } else {
                revert(errorMessage);
            }
        }
    }
}

File 14 of 21 : Context.sol
// SPDX-License-Identifier: MIT

pragma solidity >=0.6.0 <0.8.0;

/*
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with GSN meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address payable) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes memory) {
        this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
        return msg.data;
    }
}

File 15 of 21 : AmplificationUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./SwapUtils.sol";

/**
 * @title AmplificationUtils library
 * @notice A library to calculate and ramp the A parameter of a given `SwapUtils.Swap` struct.
 * This library assumes the struct is fully validated.
 */
library AmplificationUtils {
    using SafeMath for uint256;

    event RampA(
        uint256 oldA,
        uint256 newA,
        uint256 initialTime,
        uint256 futureTime
    );
    event StopRampA(uint256 currentA, uint256 time);

    // Constant values used in ramping A calculations
    uint256 public constant A_PRECISION = 100;
    uint256 public constant MAX_A = 10**6;
    uint256 private constant MAX_A_CHANGE = 2;
    uint256 private constant MIN_RAMP_TIME = 14 days;

    /**
     * @notice Return A, the amplification coefficient * n * (n - 1)
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter
     */
    function getA(SwapUtils.Swap storage self) external view returns (uint256) {
        return _getAPrecise(self).div(A_PRECISION);
    }

    /**
     * @notice Return A in its raw precision
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter in its raw precision form
     */
    function getAPrecise(SwapUtils.Swap storage self)
        external
        view
        returns (uint256)
    {
        return _getAPrecise(self);
    }

    /**
     * @notice Return A in its raw precision
     * @dev See the StableSwap paper for details
     * @param self Swap struct to read from
     * @return A parameter in its raw precision form
     */
    function _getAPrecise(SwapUtils.Swap storage self)
        internal
        view
        returns (uint256)
    {
        uint256 t1 = self.futureATime; // time when ramp is finished
        uint256 a1 = self.futureA; // final A value when ramp is finished

        if (block.timestamp < t1) {
            uint256 t0 = self.initialATime; // time when ramp is started
            uint256 a0 = self.initialA; // initial A value when ramp is started
            if (a1 > a0) {
                // a0 + (a1 - a0) * (block.timestamp - t0) / (t1 - t0)
                return
                    a0.add(
                        a1.sub(a0).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
                    );
            } else {
                // a0 - (a0 - a1) * (block.timestamp - t0) / (t1 - t0)
                return
                    a0.sub(
                        a0.sub(a1).mul(block.timestamp.sub(t0)).div(t1.sub(t0))
                    );
            }
        } else {
            return a1;
        }
    }

    /**
     * @notice Start ramping up or down A parameter towards given futureA_ and futureTime_
     * Checks if the change is too rapid, and commits the new A value only when it falls under
     * the limit range.
     * @param self Swap struct to update
     * @param futureA_ the new A to ramp towards
     * @param futureTime_ timestamp when the new A should be reached
     */
    function rampA(
        SwapUtils.Swap storage self,
        uint256 futureA_,
        uint256 futureTime_
    ) external {
        require(
            block.timestamp >= self.initialATime.add(1 days),
            "Wait 1 day before starting ramp"
        );
        require(
            futureTime_ >= block.timestamp.add(MIN_RAMP_TIME),
            "Insufficient ramp time"
        );
        require(
            futureA_ > 0 && futureA_ < MAX_A,
            "futureA_ must be > 0 and < MAX_A"
        );

        uint256 initialAPrecise = _getAPrecise(self);
        uint256 futureAPrecise = futureA_.mul(A_PRECISION);

        if (futureAPrecise < initialAPrecise) {
            require(
                futureAPrecise.mul(MAX_A_CHANGE) >= initialAPrecise,
                "futureA_ is too small"
            );
        } else {
            require(
                futureAPrecise <= initialAPrecise.mul(MAX_A_CHANGE),
                "futureA_ is too large"
            );
        }

        self.initialA = initialAPrecise;
        self.futureA = futureAPrecise;
        self.initialATime = block.timestamp;
        self.futureATime = futureTime_;

        emit RampA(
            initialAPrecise,
            futureAPrecise,
            block.timestamp,
            futureTime_
        );
    }

    /**
     * @notice Stops ramping A immediately. Once this function is called, rampA()
     * cannot be called for another 24 hours
     * @param self Swap struct to update
     */
    function stopRampA(SwapUtils.Swap storage self) external {
        require(self.futureATime > block.timestamp, "Ramp is already stopped");

        uint256 currentA = _getAPrecise(self);
        self.initialA = currentA;
        self.futureA = currentA;
        self.initialATime = block.timestamp;
        self.futureATime = block.timestamp;

        emit StopRampA(currentA, block.timestamp);
    }
}

File 16 of 21 : LPToken.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts-upgradeable/token/ERC20/ERC20BurnableUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "./interfaces/ISwap.sol";

/**
 * @title Liquidity Provider Token
 * @notice This token is an ERC20 detailed token with added capability to be minted by the owner.
 * It is used to represent user's shares when providing liquidity to swap contracts.
 * @dev Only Swap contracts should initialize and own LPToken contracts.
 */
contract LPToken is ERC20BurnableUpgradeable, OwnableUpgradeable {
    using SafeMathUpgradeable for uint256;

    /**
     * @notice Initializes this LPToken contract with the given name and symbol
     * @dev The caller of this function will become the owner. A Swap contract should call this
     * in its initializer function.
     * @param name name of this token
     * @param symbol symbol of this token
     */
    function initialize(string memory name, string memory symbol)
        external
        initializer
        returns (bool)
    {
        __Context_init_unchained();
        __ERC20_init_unchained(name, symbol);
        __Ownable_init_unchained();
        return true;
    }

    /**
     * @notice Mints the given amount of LPToken to the recipient.
     * @dev only owner can call this mint function
     * @param recipient address of account to receive the tokens
     * @param amount amount of tokens to mint
     */
    function mint(address recipient, uint256 amount) external onlyOwner {
        require(amount != 0, "LPToken: cannot mint 0");
        _mint(recipient, amount);
    }

    /**
     * @dev Overrides ERC20._beforeTokenTransfer() which get called on every transfers including
     * minting and burning. This ensures that Swap.updateUserWithdrawFees are called everytime.
     * This assumes the owner is set to a Swap contract's address.
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual override(ERC20Upgradeable) {
        super._beforeTokenTransfer(from, to, amount);
        require(to != address(this), "LPToken: cannot send to itself");
    }
}

File 17 of 21 : MathUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";

/**
 * @title MathUtils library
 * @notice A library to be used in conjunction with SafeMath. Contains functions for calculating
 * differences between two uint256.
 */
library MathUtils {
    /**
     * @notice Compares a and b and returns true if the difference between a and b
     *         is less than 1 or equal to each other.
     * @param a uint256 to compare with
     * @param b uint256 to compare with
     * @return True if the difference between a and b is less than 1 or equal,
     *         otherwise return false
     */
    function within1(uint256 a, uint256 b) internal pure returns (bool) {
        return (difference(a, b) <= 1);
    }

    /**
     * @notice Calculates absolute difference between a and b
     * @param a uint256 to compare with
     * @param b uint256 to compare with
     * @return Difference between a and b
     */
    function difference(uint256 a, uint256 b) internal pure returns (uint256) {
        if (a > b) {
            return a - b;
        }
        return b - a;
    }
}

File 18 of 21 : SwapUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "./AmplificationUtils.sol";
import "./LPToken.sol";
import "./MathUtils.sol";

/**
 * @title SwapUtils library
 * @notice A library to be used within Swap.sol. Contains functions responsible for custody and AMM functionalities.
 * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
 * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
 * Admin functions should be protected within contracts using this library.
 */
library SwapUtils {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using MathUtils for uint256;

    /*** EVENTS ***/

    event TokenSwap(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event AddLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event RemoveLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256 lpTokenSupply
    );
    event RemoveLiquidityOne(
        address indexed provider,
        uint256 lpTokenAmount,
        uint256 lpTokenSupply,
        uint256 boughtId,
        uint256 tokensBought
    );
    event RemoveLiquidityImbalance(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event NewAdminFee(uint256 newAdminFee);
    event NewSwapFee(uint256 newSwapFee);

    struct Swap {
        // variables around the ramp management of A,
        // the amplification coefficient * n * (n - 1)
        // see https://www.curve.fi/stableswap-paper.pdf for details
        uint256 initialA;
        uint256 futureA;
        uint256 initialATime;
        uint256 futureATime;
        // fee calculation
        uint256 swapFee;
        uint256 adminFee;
        LPToken lpToken;
        // contract references for all tokens being pooled
        IERC20[] pooledTokens;
        // multipliers for each pooled token's precision to get to POOL_PRECISION_DECIMALS
        // for example, TBTC has 18 decimals, so the multiplier should be 1. WBTC
        // has 8, so the multiplier should be 10 ** 18 / 10 ** 8 => 10 ** 10
        uint256[] tokenPrecisionMultipliers;
        // the pool balance of each token, in the token's precision
        // the contract's actual token balance might differ
        uint256[] balances;
    }

    // Struct storing variables used in calculations in the
    // calculateWithdrawOneTokenDY function to avoid stack too deep errors
    struct CalculateWithdrawOneTokenDYInfo {
        uint256 d0;
        uint256 d1;
        uint256 newY;
        uint256 feePerToken;
        uint256 preciseA;
    }

    // Struct storing variables used in calculations in the
    // {add,remove}Liquidity functions to avoid stack too deep errors
    struct ManageLiquidityInfo {
        uint256 d0;
        uint256 d1;
        uint256 d2;
        uint256 preciseA;
        LPToken lpToken;
        uint256 totalSupply;
        uint256[] balances;
        uint256[] multipliers;
    }

    // the precision all pools tokens will be converted to
    uint8 public constant POOL_PRECISION_DECIMALS = 18;

    // the denominator used to calculate admin and LP fees. For example, an
    // LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
    uint256 private constant FEE_DENOMINATOR = 10**10;

    // Max swap fee is 1% or 100bps of each swap
    uint256 public constant MAX_SWAP_FEE = 10**8;

    // Max adminFee is 100% of the swapFee
    // adminFee does not add additional fee on top of swapFee
    // Instead it takes a certain % of the swapFee. Therefore it has no impact on the
    // users but only on the earnings of LPs
    uint256 public constant MAX_ADMIN_FEE = 10**10;

    // Constant value used as max loop limit
    uint256 private constant MAX_LOOP_LIMIT = 256;

    /*** VIEW & PURE FUNCTIONS ***/

    function _getAPrecise(Swap storage self) internal view returns (uint256) {
        return AmplificationUtils._getAPrecise(self);
    }

    /**
     * @notice Calculate the dy, the amount of selected token that user receives and
     * the fee of withdrawing in one token
     * @param tokenAmount the amount to withdraw in the pool's precision
     * @param tokenIndex which token will be withdrawn
     * @param self Swap struct to read from
     * @return the amount of token user will receive
     */
    function calculateWithdrawOneToken(
        Swap storage self,
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256) {
        (uint256 availableTokenAmount, ) = _calculateWithdrawOneToken(
            self,
            tokenAmount,
            tokenIndex,
            self.lpToken.totalSupply()
        );
        return availableTokenAmount;
    }

    function _calculateWithdrawOneToken(
        Swap storage self,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 totalSupply
    ) internal view returns (uint256, uint256) {
        uint256 dy;
        uint256 newY;
        uint256 currentY;

        (dy, newY, currentY) = calculateWithdrawOneTokenDY(
            self,
            tokenIndex,
            tokenAmount,
            totalSupply
        );

        // dy_0 (without fees)
        // dy, dy_0 - dy

        uint256 dySwapFee = currentY
            .sub(newY)
            .div(self.tokenPrecisionMultipliers[tokenIndex])
            .sub(dy);

        return (dy, dySwapFee);
    }

    /**
     * @notice Calculate the dy of withdrawing in one token
     * @param self Swap struct to read from
     * @param tokenIndex which token will be withdrawn
     * @param tokenAmount the amount to withdraw in the pools precision
     * @return the d and the new y after withdrawing one token
     */
    function calculateWithdrawOneTokenDY(
        Swap storage self,
        uint8 tokenIndex,
        uint256 tokenAmount,
        uint256 totalSupply
    )
        internal
        view
        returns (
            uint256,
            uint256,
            uint256
        )
    {
        // Get the current D, then solve the stableswap invariant
        // y_i for D - tokenAmount
        uint256[] memory xp = _xp(self);

        require(tokenIndex < xp.length, "Token index out of range");

        CalculateWithdrawOneTokenDYInfo
            memory v = CalculateWithdrawOneTokenDYInfo(0, 0, 0, 0, 0);
        v.preciseA = _getAPrecise(self);
        v.d0 = getD(xp, v.preciseA);
        v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply));

        require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");

        v.newY = getYD(v.preciseA, tokenIndex, xp, v.d1);

        uint256[] memory xpReduced = new uint256[](xp.length);

        v.feePerToken = _feePerToken(self.swapFee, xp.length);
        for (uint256 i = 0; i < xp.length; i++) {
            uint256 xpi = xp[i];
            // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
            // else dxExpected = xp[i] - (xp[i] * d1 / d0)
            // xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
            xpReduced[i] = xpi.sub(
                (
                    (i == tokenIndex)
                        ? xpi.mul(v.d1).div(v.d0).sub(v.newY)
                        : xpi.sub(xpi.mul(v.d1).div(v.d0))
                ).mul(v.feePerToken).div(FEE_DENOMINATOR)
            );
        }

        uint256 dy = xpReduced[tokenIndex].sub(
            getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
        );
        dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);

        return (dy, v.newY, xp[tokenIndex]);
    }

    /**
     * @notice Calculate the price of a token in the pool with given
     * precision-adjusted balances and a particular D.
     *
     * @dev This is accomplished via solving the invariant iteratively.
     * See the StableSwap paper and Curve.fi implementation for further details.
     *
     * x_1**2 + x1 * (sum' - (A*n**n - 1) * D / (A * n**n)) = D ** (n + 1) / (n ** (2 * n) * prod' * A)
     * x_1**2 + b*x_1 = c
     * x_1 = (x_1**2 + c) / (2*x_1 + b)
     *
     * @param a the amplification coefficient * n * (n - 1). See the StableSwap paper for details.
     * @param tokenIndex Index of token we are calculating for.
     * @param xp a precision-adjusted set of pool balances. Array should be
     * the same cardinality as the pool.
     * @param d the stableswap invariant
     * @return the price of the token, in the same precision as in xp
     */
    function getYD(
        uint256 a,
        uint8 tokenIndex,
        uint256[] memory xp,
        uint256 d
    ) internal pure returns (uint256) {
        uint256 numTokens = xp.length;
        require(tokenIndex < numTokens, "Token not found");

        uint256 c = d;
        uint256 s;
        uint256 nA = a.mul(numTokens);

        for (uint256 i = 0; i < numTokens; i++) {
            if (i != tokenIndex) {
                s = s.add(xp[i]);
                c = c.mul(d).div(xp[i].mul(numTokens));
                // If we were to protect the division loss we would have to keep the denominator separate
                // and divide at the end. However this leads to overflow with large numTokens or/and D.
                // c = c * D * D * D * ... overflow!
            }
        }
        c = c.mul(d).mul(AmplificationUtils.A_PRECISION).div(nA.mul(numTokens));

        uint256 b = s.add(d.mul(AmplificationUtils.A_PRECISION).div(nA));
        uint256 yPrev;
        uint256 y = d;
        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            yPrev = y;
            y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
            if (y.within1(yPrev)) {
                return y;
            }
        }
        revert("Approximation did not converge");
    }

    /**
     * @notice Get D, the StableSwap invariant, based on a set of balances and a particular A.
     * @param xp a precision-adjusted set of pool balances. Array should be the same cardinality
     * as the pool.
     * @param a the amplification coefficient * n * (n - 1) in A_PRECISION.
     * See the StableSwap paper for details
     * @return the invariant, at the precision of the pool
     */
    function getD(uint256[] memory xp, uint256 a)
        internal
        pure
        returns (uint256)
    {
        uint256 numTokens = xp.length;
        uint256 s;
        for (uint256 i = 0; i < numTokens; i++) {
            s = s.add(xp[i]);
        }
        if (s == 0) {
            return 0;
        }

        uint256 prevD;
        uint256 d = s;
        uint256 nA = a.mul(numTokens);

        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            uint256 dP = d;
            for (uint256 j = 0; j < numTokens; j++) {
                dP = dP.mul(d).div(xp[j].mul(numTokens));
                // If we were to protect the division loss we would have to keep the denominator separate
                // and divide at the end. However this leads to overflow with large numTokens or/and D.
                // dP = dP * D * D * D * ... overflow!
            }
            prevD = d;
            d = nA
                .mul(s)
                .div(AmplificationUtils.A_PRECISION)
                .add(dP.mul(numTokens))
                .mul(d)
                .div(
                    nA
                        .sub(AmplificationUtils.A_PRECISION)
                        .mul(d)
                        .div(AmplificationUtils.A_PRECISION)
                        .add(numTokens.add(1).mul(dP))
                );
            if (d.within1(prevD)) {
                return d;
            }
        }

        // Convergence should occur in 4 loops or less. If this is reached, there may be something wrong
        // with the pool. If this were to occur repeatedly, LPs should withdraw via `removeLiquidity()`
        // function which does not rely on D.
        revert("D does not converge");
    }

    /**
     * @notice Given a set of balances and precision multipliers, return the
     * precision-adjusted balances.
     *
     * @param balances an array of token balances, in their native precisions.
     * These should generally correspond with pooled tokens.
     *
     * @param precisionMultipliers an array of multipliers, corresponding to
     * the amounts in the balances array. When multiplied together they
     * should yield amounts at the pool's precision.
     *
     * @return an array of amounts "scaled" to the pool's precision
     */
    function _xp(
        uint256[] memory balances,
        uint256[] memory precisionMultipliers
    ) internal pure returns (uint256[] memory) {
        uint256 numTokens = balances.length;
        require(
            numTokens == precisionMultipliers.length,
            "Balances must match multipliers"
        );
        uint256[] memory xp = new uint256[](numTokens);
        for (uint256 i = 0; i < numTokens; i++) {
            xp[i] = balances[i].mul(precisionMultipliers[i]);
        }
        return xp;
    }

    /**
     * @notice Return the precision-adjusted balances of all tokens in the pool
     * @param self Swap struct to read from
     * @return the pool balances "scaled" to the pool's precision, allowing
     * them to be more easily compared.
     */
    function _xp(Swap storage self) internal view returns (uint256[] memory) {
        return _xp(self.balances, self.tokenPrecisionMultipliers);
    }

    /**
     * @notice Get the virtual price, to help calculate profit
     * @param self Swap struct to read from
     * @return the virtual price, scaled to precision of POOL_PRECISION_DECIMALS
     */
    function getVirtualPrice(Swap storage self)
        external
        view
        returns (uint256)
    {
        uint256 d = getD(_xp(self), _getAPrecise(self));
        LPToken lpToken = self.lpToken;
        uint256 supply = lpToken.totalSupply();
        if (supply > 0) {
            return d.mul(10**uint256(POOL_PRECISION_DECIMALS)).div(supply);
        }
        return 0;
    }

    /**
     * @notice Calculate the new balances of the tokens given the indexes of the token
     * that is swapped from (FROM) and the token that is swapped to (TO).
     * This function is used as a helper function to calculate how much TO token
     * the user should receive on swap.
     *
     * @param preciseA precise form of amplification coefficient
     * @param tokenIndexFrom index of FROM token
     * @param tokenIndexTo index of TO token
     * @param x the new total amount of FROM token
     * @param xp balances of the tokens in the pool
     * @return the amount of TO token that should remain in the pool
     */
    function getY(
        uint256 preciseA,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 x,
        uint256[] memory xp
    ) internal pure returns (uint256) {
        uint256 numTokens = xp.length;
        require(
            tokenIndexFrom != tokenIndexTo,
            "Can't compare token to itself"
        );
        require(
            tokenIndexFrom < numTokens && tokenIndexTo < numTokens,
            "Tokens must be in pool"
        );

        uint256 d = getD(xp, preciseA);
        uint256 c = d;
        uint256 s;
        uint256 nA = numTokens.mul(preciseA);

        uint256 _x;
        for (uint256 i = 0; i < numTokens; i++) {
            if (i == tokenIndexFrom) {
                _x = x;
            } else if (i != tokenIndexTo) {
                _x = xp[i];
            } else {
                continue;
            }
            s = s.add(_x);
            c = c.mul(d).div(_x.mul(numTokens));
            // If we were to protect the division loss we would have to keep the denominator separate
            // and divide at the end. However this leads to overflow with large numTokens or/and D.
            // c = c * D * D * D * ... overflow!
        }
        c = c.mul(d).mul(AmplificationUtils.A_PRECISION).div(nA.mul(numTokens));
        uint256 b = s.add(d.mul(AmplificationUtils.A_PRECISION).div(nA));
        uint256 yPrev;
        uint256 y = d;

        // iterative approximation
        for (uint256 i = 0; i < MAX_LOOP_LIMIT; i++) {
            yPrev = y;
            y = y.mul(y).add(c).div(y.mul(2).add(b).sub(d));
            if (y.within1(yPrev)) {
                return y;
            }
        }
        revert("Approximation did not converge");
    }

    /**
     * @notice Externally calculates a swap between two tokens.
     * @param self Swap struct to read from
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     */
    function calculateSwap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256 dy) {
        (dy, ) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            dx,
            self.balances
        );
    }

    /**
     * @notice Internally calculates a swap between two tokens.
     *
     * @dev The caller is expected to transfer the actual amounts (dx and dy)
     * using the token contracts.
     *
     * @param self Swap struct to read from
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     * @return dyFee the associated fee
     */
    function _calculateSwap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256[] memory balances
    ) internal view returns (uint256 dy, uint256 dyFee) {
        uint256[] memory multipliers = self.tokenPrecisionMultipliers;
        uint256[] memory xp = _xp(balances, multipliers);
        require(
            tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
            "Token index out of range"
        );
        uint256 x = dx.mul(multipliers[tokenIndexFrom]).add(xp[tokenIndexFrom]);
        uint256 y = getY(
            _getAPrecise(self),
            tokenIndexFrom,
            tokenIndexTo,
            x,
            xp
        );
        dy = xp[tokenIndexTo].sub(y).sub(1);
        dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
        dy = dy.sub(dyFee).div(multipliers[tokenIndexTo]);
    }

    /**
     * @notice A simple method to calculate amount of each underlying
     * tokens that is returned upon burning given amount of
     * LP tokens
     *
     * @param amount the amount of LP tokens that would to be burned on
     * withdrawal
     * @return array of amounts of tokens user will receive
     */
    function calculateRemoveLiquidity(Swap storage self, uint256 amount)
        external
        view
        returns (uint256[] memory)
    {
        return
            _calculateRemoveLiquidity(
                self.balances,
                amount,
                self.lpToken.totalSupply()
            );
    }

    function _calculateRemoveLiquidity(
        uint256[] memory balances,
        uint256 amount,
        uint256 totalSupply
    ) internal pure returns (uint256[] memory) {
        require(amount <= totalSupply, "Cannot exceed total supply");

        uint256[] memory amounts = new uint256[](balances.length);

        for (uint256 i = 0; i < balances.length; i++) {
            amounts[i] = balances[i].mul(amount).div(totalSupply);
        }
        return amounts;
    }

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param self Swap struct to read from
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return if deposit was true, total amount of lp token that will be minted and if
     * deposit was false, total amount of lp token that will be burned
     */
    function calculateTokenAmount(
        Swap storage self,
        uint256[] calldata amounts,
        bool deposit
    ) external view returns (uint256) {
        uint256 a = _getAPrecise(self);
        uint256[] memory balances = self.balances;
        uint256[] memory multipliers = self.tokenPrecisionMultipliers;

        uint256 d0 = getD(_xp(balances, multipliers), a);
        for (uint256 i = 0; i < balances.length; i++) {
            if (deposit) {
                balances[i] = balances[i].add(amounts[i]);
            } else {
                balances[i] = balances[i].sub(
                    amounts[i],
                    "Cannot withdraw more than available"
                );
            }
        }
        uint256 d1 = getD(_xp(balances, multipliers), a);
        uint256 totalSupply = self.lpToken.totalSupply();

        if (deposit) {
            return d1.sub(d0).mul(totalSupply).div(d0);
        } else {
            return d0.sub(d1).mul(totalSupply).div(d0);
        }
    }

    /**
     * @notice return accumulated amount of admin fees of the token with given index
     * @param self Swap struct to read from
     * @param index Index of the pooled token
     * @return admin balance in the token's precision
     */
    function getAdminBalance(Swap storage self, uint256 index)
        external
        view
        returns (uint256)
    {
        require(index < self.pooledTokens.length, "Token index out of range");
        return
            self.pooledTokens[index].balanceOf(address(this)).sub(
                self.balances[index]
            );
    }

    /**
     * @notice internal helper function to calculate fee per token multiplier used in
     * swap fee calculations
     * @param swapFee swap fee for the tokens
     * @param numTokens number of tokens pooled
     */
    function _feePerToken(uint256 swapFee, uint256 numTokens)
        internal
        pure
        returns (uint256)
    {
        return swapFee.mul(numTokens).div(numTokens.sub(1).mul(4));
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice swap two tokens in the pool
     * @param self Swap struct to read from and write to
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell
     * @param minDy the min amount the user would like to receive, or revert.
     * @return amount of token user received on swap
     */
    function swap(
        Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy
    ) external returns (uint256) {
        {
            IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom];
            require(
                dx <= tokenFrom.balanceOf(msg.sender),
                "Cannot swap more than you own"
            );
            // Transfer tokens first to see if a fee was charged on transfer
            uint256 beforeBalance = tokenFrom.balanceOf(address(this));
            tokenFrom.safeTransferFrom(msg.sender, address(this), dx);

            // Use the actual transferred amount for AMM math
            dx = tokenFrom.balanceOf(address(this)).sub(beforeBalance);
        }

        uint256 dy;
        uint256 dyFee;
        uint256[] memory balances = self.balances;
        (dy, dyFee) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            dx,
            balances
        );
        require(dy >= minDy, "Swap didn't result in min tokens");

        uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
            self.tokenPrecisionMultipliers[tokenIndexTo]
        );

        self.balances[tokenIndexFrom] = balances[tokenIndexFrom].add(dx);
        self.balances[tokenIndexTo] = balances[tokenIndexTo].sub(dy).sub(
            dyAdminFee
        );

        self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);

        emit TokenSwap(msg.sender, dx, dy, tokenIndexFrom, tokenIndexTo);

        return dy;
    }

    /**
     * @notice Add liquidity to the pool
     * @param self Swap struct to read from and write to
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.
     * @return amount of LP token user received
     */
    function addLiquidity(
        Swap storage self,
        uint256[] memory amounts,
        uint256 minToMint
    ) external returns (uint256) {
        IERC20[] memory pooledTokens = self.pooledTokens;
        require(
            amounts.length == pooledTokens.length,
            "Amounts must match pooled tokens"
        );

        // current state
        ManageLiquidityInfo memory v = ManageLiquidityInfo(
            0,
            0,
            0,
            _getAPrecise(self),
            self.lpToken,
            0,
            self.balances,
            self.tokenPrecisionMultipliers
        );
        v.totalSupply = v.lpToken.totalSupply();

        if (v.totalSupply != 0) {
            v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA);
        }

        uint256[] memory newBalances = new uint256[](pooledTokens.length);

        for (uint256 i = 0; i < pooledTokens.length; i++) {
            require(
                v.totalSupply != 0 || amounts[i] > 0,
                "Must supply all tokens in pool"
            );

            // Transfer tokens first to see if a fee was charged on transfer
            if (amounts[i] != 0) {
                uint256 beforeBalance = pooledTokens[i].balanceOf(
                    address(this)
                );
                pooledTokens[i].safeTransferFrom(
                    msg.sender,
                    address(this),
                    amounts[i]
                );

                // Update the amounts[] with actual transfer amount
                amounts[i] = pooledTokens[i].balanceOf(address(this)).sub(
                    beforeBalance
                );
            }

            newBalances[i] = v.balances[i].add(amounts[i]);
        }

        // invariant after change
        v.d1 = getD(_xp(newBalances, v.multipliers), v.preciseA);
        require(v.d1 > v.d0, "D should increase");

        // updated to reflect fees and calculate the user's LP tokens
        v.d2 = v.d1;
        uint256[] memory fees = new uint256[](pooledTokens.length);

        if (v.totalSupply != 0) {
            uint256 feePerToken = _feePerToken(
                self.swapFee,
                pooledTokens.length
            );
            for (uint256 i = 0; i < pooledTokens.length; i++) {
                uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0);
                fees[i] = feePerToken
                    .mul(idealBalance.difference(newBalances[i]))
                    .div(FEE_DENOMINATOR);
                self.balances[i] = newBalances[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                newBalances[i] = newBalances[i].sub(fees[i]);
            }
            v.d2 = getD(_xp(newBalances, v.multipliers), v.preciseA);
        } else {
            // the initial depositor doesn't pay fees
            self.balances = newBalances;
        }

        uint256 toMint;
        if (v.totalSupply == 0) {
            toMint = v.d1;
        } else {
            toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0);
        }

        require(toMint >= minToMint, "Couldn't mint min requested");

        // mint the user's LP tokens
        v.lpToken.mint(msg.sender, toMint);

        emit AddLiquidity(
            msg.sender,
            amounts,
            fees,
            v.d1,
            v.totalSupply.add(toMint)
        );

        return toMint;
    }

    /**
     * @notice Burn LP tokens to remove liquidity from the pool.
     * @dev Liquidity can always be removed, even when the pool is paused.
     * @param self Swap struct to read from and write to
     * @param amount the amount of LP tokens to burn
     * @param minAmounts the minimum amounts of each token in the pool
     * acceptable for this burn. Useful as a front-running mitigation
     * @return amounts of tokens the user received
     */
    function removeLiquidity(
        Swap storage self,
        uint256 amount,
        uint256[] calldata minAmounts
    ) external returns (uint256[] memory) {
        LPToken lpToken = self.lpToken;
        IERC20[] memory pooledTokens = self.pooledTokens;
        require(amount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
        require(
            minAmounts.length == pooledTokens.length,
            "minAmounts must match poolTokens"
        );

        uint256[] memory balances = self.balances;
        uint256 totalSupply = lpToken.totalSupply();

        uint256[] memory amounts = _calculateRemoveLiquidity(
            balances,
            amount,
            totalSupply
        );

        for (uint256 i = 0; i < amounts.length; i++) {
            require(amounts[i] >= minAmounts[i], "amounts[i] < minAmounts[i]");
            self.balances[i] = balances[i].sub(amounts[i]);
            pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
        }

        lpToken.burnFrom(msg.sender, amount);

        emit RemoveLiquidity(msg.sender, amounts, totalSupply.sub(amount));

        return amounts;
    }

    /**
     * @notice Remove liquidity from the pool all in one token.
     * @param self Swap struct to read from and write to
     * @param tokenAmount the amount of the lp tokens to burn
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @return amount chosen token that user received
     */
    function removeLiquidityOneToken(
        Swap storage self,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount
    ) external returns (uint256) {
        LPToken lpToken = self.lpToken;
        IERC20[] memory pooledTokens = self.pooledTokens;

        require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
        require(tokenIndex < pooledTokens.length, "Token not found");

        uint256 totalSupply = lpToken.totalSupply();

        (uint256 dy, uint256 dyFee) = _calculateWithdrawOneToken(
            self,
            tokenAmount,
            tokenIndex,
            totalSupply
        );

        require(dy >= minAmount, "dy < minAmount");

        self.balances[tokenIndex] = self.balances[tokenIndex].sub(
            dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR))
        );
        lpToken.burnFrom(msg.sender, tokenAmount);
        pooledTokens[tokenIndex].safeTransfer(msg.sender, dy);

        emit RemoveLiquidityOne(
            msg.sender,
            tokenAmount,
            totalSupply,
            tokenIndex,
            dy
        );

        return dy;
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances.
     *
     * @param self Swap struct to read from and write to
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @return actual amount of LP tokens burned in the withdrawal
     */
    function removeLiquidityImbalance(
        Swap storage self,
        uint256[] memory amounts,
        uint256 maxBurnAmount
    ) public returns (uint256) {
        ManageLiquidityInfo memory v = ManageLiquidityInfo(
            0,
            0,
            0,
            _getAPrecise(self),
            self.lpToken,
            0,
            self.balances,
            self.tokenPrecisionMultipliers
        );
        v.totalSupply = v.lpToken.totalSupply();

        IERC20[] memory pooledTokens = self.pooledTokens;

        require(
            amounts.length == pooledTokens.length,
            "Amounts should match pool tokens"
        );

        require(
            maxBurnAmount <= v.lpToken.balanceOf(msg.sender) &&
                maxBurnAmount != 0,
            ">LP.balanceOf"
        );

        uint256 feePerToken = _feePerToken(self.swapFee, pooledTokens.length);
        uint256[] memory fees = new uint256[](pooledTokens.length);
        {
            uint256[] memory balances1 = new uint256[](pooledTokens.length);
            v.d0 = getD(_xp(v.balances, v.multipliers), v.preciseA);
            for (uint256 i = 0; i < pooledTokens.length; i++) {
                balances1[i] = v.balances[i].sub(
                    amounts[i],
                    "Cannot withdraw more than available"
                );
            }
            v.d1 = getD(_xp(balances1, v.multipliers), v.preciseA);

            for (uint256 i = 0; i < pooledTokens.length; i++) {
                uint256 idealBalance = v.d1.mul(v.balances[i]).div(v.d0);
                uint256 difference = idealBalance.difference(balances1[i]);
                fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR);
                self.balances[i] = balances1[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                balances1[i] = balances1[i].sub(fees[i]);
            }

            v.d2 = getD(_xp(balances1, v.multipliers), v.preciseA);
        }
        uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0);
        require(tokenAmount != 0, "Burnt amount cannot be zero");
        tokenAmount = tokenAmount.add(1);

        require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount");

        v.lpToken.burnFrom(msg.sender, tokenAmount);

        for (uint256 i = 0; i < pooledTokens.length; i++) {
            pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
        }

        emit RemoveLiquidityImbalance(
            msg.sender,
            amounts,
            fees,
            v.d1,
            v.totalSupply.sub(tokenAmount)
        );

        return tokenAmount;
    }

    /**
     * @notice withdraw all admin fees to a given address
     * @param self Swap struct to withdraw fees from
     * @param to Address to send the fees to
     */
    function withdrawAdminFees(Swap storage self, address to) external {
        IERC20[] memory pooledTokens = self.pooledTokens;
        for (uint256 i = 0; i < pooledTokens.length; i++) {
            IERC20 token = pooledTokens[i];
            uint256 balance = token.balanceOf(address(this)).sub(
                self.balances[i]
            );
            if (balance != 0) {
                token.safeTransfer(to, balance);
            }
        }
    }

    /**
     * @notice Sets the admin fee
     * @dev adminFee cannot be higher than 100% of the swap fee
     * @param self Swap struct to update
     * @param newAdminFee new admin fee to be applied on future transactions
     */
    function setAdminFee(Swap storage self, uint256 newAdminFee) external {
        require(newAdminFee <= MAX_ADMIN_FEE, "Fee is too high");
        self.adminFee = newAdminFee;

        emit NewAdminFee(newAdminFee);
    }

    /**
     * @notice update the swap fee
     * @dev fee cannot be higher than 1% of each swap
     * @param self Swap struct to update
     * @param newSwapFee new swap fee to be applied on future transactions
     */
    function setSwapFee(Swap storage self, uint256 newSwapFee) external {
        require(newSwapFee <= MAX_SWAP_FEE, "Fee is too high");
        self.swapFee = newSwapFee;

        emit NewSwapFee(newSwapFee);
    }
}

File 19 of 21 : IAllowlist.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

interface IAllowlist {
    function getPoolAccountLimit(address poolAddress)
        external
        view
        returns (uint256);

    function getPoolCap(address poolAddress) external view returns (uint256);

    function verifyAddress(address account, bytes32[] calldata merkleProof)
        external
        returns (bool);
}

File 20 of 21 : ISwap.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import "./IAllowlist.sol";

interface ISwap {
    // pool data view functions
    function getA() external view returns (uint256);

    function getAllowlist() external view returns (IAllowlist);

    function getToken(uint8 index) external view returns (IERC20);

    function getTokenIndex(address tokenAddress) external view returns (uint8);

    function getTokenBalance(uint8 index) external view returns (uint256);

    function getVirtualPrice() external view returns (uint256);

    function isGuarded() external view returns (bool);

    function swapStorage()
        external
        view
        returns (
            uint256,
            uint256,
            uint256,
            uint256,
            uint256,
            uint256,
            address
        );

    // min return calculation functions
    function calculateSwap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256);

    function calculateTokenAmount(uint256[] calldata amounts, bool deposit)
        external
        view
        returns (uint256);

    function calculateRemoveLiquidity(uint256 amount)
        external
        view
        returns (uint256[] memory);

    function calculateRemoveLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256 availableTokenAmount);

    // state modifying functions
    function initialize(
        IERC20[] memory pooledTokens,
        uint8[] memory decimals,
        string memory lpTokenName,
        string memory lpTokenSymbol,
        uint256 a,
        uint256 fee,
        uint256 adminFee,
        address lpTokenTargetAddress
    ) external;

    function swap(
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy,
        uint256 deadline
    ) external returns (uint256);

    function addLiquidity(
        uint256[] calldata amounts,
        uint256 minToMint,
        uint256 deadline
    ) external returns (uint256);

    function removeLiquidity(
        uint256 amount,
        uint256[] calldata minAmounts,
        uint256 deadline
    ) external returns (uint256[] memory);

    function removeLiquidityOneToken(
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount,
        uint256 deadline
    ) external returns (uint256);

    function removeLiquidityImbalance(
        uint256[] calldata amounts,
        uint256 maxBurnAmount,
        uint256 deadline
    ) external returns (uint256);
}

File 21 of 21 : MetaSwapUtils.sol
// SPDX-License-Identifier: MIT

pragma solidity 0.6.12;

import "@openzeppelin/contracts/math/SafeMath.sol";
import "@openzeppelin/contracts/token/ERC20/SafeERC20.sol";
import "../LPToken.sol";
import "../interfaces/ISwap.sol";
import "../MathUtils.sol";
import "../SwapUtils.sol";

/**
 * @title MetaSwapUtils library
 * @notice A library to be used within MetaSwap.sol. Contains functions responsible for custody and AMM functionalities.
 *
 * MetaSwap is a modified version of Swap that allows Swap's LP token to be utilized in pooling with other tokens.
 * As an example, if there is a Swap pool consisting of [DAI, USDC, USDT]. Then a MetaSwap pool can be created
 * with [sUSD, BaseSwapLPToken] to allow trades between either the LP token or the underlying tokens and sUSD.
 *
 * @dev Contracts relying on this library must initialize SwapUtils.Swap struct then use this library
 * for SwapUtils.Swap struct. Note that this library contains both functions called by users and admins.
 * Admin functions should be protected within contracts using this library.
 */
library MetaSwapUtils {
    using SafeERC20 for IERC20;
    using SafeMath for uint256;
    using MathUtils for uint256;
    using AmplificationUtils for SwapUtils.Swap;

    /*** EVENTS ***/

    event TokenSwap(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event TokenSwapUnderlying(
        address indexed buyer,
        uint256 tokensSold,
        uint256 tokensBought,
        uint128 soldId,
        uint128 boughtId
    );
    event AddLiquidity(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event RemoveLiquidityOne(
        address indexed provider,
        uint256 lpTokenAmount,
        uint256 lpTokenSupply,
        uint256 boughtId,
        uint256 tokensBought
    );
    event RemoveLiquidityImbalance(
        address indexed provider,
        uint256[] tokenAmounts,
        uint256[] fees,
        uint256 invariant,
        uint256 lpTokenSupply
    );
    event NewAdminFee(uint256 newAdminFee);
    event NewSwapFee(uint256 newSwapFee);
    event NewWithdrawFee(uint256 newWithdrawFee);

    struct MetaSwap {
        // Meta-Swap related parameters
        ISwap baseSwap;
        uint256 baseVirtualPrice;
        uint256 baseCacheLastUpdated;
        IERC20[] baseTokens;
    }

    // Struct storing variables used in calculations in the
    // calculateWithdrawOneTokenDY function to avoid stack too deep errors
    struct CalculateWithdrawOneTokenDYInfo {
        uint256 d0;
        uint256 d1;
        uint256 newY;
        uint256 feePerToken;
        uint256 preciseA;
        uint256 xpi;
    }

    // Struct storing variables used in calculation in removeLiquidityImbalance function
    // to avoid stack too deep error
    struct ManageLiquidityInfo {
        uint256 d0;
        uint256 d1;
        uint256 d2;
        LPToken lpToken;
        uint256 totalSupply;
        uint256 preciseA;
        uint256 baseVirtualPrice;
        uint256[] tokenPrecisionMultipliers;
        uint256[] newBalances;
    }

    struct SwapUnderlyingInfo {
        uint256 x;
        uint256 dx;
        uint256 dy;
        uint256[] tokenPrecisionMultipliers;
        uint256[] oldBalances;
        IERC20[] baseTokens;
        IERC20 tokenFrom;
        uint8 metaIndexFrom;
        IERC20 tokenTo;
        uint8 metaIndexTo;
        uint256 baseVirtualPrice;
    }

    struct CalculateSwapUnderlyingInfo {
        uint256 baseVirtualPrice;
        ISwap baseSwap;
        uint8 baseLPTokenIndex;
        uint8 baseTokensLength;
        uint8 metaIndexTo;
        uint256 x;
        uint256 dy;
    }

    // the denominator used to calculate admin and LP fees. For example, an
    // LP fee might be something like tradeAmount.mul(fee).div(FEE_DENOMINATOR)
    uint256 private constant FEE_DENOMINATOR = 10**10;

    // Cache expire time for the stored value of base Swap's virtual price
    uint256 public constant BASE_CACHE_EXPIRE_TIME = 10 minutes;
    uint256 public constant BASE_VIRTUAL_PRICE_PRECISION = 10**18;

    /*** VIEW & PURE FUNCTIONS ***/

    /**
     * @notice Return the stored value of base Swap's virtual price. If
     * value was updated past BASE_CACHE_EXPIRE_TIME, then read it directly
     * from the base Swap contract.
     * @param metaSwapStorage MetaSwap struct to read from
     * @return base Swap's virtual price
     */
    function _getBaseVirtualPrice(MetaSwap storage metaSwapStorage)
        internal
        view
        returns (uint256)
    {
        if (
            block.timestamp >
            metaSwapStorage.baseCacheLastUpdated + BASE_CACHE_EXPIRE_TIME
        ) {
            return metaSwapStorage.baseSwap.getVirtualPrice();
        }
        return metaSwapStorage.baseVirtualPrice;
    }

    function _getBaseSwapFee(ISwap baseSwap)
        internal
        view
        returns (uint256 swapFee)
    {
        (, , , , swapFee, , ) = baseSwap.swapStorage();
    }

    /**
     * @notice Calculate how much the user would receive when withdrawing via single token
     * @param self Swap struct to read from
     * @param metaSwapStorage MetaSwap struct to read from
     * @param tokenAmount the amount to withdraw in the pool's precision
     * @param tokenIndex which token will be withdrawn
     * @return dy the amount of token user will receive
     */
    function calculateWithdrawOneToken(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint256 tokenAmount,
        uint8 tokenIndex
    ) external view returns (uint256 dy) {
        (dy, ) = _calculateWithdrawOneToken(
            self,
            tokenAmount,
            tokenIndex,
            _getBaseVirtualPrice(metaSwapStorage),
            self.lpToken.totalSupply()
        );
    }

    function _calculateWithdrawOneToken(
        SwapUtils.Swap storage self,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 baseVirtualPrice,
        uint256 totalSupply
    ) internal view returns (uint256, uint256) {
        uint256 dy;
        uint256 dySwapFee;

        {
            uint256 currentY;
            uint256 newY;

            // Calculate how much to withdraw
            (dy, newY, currentY) = _calculateWithdrawOneTokenDY(
                self,
                tokenIndex,
                tokenAmount,
                baseVirtualPrice,
                totalSupply
            );

            // Calculate the associated swap fee
            dySwapFee = currentY
                .sub(newY)
                .div(self.tokenPrecisionMultipliers[tokenIndex])
                .sub(dy);
        }

        return (dy, dySwapFee);
    }

    /**
     * @notice Calculate the dy of withdrawing in one token
     * @param self Swap struct to read from
     * @param tokenIndex which token will be withdrawn
     * @param tokenAmount the amount to withdraw in the pools precision
     * @param baseVirtualPrice the virtual price of the base swap's LP token
     * @return the dy excluding swap fee, the new y after withdrawing one token, and current y
     */
    function _calculateWithdrawOneTokenDY(
        SwapUtils.Swap storage self,
        uint8 tokenIndex,
        uint256 tokenAmount,
        uint256 baseVirtualPrice,
        uint256 totalSupply
    )
        internal
        view
        returns (
            uint256,
            uint256,
            uint256
        )
    {
        // Get the current D, then solve the stableswap invariant
        // y_i for D - tokenAmount
        uint256[] memory xp = _xp(self, baseVirtualPrice);
        require(tokenIndex < xp.length, "Token index out of range");

        CalculateWithdrawOneTokenDYInfo
            memory v = CalculateWithdrawOneTokenDYInfo(
                0,
                0,
                0,
                0,
                self._getAPrecise(),
                0
            );
        v.d0 = SwapUtils.getD(xp, v.preciseA);
        v.d1 = v.d0.sub(tokenAmount.mul(v.d0).div(totalSupply));

        require(tokenAmount <= xp[tokenIndex], "Withdraw exceeds available");

        v.newY = SwapUtils.getYD(v.preciseA, tokenIndex, xp, v.d1);

        uint256[] memory xpReduced = new uint256[](xp.length);

        v.feePerToken = SwapUtils._feePerToken(self.swapFee, xp.length);
        for (uint256 i = 0; i < xp.length; i++) {
            v.xpi = xp[i];
            // if i == tokenIndex, dxExpected = xp[i] * d1 / d0 - newY
            // else dxExpected = xp[i] - (xp[i] * d1 / d0)
            // xpReduced[i] -= dxExpected * fee / FEE_DENOMINATOR
            xpReduced[i] = v.xpi.sub(
                (
                    (i == tokenIndex)
                        ? v.xpi.mul(v.d1).div(v.d0).sub(v.newY)
                        : v.xpi.sub(v.xpi.mul(v.d1).div(v.d0))
                ).mul(v.feePerToken).div(FEE_DENOMINATOR)
            );
        }

        uint256 dy = xpReduced[tokenIndex].sub(
            SwapUtils.getYD(v.preciseA, tokenIndex, xpReduced, v.d1)
        );

        if (tokenIndex == xp.length.sub(1)) {
            dy = dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(baseVirtualPrice);
            v.newY = v.newY.mul(BASE_VIRTUAL_PRICE_PRECISION).div(
                baseVirtualPrice
            );
            xp[tokenIndex] = xp[tokenIndex]
                .mul(BASE_VIRTUAL_PRICE_PRECISION)
                .div(baseVirtualPrice);
        }
        dy = dy.sub(1).div(self.tokenPrecisionMultipliers[tokenIndex]);

        return (dy, v.newY, xp[tokenIndex]);
    }

    /**
     * @notice Given a set of balances and precision multipliers, return the
     * precision-adjusted balances. The last element will also get scaled up by
     * the given baseVirtualPrice.
     *
     * @param balances an array of token balances, in their native precisions.
     * These should generally correspond with pooled tokens.
     *
     * @param precisionMultipliers an array of multipliers, corresponding to
     * the amounts in the balances array. When multiplied together they
     * should yield amounts at the pool's precision.
     *
     * @param baseVirtualPrice the base virtual price to scale the balance of the
     * base Swap's LP token.
     *
     * @return an array of amounts "scaled" to the pool's precision
     */
    function _xp(
        uint256[] memory balances,
        uint256[] memory precisionMultipliers,
        uint256 baseVirtualPrice
    ) internal pure returns (uint256[] memory) {
        uint256[] memory xp = SwapUtils._xp(balances, precisionMultipliers);
        uint256 baseLPTokenIndex = balances.length.sub(1);
        xp[baseLPTokenIndex] = xp[baseLPTokenIndex].mul(baseVirtualPrice).div(
            BASE_VIRTUAL_PRICE_PRECISION
        );
        return xp;
    }

    /**
     * @notice Return the precision-adjusted balances of all tokens in the pool
     * @param self Swap struct to read from
     * @return the pool balances "scaled" to the pool's precision, allowing
     * them to be more easily compared.
     */
    function _xp(SwapUtils.Swap storage self, uint256 baseVirtualPrice)
        internal
        view
        returns (uint256[] memory)
    {
        return
            _xp(
                self.balances,
                self.tokenPrecisionMultipliers,
                baseVirtualPrice
            );
    }

    /**
     * @notice Get the virtual price, to help calculate profit
     * @param self Swap struct to read from
     * @param metaSwapStorage MetaSwap struct to read from
     * @return the virtual price, scaled to precision of BASE_VIRTUAL_PRICE_PRECISION
     */
    function getVirtualPrice(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage
    ) external view returns (uint256) {
        uint256 d = SwapUtils.getD(
            _xp(
                self.balances,
                self.tokenPrecisionMultipliers,
                _getBaseVirtualPrice(metaSwapStorage)
            ),
            self._getAPrecise()
        );
        uint256 supply = self.lpToken.totalSupply();
        if (supply != 0) {
            return d.mul(BASE_VIRTUAL_PRICE_PRECISION).div(supply);
        }
        return 0;
    }

    /**
     * @notice Externally calculates a swap between two tokens. The SwapUtils.Swap storage and
     * MetaSwap storage should be from the same MetaSwap contract.
     * @param self Swap struct to read from
     * @param metaSwapStorage MetaSwap struct from the same contract
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     */
    function calculateSwap(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256 dy) {
        (dy, ) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            dx,
            _getBaseVirtualPrice(metaSwapStorage)
        );
    }

    /**
     * @notice Internally calculates a swap between two tokens.
     *
     * @dev The caller is expected to transfer the actual amounts (dx and dy)
     * using the token contracts.
     *
     * @param self Swap struct to read from
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param baseVirtualPrice the virtual price of the base LP token
     * @return dy the number of tokens the user will get and dyFee the associated fee
     */
    function _calculateSwap(
        SwapUtils.Swap storage self,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 baseVirtualPrice
    ) internal view returns (uint256 dy, uint256 dyFee) {
        uint256[] memory xp = _xp(self, baseVirtualPrice);
        require(
            tokenIndexFrom < xp.length && tokenIndexTo < xp.length,
            "Token index out of range"
        );
        uint256 baseLPTokenIndex = xp.length.sub(1);

        uint256 x = dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom]);
        if (tokenIndexFrom == baseLPTokenIndex) {
            // When swapping from a base Swap token, scale up dx by its virtual price
            x = x.mul(baseVirtualPrice).div(BASE_VIRTUAL_PRICE_PRECISION);
        }
        x = x.add(xp[tokenIndexFrom]);

        uint256 y = SwapUtils.getY(
            self._getAPrecise(),
            tokenIndexFrom,
            tokenIndexTo,
            x,
            xp
        );
        dy = xp[tokenIndexTo].sub(y).sub(1);

        if (tokenIndexTo == baseLPTokenIndex) {
            // When swapping to a base Swap token, scale down dy by its virtual price
            dy = dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(baseVirtualPrice);
        }

        dyFee = dy.mul(self.swapFee).div(FEE_DENOMINATOR);
        dy = dy.sub(dyFee);

        dy = dy.div(self.tokenPrecisionMultipliers[tokenIndexTo]);
    }

    /**
     * @notice Calculates the expected return amount from swapping between
     * the pooled tokens and the underlying tokens of the base Swap pool.
     *
     * @param self Swap struct to read from
     * @param metaSwapStorage MetaSwap struct from the same contract
     * @param tokenIndexFrom the token to sell
     * @param tokenIndexTo the token to buy
     * @param dx the number of tokens to sell. If the token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @return dy the number of tokens the user will get
     */
    function calculateSwapUnderlying(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx
    ) external view returns (uint256) {
        CalculateSwapUnderlyingInfo memory v = CalculateSwapUnderlyingInfo(
            _getBaseVirtualPrice(metaSwapStorage),
            metaSwapStorage.baseSwap,
            0,
            uint8(metaSwapStorage.baseTokens.length),
            0,
            0,
            0
        );

        uint256[] memory xp = _xp(self, v.baseVirtualPrice);
        v.baseLPTokenIndex = uint8(xp.length.sub(1));
        {
            uint8 maxRange = v.baseLPTokenIndex + v.baseTokensLength;
            require(
                tokenIndexFrom < maxRange && tokenIndexTo < maxRange,
                "Token index out of range"
            );
        }

        if (tokenIndexFrom < v.baseLPTokenIndex) {
            // tokenFrom is from this pool
            v.x = xp[tokenIndexFrom].add(
                dx.mul(self.tokenPrecisionMultipliers[tokenIndexFrom])
            );
        } else {
            // tokenFrom is from the base pool
            tokenIndexFrom = tokenIndexFrom - v.baseLPTokenIndex;
            if (tokenIndexTo < v.baseLPTokenIndex) {
                uint256[] memory baseInputs = new uint256[](v.baseTokensLength);
                baseInputs[tokenIndexFrom] = dx;
                v.x = v
                    .baseSwap
                    .calculateTokenAmount(baseInputs, true)
                    .mul(v.baseVirtualPrice)
                    .div(BASE_VIRTUAL_PRICE_PRECISION);
                // when adding to the base pool,you pay approx 50% of the swap fee
                v.x = v
                    .x
                    .sub(
                        v.x.mul(_getBaseSwapFee(metaSwapStorage.baseSwap)).div(
                            FEE_DENOMINATOR.mul(2)
                        )
                    )
                    .add(xp[v.baseLPTokenIndex]);
            } else {
                // both from and to are from the base pool
                return
                    v.baseSwap.calculateSwap(
                        tokenIndexFrom,
                        tokenIndexTo - v.baseLPTokenIndex,
                        dx
                    );
            }
            tokenIndexFrom = v.baseLPTokenIndex;
        }

        v.metaIndexTo = v.baseLPTokenIndex;
        if (tokenIndexTo < v.baseLPTokenIndex) {
            v.metaIndexTo = tokenIndexTo;
        }

        {
            uint256 y = SwapUtils.getY(
                self._getAPrecise(),
                tokenIndexFrom,
                v.metaIndexTo,
                v.x,
                xp
            );
            v.dy = xp[v.metaIndexTo].sub(y).sub(1);
            uint256 dyFee = v.dy.mul(self.swapFee).div(FEE_DENOMINATOR);
            v.dy = v.dy.sub(dyFee);
        }

        if (tokenIndexTo < v.baseLPTokenIndex) {
            // tokenTo is from this pool
            v.dy = v.dy.div(self.tokenPrecisionMultipliers[v.metaIndexTo]);
        } else {
            // tokenTo is from the base pool
            v.dy = v.baseSwap.calculateRemoveLiquidityOneToken(
                v.dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(v.baseVirtualPrice),
                tokenIndexTo - v.baseLPTokenIndex
            );
        }

        return v.dy;
    }

    /**
     * @notice A simple method to calculate prices from deposits or
     * withdrawals, excluding fees but including slippage. This is
     * helpful as an input into the various "min" parameters on calls
     * to fight front-running
     *
     * @dev This shouldn't be used outside frontends for user estimates.
     *
     * @param self Swap struct to read from
     * @param metaSwapStorage MetaSwap struct to read from
     * @param amounts an array of token amounts to deposit or withdrawal,
     * corresponding to pooledTokens. The amount should be in each
     * pooled token's native precision. If a token charges a fee on transfers,
     * use the amount that gets transferred after the fee.
     * @param deposit whether this is a deposit or a withdrawal
     * @return if deposit was true, total amount of lp token that will be minted and if
     * deposit was false, total amount of lp token that will be burned
     */
    function calculateTokenAmount(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint256[] calldata amounts,
        bool deposit
    ) external view returns (uint256) {
        uint256 a = self._getAPrecise();
        uint256 d0;
        uint256 d1;
        {
            uint256 baseVirtualPrice = _getBaseVirtualPrice(metaSwapStorage);
            uint256[] memory balances1 = self.balances;
            uint256[] memory tokenPrecisionMultipliers = self
                .tokenPrecisionMultipliers;
            uint256 numTokens = balances1.length;
            d0 = SwapUtils.getD(
                _xp(balances1, tokenPrecisionMultipliers, baseVirtualPrice),
                a
            );
            for (uint256 i = 0; i < numTokens; i++) {
                if (deposit) {
                    balances1[i] = balances1[i].add(amounts[i]);
                } else {
                    balances1[i] = balances1[i].sub(
                        amounts[i],
                        "Cannot withdraw more than available"
                    );
                }
            }
            d1 = SwapUtils.getD(
                _xp(balances1, tokenPrecisionMultipliers, baseVirtualPrice),
                a
            );
        }
        uint256 totalSupply = self.lpToken.totalSupply();

        if (deposit) {
            return d1.sub(d0).mul(totalSupply).div(d0);
        } else {
            return d0.sub(d1).mul(totalSupply).div(d0);
        }
    }

    /*** STATE MODIFYING FUNCTIONS ***/

    /**
     * @notice swap two tokens in the pool
     * @param self Swap struct to read from and write to
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell
     * @param minDy the min amount the user would like to receive, or revert.
     * @return amount of token user received on swap
     */
    function swap(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy
    ) external returns (uint256) {
        {
            uint256 pooledTokensLength = self.pooledTokens.length;
            require(
                tokenIndexFrom < pooledTokensLength &&
                    tokenIndexTo < pooledTokensLength,
                "Token index is out of range"
            );
        }

        uint256 transferredDx;
        {
            IERC20 tokenFrom = self.pooledTokens[tokenIndexFrom];
            require(
                dx <= tokenFrom.balanceOf(msg.sender),
                "Cannot swap more than you own"
            );

            {
                // Transfer tokens first to see if a fee was charged on transfer
                uint256 beforeBalance = tokenFrom.balanceOf(address(this));
                tokenFrom.safeTransferFrom(msg.sender, address(this), dx);

                // Use the actual transferred amount for AMM math
                transferredDx = tokenFrom.balanceOf(address(this)).sub(
                    beforeBalance
                );
            }
        }

        (uint256 dy, uint256 dyFee) = _calculateSwap(
            self,
            tokenIndexFrom,
            tokenIndexTo,
            transferredDx,
            _updateBaseVirtualPrice(metaSwapStorage)
        );
        require(dy >= minDy, "Swap didn't result in min tokens");

        uint256 dyAdminFee = dyFee.mul(self.adminFee).div(FEE_DENOMINATOR).div(
            self.tokenPrecisionMultipliers[tokenIndexTo]
        );

        self.balances[tokenIndexFrom] = self.balances[tokenIndexFrom].add(
            transferredDx
        );
        self.balances[tokenIndexTo] = self.balances[tokenIndexTo].sub(dy).sub(
            dyAdminFee
        );

        self.pooledTokens[tokenIndexTo].safeTransfer(msg.sender, dy);

        emit TokenSwap(
            msg.sender,
            transferredDx,
            dy,
            tokenIndexFrom,
            tokenIndexTo
        );

        return dy;
    }

    /**
     * @notice Swaps with the underlying tokens of the base Swap pool. For this function,
     * the token indices are flattened out so that underlying tokens are represented
     * in the indices.
     * @dev Since this calls multiple external functions during the execution,
     * it is recommended to protect any function that depends on this with reentrancy guards.
     * @param self Swap struct to read from and write to
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @param tokenIndexFrom the token the user wants to sell
     * @param tokenIndexTo the token the user wants to buy
     * @param dx the amount of tokens the user wants to sell
     * @param minDy the min amount the user would like to receive, or revert.
     * @return amount of token user received on swap
     */
    function swapUnderlying(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint8 tokenIndexFrom,
        uint8 tokenIndexTo,
        uint256 dx,
        uint256 minDy
    ) external returns (uint256) {
        SwapUnderlyingInfo memory v = SwapUnderlyingInfo(
            0,
            0,
            0,
            self.tokenPrecisionMultipliers,
            self.balances,
            metaSwapStorage.baseTokens,
            IERC20(address(0)),
            0,
            IERC20(address(0)),
            0,
            _updateBaseVirtualPrice(metaSwapStorage)
        );

        uint8 baseLPTokenIndex = uint8(v.oldBalances.length.sub(1));

        {
            uint8 maxRange = uint8(baseLPTokenIndex + v.baseTokens.length);
            require(
                tokenIndexFrom < maxRange && tokenIndexTo < maxRange,
                "Token index out of range"
            );
        }

        ISwap baseSwap = metaSwapStorage.baseSwap;

        // Find the address of the token swapping from and the index in MetaSwap's token list
        if (tokenIndexFrom < baseLPTokenIndex) {
            v.tokenFrom = self.pooledTokens[tokenIndexFrom];
            v.metaIndexFrom = tokenIndexFrom;
        } else {
            v.tokenFrom = v.baseTokens[tokenIndexFrom - baseLPTokenIndex];
            v.metaIndexFrom = baseLPTokenIndex;
        }

        // Find the address of the token swapping to and the index in MetaSwap's token list
        if (tokenIndexTo < baseLPTokenIndex) {
            v.tokenTo = self.pooledTokens[tokenIndexTo];
            v.metaIndexTo = tokenIndexTo;
        } else {
            v.tokenTo = v.baseTokens[tokenIndexTo - baseLPTokenIndex];
            v.metaIndexTo = baseLPTokenIndex;
        }

        // Check for possible fee on transfer
        v.dx = v.tokenFrom.balanceOf(address(this));
        v.tokenFrom.safeTransferFrom(msg.sender, address(this), dx);
        v.dx = v.tokenFrom.balanceOf(address(this)).sub(v.dx); // update dx in case of fee on transfer

        if (
            tokenIndexFrom < baseLPTokenIndex || tokenIndexTo < baseLPTokenIndex
        ) {
            // Either one of the tokens belongs to the MetaSwap tokens list
            uint256[] memory xp = _xp(
                v.oldBalances,
                v.tokenPrecisionMultipliers,
                v.baseVirtualPrice
            );

            if (tokenIndexFrom < baseLPTokenIndex) {
                // Swapping from a MetaSwap token
                v.x = xp[tokenIndexFrom].add(
                    dx.mul(v.tokenPrecisionMultipliers[tokenIndexFrom])
                );
            } else {
                // Swapping from one of the tokens hosted in the base Swap
                // This case requires adding the underlying token to the base Swap, then
                // using the base LP token to swap to the desired token
                uint256[] memory baseAmounts = new uint256[](
                    v.baseTokens.length
                );
                baseAmounts[tokenIndexFrom - baseLPTokenIndex] = v.dx;

                // Add liquidity to the base Swap contract and receive base LP token
                v.dx = baseSwap.addLiquidity(baseAmounts, 0, block.timestamp);

                // Calculate the value of total amount of baseLPToken we end up with
                v.x = v
                    .dx
                    .mul(v.baseVirtualPrice)
                    .div(BASE_VIRTUAL_PRICE_PRECISION)
                    .add(xp[baseLPTokenIndex]);
            }

            // Calculate how much to withdraw in MetaSwap level and the the associated swap fee
            uint256 dyFee;
            {
                uint256 y = SwapUtils.getY(
                    self._getAPrecise(),
                    v.metaIndexFrom,
                    v.metaIndexTo,
                    v.x,
                    xp
                );
                v.dy = xp[v.metaIndexTo].sub(y).sub(1);
                if (tokenIndexTo >= baseLPTokenIndex) {
                    // When swapping to a base Swap token, scale down dy by its virtual price
                    v.dy = v.dy.mul(BASE_VIRTUAL_PRICE_PRECISION).div(
                        v.baseVirtualPrice
                    );
                }
                dyFee = v.dy.mul(self.swapFee).div(FEE_DENOMINATOR);
                v.dy = v.dy.sub(dyFee).div(
                    v.tokenPrecisionMultipliers[v.metaIndexTo]
                );
            }

            // Update the balances array according to the calculated input and output amount
            {
                uint256 dyAdminFee = dyFee.mul(self.adminFee).div(
                    FEE_DENOMINATOR
                );
                dyAdminFee = dyAdminFee.div(
                    v.tokenPrecisionMultipliers[v.metaIndexTo]
                );
                self.balances[v.metaIndexFrom] = v
                    .oldBalances[v.metaIndexFrom]
                    .add(v.dx);
                self.balances[v.metaIndexTo] = v
                    .oldBalances[v.metaIndexTo]
                    .sub(v.dy)
                    .sub(dyAdminFee);
            }

            if (tokenIndexTo >= baseLPTokenIndex) {
                // When swapping to a token that belongs to the base Swap, burn the LP token
                // and withdraw the desired token from the base pool
                uint256 oldBalance = v.tokenTo.balanceOf(address(this));
                baseSwap.removeLiquidityOneToken(
                    v.dy,
                    tokenIndexTo - baseLPTokenIndex,
                    0,
                    block.timestamp
                );
                v.dy = v.tokenTo.balanceOf(address(this)) - oldBalance;
            }

            // Check the amount of token to send meets minDy
            require(v.dy >= minDy, "Swap didn't result in min tokens");
        } else {
            // Both tokens are from the base Swap pool
            // Do a swap through the base Swap
            v.dy = v.tokenTo.balanceOf(address(this));
            baseSwap.swap(
                tokenIndexFrom - baseLPTokenIndex,
                tokenIndexTo - baseLPTokenIndex,
                v.dx,
                minDy,
                block.timestamp
            );
            v.dy = v.tokenTo.balanceOf(address(this)).sub(v.dy);
        }

        // Send the desired token to the caller
        v.tokenTo.safeTransfer(msg.sender, v.dy);

        emit TokenSwapUnderlying(
            msg.sender,
            dx,
            v.dy,
            tokenIndexFrom,
            tokenIndexTo
        );

        return v.dy;
    }

    /**
     * @notice Add liquidity to the pool
     * @param self Swap struct to read from and write to
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @param amounts the amounts of each token to add, in their native precision
     * @param minToMint the minimum LP tokens adding this amount of liquidity
     * should mint, otherwise revert. Handy for front-running mitigation
     * allowed addresses. If the pool is not in the guarded launch phase, this parameter will be ignored.
     * @return amount of LP token user received
     */
    function addLiquidity(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint256[] memory amounts,
        uint256 minToMint
    ) external returns (uint256) {
        IERC20[] memory pooledTokens = self.pooledTokens;
        require(
            amounts.length == pooledTokens.length,
            "Amounts must match pooled tokens"
        );

        uint256[] memory fees = new uint256[](pooledTokens.length);

        // current state
        ManageLiquidityInfo memory v = ManageLiquidityInfo(
            0,
            0,
            0,
            self.lpToken,
            0,
            self._getAPrecise(),
            _updateBaseVirtualPrice(metaSwapStorage),
            self.tokenPrecisionMultipliers,
            self.balances
        );
        v.totalSupply = v.lpToken.totalSupply();

        if (v.totalSupply != 0) {
            v.d0 = SwapUtils.getD(
                _xp(
                    v.newBalances,
                    v.tokenPrecisionMultipliers,
                    v.baseVirtualPrice
                ),
                v.preciseA
            );
        }

        for (uint256 i = 0; i < pooledTokens.length; i++) {
            require(
                v.totalSupply != 0 || amounts[i] > 0,
                "Must supply all tokens in pool"
            );

            // Transfer tokens first to see if a fee was charged on transfer
            if (amounts[i] != 0) {
                uint256 beforeBalance = pooledTokens[i].balanceOf(
                    address(this)
                );
                pooledTokens[i].safeTransferFrom(
                    msg.sender,
                    address(this),
                    amounts[i]
                );

                // Update the amounts[] with actual transfer amount
                amounts[i] = pooledTokens[i].balanceOf(address(this)).sub(
                    beforeBalance
                );
            }

            v.newBalances[i] = v.newBalances[i].add(amounts[i]);
        }

        // invariant after change
        v.d1 = SwapUtils.getD(
            _xp(v.newBalances, v.tokenPrecisionMultipliers, v.baseVirtualPrice),
            v.preciseA
        );
        require(v.d1 > v.d0, "D should increase");

        // updated to reflect fees and calculate the user's LP tokens
        v.d2 = v.d1;
        uint256 toMint;

        if (v.totalSupply != 0) {
            uint256 feePerToken = SwapUtils._feePerToken(
                self.swapFee,
                pooledTokens.length
            );
            for (uint256 i = 0; i < pooledTokens.length; i++) {
                uint256 idealBalance = v.d1.mul(self.balances[i]).div(v.d0);
                fees[i] = feePerToken
                    .mul(idealBalance.difference(v.newBalances[i]))
                    .div(FEE_DENOMINATOR);
                self.balances[i] = v.newBalances[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                v.newBalances[i] = v.newBalances[i].sub(fees[i]);
            }
            v.d2 = SwapUtils.getD(
                _xp(
                    v.newBalances,
                    v.tokenPrecisionMultipliers,
                    v.baseVirtualPrice
                ),
                v.preciseA
            );
            toMint = v.d2.sub(v.d0).mul(v.totalSupply).div(v.d0);
        } else {
            // the initial depositor doesn't pay fees
            self.balances = v.newBalances;
            toMint = v.d1;
        }

        require(toMint >= minToMint, "Couldn't mint min requested");

        // mint the user's LP tokens
        self.lpToken.mint(msg.sender, toMint);

        emit AddLiquidity(
            msg.sender,
            amounts,
            fees,
            v.d1,
            v.totalSupply.add(toMint)
        );

        return toMint;
    }

    /**
     * @notice Remove liquidity from the pool all in one token.
     * @param self Swap struct to read from and write to
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @param tokenAmount the amount of the lp tokens to burn
     * @param tokenIndex the index of the token you want to receive
     * @param minAmount the minimum amount to withdraw, otherwise revert
     * @return amount chosen token that user received
     */
    function removeLiquidityOneToken(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint256 tokenAmount,
        uint8 tokenIndex,
        uint256 minAmount
    ) external returns (uint256) {
        LPToken lpToken = self.lpToken;
        uint256 totalSupply = lpToken.totalSupply();
        uint256 numTokens = self.pooledTokens.length;
        require(tokenAmount <= lpToken.balanceOf(msg.sender), ">LP.balanceOf");
        require(tokenIndex < numTokens, "Token not found");

        uint256 dyFee;
        uint256 dy;

        (dy, dyFee) = _calculateWithdrawOneToken(
            self,
            tokenAmount,
            tokenIndex,
            _updateBaseVirtualPrice(metaSwapStorage),
            totalSupply
        );

        require(dy >= minAmount, "dy < minAmount");

        // Update balances array
        self.balances[tokenIndex] = self.balances[tokenIndex].sub(
            dy.add(dyFee.mul(self.adminFee).div(FEE_DENOMINATOR))
        );

        // Burn the associated LP token from the caller and send the desired token
        lpToken.burnFrom(msg.sender, tokenAmount);
        self.pooledTokens[tokenIndex].safeTransfer(msg.sender, dy);

        emit RemoveLiquidityOne(
            msg.sender,
            tokenAmount,
            totalSupply,
            tokenIndex,
            dy
        );

        return dy;
    }

    /**
     * @notice Remove liquidity from the pool, weighted differently than the
     * pool's current balances.
     *
     * @param self Swap struct to read from and write to
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @param amounts how much of each token to withdraw
     * @param maxBurnAmount the max LP token provider is willing to pay to
     * remove liquidity. Useful as a front-running mitigation.
     * @return actual amount of LP tokens burned in the withdrawal
     */
    function removeLiquidityImbalance(
        SwapUtils.Swap storage self,
        MetaSwap storage metaSwapStorage,
        uint256[] memory amounts,
        uint256 maxBurnAmount
    ) public returns (uint256) {
        // Using this struct to avoid stack too deep error
        ManageLiquidityInfo memory v = ManageLiquidityInfo(
            0,
            0,
            0,
            self.lpToken,
            0,
            self._getAPrecise(),
            _updateBaseVirtualPrice(metaSwapStorage),
            self.tokenPrecisionMultipliers,
            self.balances
        );
        v.totalSupply = v.lpToken.totalSupply();

        require(
            amounts.length == v.newBalances.length,
            "Amounts should match pool tokens"
        );
        require(maxBurnAmount != 0, "Must burn more than 0");

        uint256 feePerToken = SwapUtils._feePerToken(
            self.swapFee,
            v.newBalances.length
        );

        // Calculate how much LPToken should be burned
        uint256[] memory fees = new uint256[](v.newBalances.length);
        {
            uint256[] memory balances1 = new uint256[](v.newBalances.length);

            v.d0 = SwapUtils.getD(
                _xp(
                    v.newBalances,
                    v.tokenPrecisionMultipliers,
                    v.baseVirtualPrice
                ),
                v.preciseA
            );
            for (uint256 i = 0; i < v.newBalances.length; i++) {
                balances1[i] = v.newBalances[i].sub(
                    amounts[i],
                    "Cannot withdraw more than available"
                );
            }
            v.d1 = SwapUtils.getD(
                _xp(balances1, v.tokenPrecisionMultipliers, v.baseVirtualPrice),
                v.preciseA
            );

            for (uint256 i = 0; i < v.newBalances.length; i++) {
                uint256 idealBalance = v.d1.mul(v.newBalances[i]).div(v.d0);
                uint256 difference = idealBalance.difference(balances1[i]);
                fees[i] = feePerToken.mul(difference).div(FEE_DENOMINATOR);
                self.balances[i] = balances1[i].sub(
                    fees[i].mul(self.adminFee).div(FEE_DENOMINATOR)
                );
                balances1[i] = balances1[i].sub(fees[i]);
            }

            v.d2 = SwapUtils.getD(
                _xp(balances1, v.tokenPrecisionMultipliers, v.baseVirtualPrice),
                v.preciseA
            );
        }

        uint256 tokenAmount = v.d0.sub(v.d2).mul(v.totalSupply).div(v.d0);
        require(tokenAmount != 0, "Burnt amount cannot be zero");

        // Scale up by withdraw fee
        tokenAmount = tokenAmount.add(1);

        // Check for max burn amount
        require(tokenAmount <= maxBurnAmount, "tokenAmount > maxBurnAmount");

        // Burn the calculated amount of LPToken from the caller and send the desired tokens
        v.lpToken.burnFrom(msg.sender, tokenAmount);
        for (uint256 i = 0; i < v.newBalances.length; i++) {
            self.pooledTokens[i].safeTransfer(msg.sender, amounts[i]);
        }

        emit RemoveLiquidityImbalance(
            msg.sender,
            amounts,
            fees,
            v.d1,
            v.totalSupply.sub(tokenAmount)
        );

        return tokenAmount;
    }

    /**
     * @notice Determines if the stored value of base Swap's virtual price is expired.
     * If the last update was past the BASE_CACHE_EXPIRE_TIME, then update the stored value.
     *
     * @param metaSwapStorage MetaSwap struct to read from and write to
     * @return base Swap's virtual price
     */
    function _updateBaseVirtualPrice(MetaSwap storage metaSwapStorage)
        internal
        returns (uint256)
    {
        if (
            block.timestamp >
            metaSwapStorage.baseCacheLastUpdated + BASE_CACHE_EXPIRE_TIME
        ) {
            // When the cache is expired, update it
            uint256 baseVirtualPrice = ISwap(metaSwapStorage.baseSwap)
                .getVirtualPrice();
            metaSwapStorage.baseVirtualPrice = baseVirtualPrice;
            metaSwapStorage.baseCacheLastUpdated = block.timestamp;
            return baseVirtualPrice;
        } else {
            return metaSwapStorage.baseVirtualPrice;
        }
    }
}

Settings
{
  "evmVersion": "istanbul",
  "libraries": {},
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 10000
  },
  "remappings": [],
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract Security Audit

Contract ABI

[{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"provider","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"tokenAmounts","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"fees","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"invariant","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lpTokenSupply","type":"uint256"}],"name":"AddLiquidity","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newAdminFee","type":"uint256"}],"name":"NewAdminFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newSwapFee","type":"uint256"}],"name":"NewSwapFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"newWithdrawFee","type":"uint256"}],"name":"NewWithdrawFee","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"provider","type":"address"},{"indexed":false,"internalType":"uint256[]","name":"tokenAmounts","type":"uint256[]"},{"indexed":false,"internalType":"uint256[]","name":"fees","type":"uint256[]"},{"indexed":false,"internalType":"uint256","name":"invariant","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lpTokenSupply","type":"uint256"}],"name":"RemoveLiquidityImbalance","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"provider","type":"address"},{"indexed":false,"internalType":"uint256","name":"lpTokenAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"lpTokenSupply","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"boughtId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokensBought","type":"uint256"}],"name":"RemoveLiquidityOne","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokensSold","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokensBought","type":"uint256"},{"indexed":false,"internalType":"uint128","name":"soldId","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"boughtId","type":"uint128"}],"name":"TokenSwap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"buyer","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokensSold","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokensBought","type":"uint256"},{"indexed":false,"internalType":"uint128","name":"soldId","type":"uint128"},{"indexed":false,"internalType":"uint128","name":"boughtId","type":"uint128"}],"name":"TokenSwapUnderlying","type":"event"},{"inputs":[],"name":"BASE_CACHE_EXPIRE_TIME","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"BASE_VIRTUAL_PRICE_PRECISION","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"}]

614b42610026600b82828239805160001a60731461001957fe5b30600052607381538281f3fe73000000000000000000000000000000000000000030146080604052600436106100dd5760003560e01c8063becf967c1161008b578063d45757ba11610065578063d45757ba1461041d578063e9d4d07714610459578063f6ada8c21461047c576100dd565b8063becf967c14610312578063c1a662731461031a578063d1ab4b4a1461035f576100dd565b80637e971656116100bc5780637e971656146101fd57806398414eed146102bb578063a28c23411461030a576100dd565b806280247a146100e25780635afb90ff1461014357806378b0bcbe1461017f575b600080fd5b8180156100ee57600080fd5b50610131600480360360c081101561010557600080fd5b5080359060208101359060ff604082013581169160608101359091169060808101359060a001356104ae565b60408051918252519081900360200190f35b610131600480360360a081101561015957600080fd5b5080359060208101359060ff604082013581169160608101359091169060800135611162565b6101316004803603608081101561019557600080fd5b8135916020810135918101906060810160408201356401000000008111156101bc57600080fd5b8201836020820111156101ce57600080fd5b803590602001918460208302840111640100000000831117156101f057600080fd5b9193509150351515611184565b81801561020957600080fd5b506101316004803603608081101561022057600080fd5b81359160208101359181019060608101604082013564010000000081111561024757600080fd5b82018360208201111561025957600080fd5b8035906020019184602083028401116401000000008311171561027b57600080fd5b9190808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152509295505091359250611408915050565b8180156102c757600080fd5b50610131600480360360c08110156102de57600080fd5b5080359060208101359060ff604082013581169160608101359091169060808101359060a00135611b9d565b610131611fb7565b610131611fc3565b81801561032657600080fd5b50610131600480360360a081101561033d57600080fd5b5080359060208101359060408101359060ff6060820135169060800135611fc9565b81801561036b57600080fd5b506101316004803603608081101561038257600080fd5b8135916020810135918101906060810160408201356401000000008111156103a957600080fd5b8201836020820111156103bb57600080fd5b803590602001918460208302840111640100000000831117156103dd57600080fd5b9190808060200260200160405190810160405280939291908181526020018383602002808284376000920191909152509295505091359250612355915050565b610131600480360360a081101561043357600080fd5b5080359060208101359060ff604082013581169160608101359091169060800135612bb6565b6101316004803603604081101561046f57600080fd5b5080359060200135613139565b6101316004803603608081101561049257600080fd5b508035906020810135906040810135906060013560ff166132b8565b60006104b86148df565b6040518061016001604052806000815260200160008152602001600081526020018960080180548060200260200160405190810160405280929190818152602001828054801561052757602002820191906000526020600020905b815481526020019060010190808311610513575b505050505081526020018960090180548060200260200160405190810160405280929190818152602001828054801561057f57602002820191906000526020600020905b81548152602001906001019080831161056b575b50505050508152602001886003018054806020026020016040519081016040528092919081815260200182805480156105e157602002820191906000526020600020905b81546001600160a01b031681526001909101906020018083116105c3575b50505091835250506000602082018190526040820181905260608201819052608082015260a00161061189613354565b905260808101515190915060009061062a906001613411565b905060008260a00151518260ff160190508060ff168860ff1610801561065557508060ff168760ff16105b6106a6576040805162461bcd60e51b815260206004820152601860248201527f546f6b656e20696e646578206f7574206f662072616e67650000000000000000604482015290519081900360640190fd5b5087546001600160a01b031660ff80831690891610156106fa57896007018860ff16815481106106d257fe5b6000918252602090912001546001600160a01b031660c084015260ff881660e0840152610732565b8260a0015182890360ff168151811061070f57fe5b60209081029190910101516001600160a01b031660c084015260ff821660e08401525b8160ff168760ff16101561077c57896007018760ff168154811061075257fe5b6000918252602090912001546001600160a01b031661010084015260ff87166101208401526107b6565b8260a0015182880360ff168151811061079157fe5b60209081029190910101516001600160a01b031661010084015260ff82166101208401525b8260c001516001600160a01b03166370a08231306040518263ffffffff1660e01b815260040180826001600160a01b0316815260200191505060206040518083038186803b15801561080757600080fd5b505afa15801561081b573d6000803e3d6000fd5b505050506040513d602081101561083157600080fd5b5051602084015260c0830151610852906001600160a01b031633308961346e565b6108dd83602001518460c001516001600160a01b03166370a08231306040518263ffffffff1660e01b815260040180826001600160a01b0316815260200191505060206040518083038186803b1580156108ab57600080fd5b505afa1580156108bf573d6000803e3d6000fd5b505050506040513d60208110156108d557600080fd5b505190613411565b602084015260ff80831690891610806108fb57508160ff168760ff16105b15610f2b57606061091a846080015185606001518661014001516134fc565b90508260ff168960ff1610156109865761097f61095a85606001518b60ff168151811061094357fe5b60200260200101518961356290919063ffffffff16565b828b60ff168151811061096957fe5b60200260200101516135bb90919063ffffffff16565b8452610b0e565b60608460a001515167ffffffffffffffff811180156109a457600080fd5b506040519080825280602002602001820160405280156109ce578160200160208202803683370190505b509050846020015181858c0360ff16815181106109e757fe5b602002602001018181525050826001600160a01b0316634d49e87d826000426040518463ffffffff1660e01b81526004018080602001848152602001838152602001828103825285818151815260200191508051906020019060200280838360005b83811015610a61578181015183820152602001610a49565b50505050905001945050505050602060405180830381600087803b158015610a8857600080fd5b505af1158015610a9c573d6000803e3d6000fd5b505050506040513d6020811015610ab257600080fd5b505160208601528151610b0a90839060ff8716908110610ace57fe5b6020026020010151610b04670de0b6b3a7640000610afe8961014001518a6020015161356290919063ffffffff16565b90613615565b906135bb565b8552505b600080610b30610b1d8e61367c565b60e0880151610120890151895187613711565b9050610b6b6001610b6583868a610120015160ff1681518110610b4f57fe5b602002602001015161341190919063ffffffff16565b90613411565b604087015260ff808616908b1610610bab57610ba5866101400151610afe670de0b6b3a7640000896040015161356290919063ffffffff16565b60408701525b610bcf6402540be400610afe8f60040154896040015161356290919063ffffffff16565b9150610c0b866060015187610120015160ff1681518110610bec57fe5b6020026020010151610afe84896040015161341190919063ffffffff16565b60408701525060058c0154600090610c2f906402540be40090610afe908590613562565b9050610c63866060015187610120015160ff1681518110610c4c57fe5b60200260200101518261361590919063ffffffff16565b9050610c84866020015187608001518860e0015160ff168151811061096957fe5b8d6009018760e0015160ff1681548110610c9a57fe5b9060005260206000200181905550610ccc81610b65886040015189608001518a610120015160ff1681518110610b4f57fe5b8d60090187610120015160ff1681548110610ce357fe5b9060005260206000200181905550508360ff168960ff1610610ecb5760008561010001516001600160a01b03166370a08231306040518263ffffffff1660e01b815260040180826001600160a01b0316815260200191505060206040518083038186803b158015610d5357600080fd5b505afa158015610d67573d6000803e3d6000fd5b505050506040513d6020811015610d7d57600080fd5b505160408088015181517f3e3a1560000000000000000000000000000000000000000000000000000000008152600481019190915260ff888e0316602482015260006044820181905242606483015291519293506001600160a01b03871692633e3a156092608480840193602093929083900390910190829087803b158015610e0557600080fd5b505af1158015610e19573d6000803e3d6000fd5b505050506040513d6020811015610e2f57600080fd5b5050610100860151604080517f70a08231000000000000000000000000000000000000000000000000000000008152306004820152905183926001600160a01b0316916370a08231916024808301926020929190829003018186803b158015610e9757600080fd5b505afa158015610eab573d6000803e3d6000fd5b505050506040513d6020811015610ec157600080fd5b5051036040870152505b8685604001511015610f24576040805162461bcd60e51b815260206004820181905260248201527f53776170206469646e277420726573756c7420696e206d696e20746f6b656e73604482015290519081900360640190fd5b50506110d8565b8261010001516001600160a01b03166370a08231306040518263ffffffff1660e01b815260040180826001600160a01b0316815260200191505060206040518083038186803b158015610f7d57600080fd5b505afa158015610f91573d6000803e3d6000fd5b505050506040513d6020811015610fa757600080fd5b505160408085019190915260208481015182517f9169558600000000000000000000000000000000000000000000000000000000815260ff868d0381166004830152868c0316602482015260448101919091526064810188905242608482015291516001600160a01b0384169263916955869260a48083019391928290030181600087803b15801561103857600080fd5b505af115801561104c573d6000803e3d6000fd5b505050506040513d602081101561106257600080fd5b505060408084015161010085015182517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015292516110d2936001600160a01b03909216916370a08231916024808301926020929190829003018186803b1580156108ab57600080fd5b60408401525b6110ff3384604001518561010001516001600160a01b03166139579092919063ffffffff16565b6040808401518151888152602081019190915260ff808b168284015289166060820152905133917f6617207207e397b41fc98016d8c9febb7223f44c355db66ad429730f2b950a60919081900360800190a2505060400151979650505050505050565b6000611179868585856111748a6139dc565b613a7e565b509695505050505050565b6000806111908761367c565b905060008060006111a0896139dc565b905060608a6009018054806020026020016040519081016040528092919081815260200182805480156111f257602002820191906000526020600020905b8154815260200190600101908083116111de575b5050505050905060608b60080180548060200260200160405190810160405280929190818152602001828054801561124957602002820191906000526020600020905b815481526020019060010190808311611235575b5050505050905060008251905061126a6112648484876134fc565b88613c4e565b955060005b8181101561132f5789156112bc5761129f8c8c8381811061128c57fe5b9050602002013585838151811061096957fe5b8482815181106112ab57fe5b602002602001018181525050611327565b61130e8c8c838181106112cb57fe5b90506020020135604051806060016040528060238152602001614aea602391398684815181106112f757fe5b6020026020010151613db49092919063ffffffff16565b84828151811061131a57fe5b6020026020010181815250505b60010161126f565b5061133e6112648484876134fc565b94505050505060008960060160009054906101000a90046001600160a01b03166001600160a01b03166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b15801561139657600080fd5b505afa1580156113aa573d6000803e3d6000fd5b505050506040513d60208110156113c057600080fd5b5051905085156113ed576113e283610afe836113dc8684613411565b90613562565b9450505050506113ff565b6113e283610afe836113dc8387613411565b95945050505050565b6000611412614951565b604080516101208101825260008082526020820181905291810182905260068801546001600160a01b03166060820152608081019190915260a081016114578861367c565b815260200161146587613354565b8152602001876008018054806020026020016040519081016040528092919081815260200182805480156114b857602002820191906000526020600020905b8154815260200190600101908083116114a4575b505050505081526020018760090180548060200260200160405190810160405280929190818152602001828054801561151057602002820191906000526020600020905b8154815260200190600101908083116114fc575b5050505050815250905080606001516001600160a01b03166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b15801561155757600080fd5b505afa15801561156b573d6000803e3d6000fd5b505050506040513d602081101561158157600080fd5b50516080820152610100810151518451146115e3576040805162461bcd60e51b815260206004820181905260248201527f416d6f756e74732073686f756c64206d6174636820706f6f6c20746f6b656e73604482015290519081900360640190fd5b82611635576040805162461bcd60e51b815260206004820152601560248201527f4d757374206275726e206d6f7265207468616e20300000000000000000000000604482015290519081900360640190fd5b600061164b876004015483610100015151613e4b565b905060608261010001515167ffffffffffffffff8111801561166c57600080fd5b50604051908082528060200260200182016040528015611696578160200160208202803683370190505b50905060608361010001515167ffffffffffffffff811180156116b857600080fd5b506040519080825280602002602001820160405280156116e2578160200160208202803683370190505b50905061170a6117008561010001518660e001518760c001516134fc565b8560a00151613c4e565b845260005b8461010001515181101561177d5761175e88828151811061172c57fe5b6020026020010151604051806060016040528060238152602001614aea6023913987610100015184815181106112f757fe5b82828151811061176a57fe5b602090810291909101015260010161170f565b50611794611700828660e001518760c001516134fc565b602085015260005b846101000151518110156118dd5760006117e38660000151610afe88610100015185815181106117c857fe5b6020026020010151896020015161356290919063ffffffff16565b9050600061180d8484815181106117f657fe5b602002602001015183613e6a90919063ffffffff16565b90506118226402540be400610afe8884613562565b85848151811061182e57fe5b60200260200101818152505061187c6118706402540be400610afe8f6005015489888151811061185a57fe5b602002602001015161356290919063ffffffff16565b858581518110610b4f57fe5b8c600901848154811061188b57fe5b90600052602060002001819055506118bc8584815181106118a857fe5b6020026020010151858581518110610b4f57fe5b8484815181106118c857fe5b6020908102919091010152505060010161179c565b506118f4611700828660e001518760c001516134fc565b60408501819052845160808601516000935061191a92610afe91906113dc908490613411565b90508061196e576040805162461bcd60e51b815260206004820152601b60248201527f4275726e7420616d6f756e742063616e6e6f74206265207a65726f0000000000604482015290519081900360640190fd5b6119798160016135bb565b9050858111156119d0576040805162461bcd60e51b815260206004820152601b60248201527f746f6b656e416d6f756e74203e206d61784275726e416d6f756e740000000000604482015290519081900360640190fd5b83606001516001600160a01b03166379cc679033836040518363ffffffff1660e01b815260040180836001600160a01b0316815260200182815260200192505050600060405180830381600087803b158015611a2b57600080fd5b505af1158015611a3f573d6000803e3d6000fd5b5050505060005b84610100015151811015611a9f57611a9733898381518110611a6457fe5b60200260200101518c6007018481548110611a7b57fe5b6000918252602090912001546001600160a01b03169190613957565b600101611a46565b50336001600160a01b03167f3631c28b1f9dd213e0319fb167b554d76b6c283a41143eb400a0d1adb1af175588848760200151611ae9868a6080015161341190919063ffffffff16565b604051808060200180602001858152602001848152602001838103835287818151815260200191508051906020019060200280838360005b83811015611b39578181015183820152602001611b21565b50505050905001838103825286818151815260200191508051906020019060200280838360005b83811015611b78578181015183820152602001611b60565b50505050905001965050505050505060405180910390a293505050505b949350505050565b600786015460009060ff861681118015611bb95750808560ff16105b611c0a576040805162461bcd60e51b815260206004820152601b60248201527f546f6b656e20696e646578206973206f7574206f662072616e67650000000000604482015290519081900360640190fd5b50600080886007018760ff1681548110611c2057fe5b60009182526020918290200154604080517f70a0823100000000000000000000000000000000000000000000000000000000815233600482015290516001600160a01b03909216935083926370a0823192602480840193829003018186803b158015611c8b57600080fd5b505afa158015611c9f573d6000803e3d6000fd5b505050506040513d6020811015611cb557600080fd5b5051851115611d0b576040805162461bcd60e51b815260206004820152601d60248201527f43616e6e6f742073776170206d6f7265207468616e20796f75206f776e000000604482015290519081900360640190fd5b6000816001600160a01b03166370a08231306040518263ffffffff1660e01b815260040180826001600160a01b0316815260200191505060206040518083038186803b158015611d5a57600080fd5b505afa158015611d6e573d6000803e3d6000fd5b505050506040513d6020811015611d8457600080fd5b50519050611d9d6001600160a01b03831633308961346e565b611dee81836001600160a01b03166370a08231306040518263ffffffff1660e01b815260040180826001600160a01b0316815260200191505060206040518083038186803b1580156108ab57600080fd5b92505050600080611e058a8989866111748e613354565b9150915084821015611e5e576040805162461bcd60e51b815260206004820181905260248201527f53776170206469646e277420726573756c7420696e206d696e20746f6b656e73604482015290519081900360640190fd5b6000611ea08b6008018960ff1681548110611e7557fe5b9060005260206000200154610afe6402540be400610afe8f600501548761356290919063ffffffff16565b9050611ed1848c6009018b60ff1681548110611eb857fe5b90600052602060002001546135bb90919063ffffffff16565b8b6009018a60ff1681548110611ee357fe5b9060005260206000200181905550611f2481610b65858e6009018c60ff1681548110611f0b57fe5b906000526020600020015461341190919063ffffffff16565b8b6009018960ff1681548110611f3657fe5b9060005260206000200181905550611f5b33848d6007018b60ff1681548110611a7b57fe5b604080518581526020810185905260ff808c16828401528a166060820152905133917fc6c1e0630dbe9130cc068028486c0d118ddcea348550819defd5cb8c257f8a38919081900360800190a250909998505050505050505050565b670de0b6b3a764000081565b61025881565b6006850154604080517f18160ddd00000000000000000000000000000000000000000000000000000000815290516000926001600160a01b031691839183916318160ddd916004808301926020929190829003018186803b15801561202d57600080fd5b505afa158015612041573d6000803e3d6000fd5b505050506040513d602081101561205757600080fd5b50516007890154604080517f70a08231000000000000000000000000000000000000000000000000000000008152336004820152905192935090916001600160a01b038516916370a08231916024808301926020929190829003018186803b1580156120c257600080fd5b505afa1580156120d6573d6000803e3d6000fd5b505050506040513d60208110156120ec57600080fd5b5051871115612142576040805162461bcd60e51b815260206004820152600d60248201527f3e4c502e62616c616e63654f6600000000000000000000000000000000000000604482015290519081900360640190fd5b808660ff1610612199576040805162461bcd60e51b815260206004820152600f60248201527f546f6b656e206e6f7420666f756e640000000000000000000000000000000000604482015290519081900360640190fd5b6000806121b18b8a8a6121ab8e613354565b88613e82565b925090508681101561220a576040805162461bcd60e51b815260206004820152600e60248201527f6479203c206d696e416d6f756e74000000000000000000000000000000000000604482015290519081900360640190fd5b6122496122376122306402540be400610afe8f600501548761356290919063ffffffff16565b83906135bb565b8c6009018a60ff1681548110611f0b57fe5b8b6009018960ff168154811061225b57fe5b6000918252602082200191909155604080517f79cc6790000000000000000000000000000000000000000000000000000000008152336004820152602481018c905290516001600160a01b038816926379cc6790926044808201939182900301818387803b1580156122cc57600080fd5b505af11580156122e0573d6000803e3d6000fd5b505050506122fb33828d6007018b60ff1681548110611a7b57fe5b604080518a81526020810186905260ff8a168183015260608101839052905133917f43fb02998f4e03da2e0e6fff53fdbf0c40a9f45f145dc377fc30615d7d7a8a64919081900360800190a29a9950505050505050505050565b60006060856007018054806020026020016040519081016040528092919081815260200182805480156123b157602002820191906000526020600020905b81546001600160a01b03168152600190910190602001808311612393575b50505050509050805184511461240e576040805162461bcd60e51b815260206004820181905260248201527f416d6f756e7473206d757374206d6174636820706f6f6c656420746f6b656e73604482015290519081900360640190fd5b6060815167ffffffffffffffff8111801561242857600080fd5b50604051908082528060200260200182016040528015612452578160200160208202803683370190505b50905061245d614951565b604080516101208101825260008082526020820181905291810182905260068a01546001600160a01b03166060820152608081019190915260a081016124a28a61367c565b81526020016124b089613354565b81526020018960080180548060200260200160405190810160405280929190818152602001828054801561250357602002820191906000526020600020905b8154815260200190600101908083116124ef575b505050505081526020018960090180548060200260200160405190810160405280929190818152602001828054801561255b57602002820191906000526020600020905b815481526020019060010190808311612547575b5050505050815250905080606001516001600160a01b03166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b1580156125a257600080fd5b505afa1580156125b6573d6000803e3d6000fd5b505050506040513d60208110156125cc57600080fd5b50516080820181905215612602576125ff6125f58261010001518360e001518460c001516134fc565b8260a00151613c4e565b81525b60005b83518110156128455760808201511515806126335750600087828151811061262957fe5b6020026020010151115b612684576040805162461bcd60e51b815260206004820152601e60248201527f4d75737420737570706c7920616c6c20746f6b656e7320696e20706f6f6c0000604482015290519081900360640190fd5b86818151811061269057fe5b60200260200101516000146127f95760008482815181106126ad57fe5b60200260200101516001600160a01b03166370a08231306040518263ffffffff1660e01b815260040180826001600160a01b0316815260200191505060206040518083038186803b15801561270157600080fd5b505afa158015612715573d6000803e3d6000fd5b505050506040513d602081101561272b57600080fd5b5051885190915061277b90339030908b908690811061274657fe5b602002602001015188868151811061275a57fe5b60200260200101516001600160a01b031661346e909392919063ffffffff16565b6127df8186848151811061278b57fe5b60200260200101516001600160a01b03166370a08231306040518263ffffffff1660e01b815260040180826001600160a01b0316815260200191505060206040518083038186803b1580156108ab57600080fd5b8883815181106127eb57fe5b602002602001018181525050505b61282187828151811061280857fe5b6020026020010151836101000151838151811061096957fe5b826101000151828151811061283257fe5b6020908102919091010152600101612605565b506128616125f58261010001518360e001518460c001516134fc565b602082018190528151106128bc576040805162461bcd60e51b815260206004820152601160248201527f442073686f756c6420696e637265617365000000000000000000000000000000604482015290519081900360640190fd5b60208101516040820152608081015160009015612a6e5760006128e48a600401548651613e4b565b905060005b8551811015612a1f57600061292c8560000151610afe8e600901858154811061290e57fe5b9060005260206000200154886020015161356290919063ffffffff16565b905061296c6402540be400610afe612965886101000151868151811061294e57fe5b602002602001015185613e6a90919063ffffffff16565b8690613562565b86838151811061297857fe5b6020026020010181815250506129b56129a46402540be400610afe8f600501548a878151811061185a57fe5b8661010001518481518110610b4f57fe5b8c60090183815481106129c457fe5b90600052602060002001819055506129fa8683815181106129e157fe5b60200260200101518661010001518481518110610b4f57fe5b8561010001518381518110612a0b57fe5b6020908102919091010152506001016128e9565b50612a45612a3b8461010001518560e001518660c001516134fc565b8460a00151613c4e565b6040840181905283516080850151612a6692610afe91906113dc9084613411565b915050612a92565b6101008201518051612a8a9160098c01916020909101906149a6565b505060208101515b85811015612ae7576040805162461bcd60e51b815260206004820152601b60248201527f436f756c646e2774206d696e74206d696e207265717565737465640000000000604482015290519081900360640190fd5b6006890154604080517f40c10f190000000000000000000000000000000000000000000000000000000081523360048201526024810184905290516001600160a01b03909216916340c10f199160448082019260009290919082900301818387803b158015612b5557600080fd5b505af1158015612b69573d6000803e3d6000fd5b50505050336001600160a01b03167f189c623b666b1b45b83d7178f39b8c087cb09774317ca2f53c2d3c3726f222a288858560200151611ae98688608001516135bb90919063ffffffff16565b6000612bc06149f1565b6040518060e00160405280612bd4886139dc565b815287546001600160a01b03166020820152600060408201819052600389015460ff166060808401919091526080830182905260a0830182905260c090920152815191925090612c25908990613ee5565b8051909150612c35906001613411565b60ff9081166040840181905260608401510190818116908816108015612c6057508060ff168660ff16105b612cb1576040805162461bcd60e51b815260206004820152601860248201527f546f6b656e20696e646578206f7574206f662072616e67650000000000000000604482015290519081900360640190fd5b50816040015160ff168660ff161015612d0f57612d05612cf6896008018860ff1681548110612cdc57fe5b90600052602060002001548661356290919063ffffffff16565b828860ff168151811061096957fe5b60a0830152612f88565b6040820151958690039560ff9081169086161015612ee6576060826060015160ff1667ffffffffffffffff81118015612d4757600080fd5b50604051908082528060200260200182016040528015612d71578160200160208202803683370190505b50905084818860ff1681518110612d8457fe5b602002602001018181525050612e67670de0b6b3a7640000610afe856000015186602001516001600160a01b031663e6ab28068660016040518363ffffffff1660e01b815260040180806020018315158152602001828103825284818151815260200191508051906020019060200280838360005b83811015612e11578181015183820152602001612df9565b50505050905001935050505060206040518083038186803b158015612e3557600080fd5b505afa158015612e49573d6000803e3d6000fd5b505050506040513d6020811015612e5f57600080fd5b505190613562565b8360a0018181525050612edb82846040015160ff1681518110612e8657fe5b6020026020010151610b04612ed0612ead60026402540be40061356290919063ffffffff16565b8c54610afe90612ec5906001600160a01b0316613f96565b60a08a015190613562565b60a087015190613411565b60a084015250612f80565b81602001516001600160a01b031663a95b089f8784604001518803876040518463ffffffff1660e01b8152600401808460ff1681526020018360ff168152602001828152602001935050505060206040518083038186803b158015612f4a57600080fd5b505afa158015612f5e573d6000803e3d6000fd5b505050506040513d6020811015612f7457600080fd5b505192506113ff915050565b816040015195505b604082015160ff908116608084018190529086161015612fac5760ff851660808301525b6000612fcb612fba8a61367c565b8885608001518660a0015186613711565b9050612fe96001610b658385876080015160ff1681518110610b4f57fe5b60c0840181905260048a015460009161300c916402540be40091610afe91613562565b60c085015190915061301e9082613411565b60c08501525050604082015160ff90811690861610156130795761306f88600801836080015160ff168154811061305157fe5b90600052602060002001548360c0015161361590919063ffffffff16565b60c083015261312a565b81602001516001600160a01b031663342a87a16130b38460000151610afe670de0b6b3a76400008760c0015161356290919063ffffffff16565b846040015188036040518363ffffffff1660e01b8152600401808381526020018260ff1681526020019250505060206040518083038186803b1580156130f857600080fd5b505afa15801561310c573d6000803e3d6000fd5b505050506040513d602081101561312257600080fd5b505160c08301525b5060c001519695505050505050565b6000806132046131f68560090180548060200260200160405190810160405280929190818152602001828054801561319057602002820191906000526020600020905b81548152602001906001019080831161317c575b5050505050866008018054806020026020016040519081016040528092919081815260200182805480156131e357602002820191906000526020600020905b8154815260200190600101908083116131cf575b50505050506131f1876139dc565b6134fc565b6131ff8661367c565b613c4e565b905060008460060160009054906101000a90046001600160a01b03166001600160a01b03166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b15801561325857600080fd5b505afa15801561326c573d6000803e3d6000fd5b505050506040513d602081101561328257600080fd5b5051905080156132ab576132a281610afe84670de0b6b3a7640000613562565b925050506132b2565b6000925050505b92915050565b600061334a8584846132c9886139dc565b8960060160009054906101000a90046001600160a01b03166001600160a01b03166318160ddd6040518163ffffffff1660e01b815260040160206040518083038186803b15801561331957600080fd5b505afa15801561332d573d6000803e3d6000fd5b505050506040513d602081101561334357600080fd5b5051613e82565b5095945050505050565b6000610258826002015401421115613405578154604080517fe25aa5fa00000000000000000000000000000000000000000000000000000000815290516000926001600160a01b03169163e25aa5fa916004808301926020929190829003018186803b1580156133c357600080fd5b505afa1580156133d7573d6000803e3d6000fd5b505050506040513d60208110156133ed57600080fd5b505160018401819055426002850155915061340c9050565b5060018101545b919050565b600082821115613468576040805162461bcd60e51b815260206004820152601e60248201527f536166654d6174683a207375627472616374696f6e206f766572666c6f770000604482015290519081900360640190fd5b50900390565b604080516001600160a01b0380861660248301528416604482015260648082018490528251808303909101815260849091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167f23b872dd000000000000000000000000000000000000000000000000000000001790526134f6908590614006565b50505050565b60608061350985856140b7565b905060006135226001875161341190919063ffffffff16565b9050613540670de0b6b3a7640000610afe8685858151811061185a57fe5b82828151811061354c57fe5b60209081029190910101525090505b9392505050565b600082613571575060006132b2565b8282028284828161357e57fe5b041461355b5760405162461bcd60e51b8152600401808060200182810382526021815260200180614a9f6021913960400191505060405180910390fd5b60008282018381101561355b576040805162461bcd60e51b815260206004820152601b60248201527f536166654d6174683a206164646974696f6e206f766572666c6f770000000000604482015290519081900360640190fd5b600080821161366b576040805162461bcd60e51b815260206004820152601a60248201527f536166654d6174683a206469766973696f6e206279207a65726f000000000000604482015290519081900360640190fd5b81838161367457fe5b049392505050565b6003810154600182015460009190428211156137085760028401548454808311156136da576136cf6136c86136b18685613411565b610afe6136be4287613411565b6113dc8887613411565b82906135bb565b94505050505061340c565b6136cf6137016136ea8685613411565b610afe6136f74287613411565b6113dc8689613411565b8290613411565b915061340c9050565b805160009060ff8681169086161415613771576040805162461bcd60e51b815260206004820152601d60248201527f43616e277420636f6d7061726520746f6b656e20746f20697473656c66000000604482015290519081900360640190fd5b808660ff161080156137855750808560ff16105b6137d6576040805162461bcd60e51b815260206004820152601660248201527f546f6b656e73206d75737420626520696e20706f6f6c00000000000000000000604482015290519081900360640190fd5b60006137e28489613c4e565b9050806000806137f2858c613562565b90506000805b8681101561386b578b60ff168114156138135789915061383d565b8a60ff1681146138385788818151811061382957fe5b6020026020010151915061383d565b613863565b61384784836135bb565b93506138606138568389613562565b610afe8789613562565b94505b6001016137f8565b506138886138798388613562565b610afe60646113dc888a613562565b935060006138a561389e84610afe896064613562565b85906135bb565b9050600086815b6101008110156139095790915081906138df6138d18a610b6587610b04876002613562565b610afe8a610b048680613562565b91506138eb82846141ae565b15613901575098506113ff975050505050505050565b6001016138ac565b506040805162461bcd60e51b815260206004820152601e60248201527f417070726f78696d6174696f6e20646964206e6f7420636f6e76657267650000604482015290519081900360640190fd5b604080516001600160a01b038416602482015260448082018490528251808303909101815260649091019091526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fa9059cbb000000000000000000000000000000000000000000000000000000001790526139d7908490614006565b505050565b6000610258826002015401421115613405578154604080517fe25aa5fa00000000000000000000000000000000000000000000000000000000815290516001600160a01b039092169163e25aa5fa91600480820192602092909190829003018186803b158015613a4b57600080fd5b505afa158015613a5f573d6000803e3d6000fd5b505050506040513d6020811015613a7557600080fd5b5051905061340c565b6000806060613a8d8885613ee5565b905080518760ff16108015613aa5575080518660ff16105b613af6576040805162461bcd60e51b815260206004820152601860248201527f546f6b656e20696e646578206f7574206f662072616e67650000000000000000604482015290519081900360640190fd5b8051600090613b06906001613411565b90506000613b398a6008018a60ff1681548110613b1f57fe5b90600052602060002001548861356290919063ffffffff16565b9050818960ff161415613b5f57613b5c670de0b6b3a7640000610afe8389613562565b90505b613b88838a60ff1681518110613b7157fe5b6020026020010151826135bb90919063ffffffff16565b90506000613ba1613b988c61367c565b8b8b8588613711565b9050613bbb6001610b6583878d60ff1681518110610b4f57fe5b9550828960ff161415613be157613bde87610afe88670de0b6b3a7640000613562565b95505b613c016402540be400610afe8d600401548961356290919063ffffffff16565b9450613c0d8686613411565b9550613c3e8b6008018a60ff1681548110613c2457fe5b90600052602060002001548761361590919063ffffffff16565b9550505050509550959350505050565b815160009081805b82811015613c8e57613c84868281518110613c6d57fe5b6020026020010151836135bb90919063ffffffff16565b9150600101613c56565b5080613c9f576000925050506132b2565b60008181613cad8786613562565b905060005b610100811015613d66578260005b87811015613cef57613ce5613cdb898d848151811061185a57fe5b610afe8488613562565b9150600101613cc0565b509293508392613d3d613d1d613d0a836113dc8b60016135bb565b610b046064610afe896113dc8a84613411565b610afe866113dc613d2e868d613562565b610b046064610afe8b8f613562565b9350613d4984866141ae565b15613d5d57839750505050505050506132b2565b50600101613cb2565b506040805162461bcd60e51b815260206004820152601360248201527f4420646f6573206e6f7420636f6e766572676500000000000000000000000000604482015290519081900360640190fd5b60008184841115613e435760405162461bcd60e51b81526004018080602001828103825283818151815260200191508051906020019080838360005b83811015613e08578181015183820152602001613df0565b50505050905090810190601f168015613e355780820380516001836020036101000a031916815260200191505b509250505060405180910390fd5b505050900390565b600061355b613e6060046113dc856001613411565b610afe8585613562565b600081831115613e7d57508082036132b2565b500390565b600080600080600080613e988b8a8c8b8b6141c5565b809450819350829650505050613ed384610b658d6008018c60ff1681548110613ebd57fe5b600091825260209091200154610afe8686613411565b939b939a509298505050505050505050565b606061355b83600901805480602002602001604051908101604052809291908181526020018280548015613f3857602002820191906000526020600020905b815481526020019060010190808311613f24575b505050505084600801805480602002602001604051908101604052809291908181526020018280548015613f8b57602002820191906000526020600020905b815481526020019060010190808311613f77575b5050505050846134fc565b6000816001600160a01b0316635fd65f0f6040518163ffffffff1660e01b815260040160e06040518083038186803b158015613fd157600080fd5b505afa158015613fe5573d6000803e3d6000fd5b505050506040513d60e0811015613ffb57600080fd5b506080015192915050565b606061405b826040518060400160405280602081526020017f5361666545524332303a206c6f772d6c6576656c2063616c6c206661696c6564815250856001600160a01b031661457d9092919063ffffffff16565b8051909150156139d75780806020019051602081101561407a57600080fd5b50516139d75760405162461bcd60e51b815260040180806020018281038252602a815260200180614ac0602a913960400191505060405180910390fd5b81518151606091908114614112576040805162461bcd60e51b815260206004820152601f60248201527f42616c616e636573206d757374206d61746368206d756c7469706c6965727300604482015290519081900360640190fd5b60608167ffffffffffffffff8111801561412b57600080fd5b50604051908082528060200260200182016040528015614155578160200160208202803683370190505b50905060005b828110156141a55761418685828151811061417257fe5b602002602001015187838151811061185a57fe5b82828151811061419257fe5b602090810291909101015260010161415b565b50949350505050565b600060016141bc8484613e6a565b11159392505050565b600080600060606141d68987613ee5565b905080518860ff1610614230576040805162461bcd60e51b815260206004820152601860248201527f546f6b656e20696e646578206f7574206f662072616e67650000000000000000604482015290519081900360640190fd5b614238614a2d565b6040518060c00160405280600081526020016000815260200160008152602001600081526020016142688c61367c565b815260200160008152509050614282828260800151613c4e565b8082526142a29061429a908890610afe908c90613562565b825190613411565b60208201528151829060ff8b169081106142b857fe5b6020026020010151881115614314576040805162461bcd60e51b815260206004820152601a60248201527f5769746864726177206578636565647320617661696c61626c65000000000000604482015290519081900360640190fd5b61432881608001518a84846020015161458c565b6040820152815160609067ffffffffffffffff8111801561434857600080fd5b50604051908082528060200260200182016040528015614372578160200160208202803683370190505b5090506143848b600401548451613e4b565b606083015260005b835181101561445b578381815181106143a157fe5b60200260200101518360a001818152505061443c6144316402540be400610afe86606001518f60ff168614614406576144016143f68960000151610afe8b602001518c60a0015161356290919063ffffffff16565b60a08a015190613411565b6113dc565b6113dc8860400151610b658a60000151610afe8c602001518d60a0015161356290919063ffffffff16565b60a085015190613411565b82828151811061444857fe5b602090810291909101015260010161438c565b50600061448461447584608001518d85876020015161458c565b838d60ff1681518110610b4f57fe5b8451909150614494906001613411565b8b60ff16141561451d576144b489610afe83670de0b6b3a7640000613562565b90506144d989610afe670de0b6b3a7640000866040015161356290919063ffffffff16565b83604001818152505061450189610afe670de0b6b3a7640000878f60ff168151811061185a57fe5b848c60ff168151811061451057fe5b6020026020010181815250505b6145498c6008018c60ff168154811061453257fe5b600091825260209091200154610afe836001613411565b9050808360400151858d60ff168151811061456057fe5b602002602001015196509650965050505050955095509592505050565b6060611b9584846000856146f9565b815160009060ff851681116145e8576040805162461bcd60e51b815260206004820152600f60248201527f546f6b656e206e6f7420666f756e640000000000000000000000000000000000604482015290519081900360640190fd5b826000806145f68985613562565b905060005b8481101561465d578860ff1681146146555761463388828151811061461c57fe5b6020026020010151846135bb90919063ffffffff16565b9250614652614648868a848151811061185a57fe5b610afe868a613562565b93505b6001016145fb565b5061467a61466b8286613562565b610afe60646113dc878b613562565b9250600061469761469083610afe8a6064613562565b84906135bb565b9050600087815b6101008110156139095790915081906146d16146c38b610b6587610b04876002613562565b610afe89610b048680613562565b91506146dd82846141ae565b156146f157509650611b9595505050505050565b60010161469e565b60608247101561473a5760405162461bcd60e51b8152600401808060200182810382526026815260200180614a796026913960400191505060405180910390fd5b61474385614873565b614794576040805162461bcd60e51b815260206004820152601d60248201527f416464726573733a2063616c6c20746f206e6f6e2d636f6e7472616374000000604482015290519081900360640190fd5b60006060866001600160a01b031685876040518082805190602001908083835b602083106147f157805182527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe090920191602091820191016147b4565b6001836020036101000a03801982511681845116808217855250505050505090500191505060006040518083038185875af1925050503d8060008114614853576040519150601f19603f3d011682016040523d82523d6000602084013e614858565b606091505b5091509150614868828286614879565b979650505050505050565b3b151590565b6060831561488857508161355b565b8251156148985782518084602001fd5b60405162461bcd60e51b8152602060048201818152845160248401528451859391928392604401919085019080838360008315613e08578181015183820152602001613df0565b60405180610160016040528060008152602001600081526020016000815260200160608152602001606081526020016060815260200160006001600160a01b03168152602001600060ff16815260200160006001600160a01b03168152602001600060ff168152602001600081525090565b60405180610120016040528060008152602001600081526020016000815260200160006001600160a01b0316815260200160008152602001600081526020016000815260200160608152602001606081525090565b8280548282559060005260206000209081019282156149e1579160200282015b828111156149e15782518255916020019190600101906149c6565b506149ed929150614a63565b5090565b6040805160e081018252600080825260208201819052918101829052606081018290526080810182905260a0810182905260c081019190915290565b6040518060c001604052806000815260200160008152602001600081526020016000815260200160008152602001600081525090565b5b808211156149ed5760008155600101614a6456fe416464726573733a20696e73756666696369656e742062616c616e636520666f722063616c6c536166654d6174683a206d756c7469706c69636174696f6e206f766572666c6f775361666545524332303a204552433230206f7065726174696f6e20646964206e6f74207375636365656443616e6e6f74207769746864726177206d6f7265207468616e20617661696c61626c65a26469706673582212205f3f2a35d33799d1aebf3633885c13817512fbe508a276b18516db4cf2cc3f6b64736f6c634300060c0033

Block Transaction Difficulty Gas Used Reward
Block Uncle Number Difficulty Gas Used Reward
Loading
Make sure to use the "Vote Down" button for any spammy posts, and the "Vote Up" for interesting conversations.