More Info
Private Name Tags
ContractCreator
GENESIS at txn GENESIS_c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30007
Latest 7 from a total of 7 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Initialize | 118645298 | 306 days ago | IN | 0 ETH | 0.000001486216 | ||||
Initialize | 118645277 | 306 days ago | IN | 0 ETH | 0.000001506641 | ||||
Initialize | 118644888 | 306 days ago | IN | 0 ETH | 0.000001471015 | ||||
Initialize | 118644713 | 306 days ago | IN | 0 ETH | 0.00000417871 | ||||
Send Message | 115990111 | 367 days ago | IN | 0 ETH | 0.000086096578 | ||||
Relay Message | 112619172 | 445 days ago | IN | 0 ETH | 0.000090147857 | ||||
GENESIS_c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d3c0d30007 | 0x60806040 | 0 | 1489 days ago | GENESIS | IN | 0 ETH | 0 |
Latest 25 internal transactions (View All)
Advanced mode:
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
107558379 | 563 days ago | 0 ETH | ||||
107558379 | 563 days ago | 0 ETH | ||||
107558289 | 563 days ago | 0 ETH | ||||
107558289 | 563 days ago | 0 ETH | ||||
107558198 | 563 days ago | 0 ETH | ||||
107558198 | 563 days ago | 0 ETH | ||||
107558102 | 563 days ago | 0 ETH | ||||
107558102 | 563 days ago | 0 ETH | ||||
107558012 | 563 days ago | 0 ETH | ||||
107558012 | 563 days ago | 0.007 ETH | ||||
107558012 | 563 days ago | 0 ETH | ||||
107558012 | 563 days ago | 0 ETH | ||||
107557946 | 563 days ago | 0 ETH | ||||
107557946 | 563 days ago | 0.002 ETH | ||||
107557946 | 563 days ago | 0 ETH | ||||
107557946 | 563 days ago | 0.02 ETH | ||||
107557922 | 563 days ago | 0 ETH | ||||
107557922 | 563 days ago | 0 ETH | ||||
107557886 | 563 days ago | 0 ETH | ||||
107557886 | 563 days ago | 0.005 ETH | ||||
107557838 | 563 days ago | 0 ETH | ||||
107557838 | 563 days ago | 0 ETH | ||||
107557742 | 563 days ago | 0 ETH | ||||
107557742 | 563 days ago | 0 ETH | ||||
107557700 | 563 days ago | 0 ETH |
Latest 25 Deposits
Loading...
Loading
Contract Name:
L2CrossDomainMessenger
Compiler Version
v0.8.15+commit.e14f2714
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol"; import { Predeploys } from "../libraries/Predeploys.sol"; import { CrossDomainMessenger } from "../universal/CrossDomainMessenger.sol"; import { Semver } from "../universal/Semver.sol"; import { L2ToL1MessagePasser } from "./L2ToL1MessagePasser.sol"; /** * @custom:proxied * @custom:predeploy 0x4200000000000000000000000000000000000007 * @title L2CrossDomainMessenger * @notice The L2CrossDomainMessenger is a high-level interface for message passing between L1 and * L2 on the L2 side. Users are generally encouraged to use this contract instead of lower * level message passing contracts. */ contract L2CrossDomainMessenger is CrossDomainMessenger, Semver { /** * @custom:semver 1.4.0 * * @param _l1CrossDomainMessenger Address of the L1CrossDomainMessenger contract. */ constructor(address _l1CrossDomainMessenger) Semver(1, 4, 0) CrossDomainMessenger(_l1CrossDomainMessenger) { initialize(); } /** * @notice Initializer. */ function initialize() public initializer { __CrossDomainMessenger_init(); } /** * @custom:legacy * @notice Legacy getter for the remote messenger. Use otherMessenger going forward. * * @return Address of the L1CrossDomainMessenger contract. */ function l1CrossDomainMessenger() public view returns (address) { return OTHER_MESSENGER; } /** * @inheritdoc CrossDomainMessenger */ function _sendMessage( address _to, uint64 _gasLimit, uint256 _value, bytes memory _data ) internal override { L2ToL1MessagePasser(payable(Predeploys.L2_TO_L1_MESSAGE_PASSER)).initiateWithdrawal{ value: _value }(_to, _gasLimit, _data); } /** * @inheritdoc CrossDomainMessenger */ function _isOtherMessenger() internal view override returns (bool) { return AddressAliasHelper.undoL1ToL2Alias(msg.sender) == OTHER_MESSENGER; } /** * @inheritdoc CrossDomainMessenger */ function _isUnsafeTarget(address _target) internal view override returns (bool) { return _target == address(this) || _target == address(Predeploys.L2_TO_L1_MESSAGE_PASSER); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import { Math } from "@openzeppelin/contracts/utils/math/Math.sol"; import { Burn } from "../libraries/Burn.sol"; import { Arithmetic } from "../libraries/Arithmetic.sol"; /** * @custom:upgradeable * @title ResourceMetering * @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing * updates automatically based on current demand. */ abstract contract ResourceMetering is Initializable { /** * @notice Represents the various parameters that control the way in which resources are * metered. Corresponds to the EIP-1559 resource metering system. * * @custom:field prevBaseFee Base fee from the previous block(s). * @custom:field prevBoughtGas Amount of gas bought so far in the current block. * @custom:field prevBlockNum Last block number that the base fee was updated. */ struct ResourceParams { uint128 prevBaseFee; uint64 prevBoughtGas; uint64 prevBlockNum; } /** * @notice Represents the configuration for the EIP-1559 based curve for the deposit gas * market. These values should be set with care as it is possible to set them in * a way that breaks the deposit gas market. The target resource limit is defined as * maxResourceLimit / elasticityMultiplier. This struct was designed to fit within a * single word. There is additional space for additions in the future. * * @custom:field maxResourceLimit Represents the maximum amount of deposit gas that * can be purchased per block. * @custom:field elasticityMultiplier Determines the target resource limit along with * the resource limit. * @custom:field baseFeeMaxChangeDenominator Determines max change on fee per block. * @custom:field minimumBaseFee The min deposit base fee, it is clamped to this * value. * @custom:field systemTxMaxGas The amount of gas supplied to the system * transaction. This should be set to the same number * that the op-node sets as the gas limit for the * system transaction. * @custom:field maximumBaseFee The max deposit base fee, it is clamped to this * value. */ struct ResourceConfig { uint32 maxResourceLimit; uint8 elasticityMultiplier; uint8 baseFeeMaxChangeDenominator; uint32 minimumBaseFee; uint32 systemTxMaxGas; uint128 maximumBaseFee; } /** * @notice EIP-1559 style gas parameters. */ ResourceParams public params; /** * @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades. */ uint256[48] private __gap; /** * @notice Meters access to a function based an amount of a requested resource. * * @param _amount Amount of the resource requested. */ modifier metered(uint64 _amount) { // Record initial gas amount so we can refund for it later. uint256 initialGas = gasleft(); // Run the underlying function. _; // Run the metering function. _metered(_amount, initialGas); } /** * @notice An internal function that holds all of the logic for metering a resource. * * @param _amount Amount of the resource requested. * @param _initialGas The amount of gas before any modifier execution. */ function _metered(uint64 _amount, uint256 _initialGas) internal { // Update block number and base fee if necessary. uint256 blockDiff = block.number - params.prevBlockNum; ResourceConfig memory config = _resourceConfig(); int256 targetResourceLimit = int256(uint256(config.maxResourceLimit)) / int256(uint256(config.elasticityMultiplier)); if (blockDiff > 0) { // Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate // at which deposits can be created and therefore limit the potential for deposits to // spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes. int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - targetResourceLimit; int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) / (targetResourceLimit * int256(uint256(config.baseFeeMaxChangeDenominator))); // Update base fee by adding the base fee delta and clamp the resulting value between // min and max. int256 newBaseFee = Arithmetic.clamp({ _value: int256(uint256(params.prevBaseFee)) + baseFeeDelta, _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); // If we skipped more than one block, we also need to account for every empty block. // Empty block means there was no demand for deposits in that block, so we should // reflect this lack of demand in the fee. if (blockDiff > 1) { // Update the base fee by repeatedly applying the exponent 1-(1/change_denominator) // blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value // between min and max. newBaseFee = Arithmetic.clamp({ _value: Arithmetic.cdexp({ _coefficient: newBaseFee, _denominator: int256(uint256(config.baseFeeMaxChangeDenominator)), _exponent: int256(blockDiff - 1) }), _min: int256(uint256(config.minimumBaseFee)), _max: int256(uint256(config.maximumBaseFee)) }); } // Update new base fee, reset bought gas, and update block number. params.prevBaseFee = uint128(uint256(newBaseFee)); params.prevBoughtGas = 0; params.prevBlockNum = uint64(block.number); } // Make sure we can actually buy the resource amount requested by the user. params.prevBoughtGas += _amount; require( int256(uint256(params.prevBoughtGas)) <= int256(uint256(config.maxResourceLimit)), "ResourceMetering: cannot buy more gas than available gas limit" ); // Determine the amount of ETH to be paid. uint256 resourceCost = uint256(_amount) * uint256(params.prevBaseFee); // We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount // into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid // division by zero for L1s that don't support 1559 or to avoid excessive gas burns during // periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei // during any 1 day period in the last 5 years, so should be fine. uint256 gasCost = resourceCost / Math.max(block.basefee, 1 gwei); // Give the user a refund based on the amount of gas they used to do all of the work up to // this point. Since we're at the end of the modifier, this should be pretty accurate. Acts // effectively like a dynamic stipend (with a minimum value). uint256 usedGas = _initialGas - gasleft(); if (gasCost > usedGas) { Burn.gas(gasCost - usedGas); } } /** * @notice Virtual function that returns the resource config. Contracts that inherit this * contract must implement this function. * * @return ResourceConfig */ function _resourceConfig() internal virtual returns (ResourceConfig memory); /** * @notice Sets initial resource parameter values. This function must either be called by the * initializer function of an upgradeable child contract. */ // solhint-disable-next-line func-name-mixedcase function __ResourceMetering_init() internal onlyInitializing { params = ResourceParams({ prevBaseFee: 1 gwei, prevBoughtGas: 0, prevBlockNum: uint64(block.number) }); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Types } from "../libraries/Types.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { Encoding } from "../libraries/Encoding.sol"; import { Burn } from "../libraries/Burn.sol"; import { Semver } from "../universal/Semver.sol"; /** * @custom:proxied * @custom:predeploy 0x4200000000000000000000000000000000000016 * @title L2ToL1MessagePasser * @notice The L2ToL1MessagePasser is a dedicated contract where messages that are being sent from * L2 to L1 can be stored. The storage root of this contract is pulled up to the top level * of the L2 output to reduce the cost of proving the existence of sent messages. */ contract L2ToL1MessagePasser is Semver { /** * @notice The L1 gas limit set when eth is withdrawn using the receive() function. */ uint256 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000; /** * @notice Current message version identifier. */ uint16 public constant MESSAGE_VERSION = 1; /** * @notice Includes the message hashes for all withdrawals */ mapping(bytes32 => bool) public sentMessages; /** * @notice A unique value hashed with each withdrawal. */ uint240 internal msgNonce; /** * @notice Emitted any time a withdrawal is initiated. * * @param nonce Unique value corresponding to each withdrawal. * @param sender The L2 account address which initiated the withdrawal. * @param target The L1 account address the call will be send to. * @param value The ETH value submitted for withdrawal, to be forwarded to the target. * @param gasLimit The minimum amount of gas that must be provided when withdrawing. * @param data The data to be forwarded to the target on L1. * @param withdrawalHash The hash of the withdrawal. */ event MessagePassed( uint256 indexed nonce, address indexed sender, address indexed target, uint256 value, uint256 gasLimit, bytes data, bytes32 withdrawalHash ); /** * @notice Emitted when the balance of this contract is burned. * * @param amount Amount of ETh that was burned. */ event WithdrawerBalanceBurnt(uint256 indexed amount); /** * @custom:semver 1.0.0 */ constructor() Semver(1, 0, 0) {} /** * @notice Allows users to withdraw ETH by sending directly to this contract. */ receive() external payable { initiateWithdrawal(msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes("")); } /** * @notice Removes all ETH held by this contract from the state. Used to prevent the amount of * ETH on L2 inflating when ETH is withdrawn. Currently only way to do this is to * create a contract and self-destruct it to itself. Anyone can call this function. Not * incentivized since this function is very cheap. */ function burn() external { uint256 balance = address(this).balance; Burn.eth(balance); emit WithdrawerBalanceBurnt(balance); } /** * @notice Sends a message from L2 to L1. * * @param _target Address to call on L1 execution. * @param _gasLimit Minimum gas limit for executing the message on L1. * @param _data Data to forward to L1 target. */ function initiateWithdrawal( address _target, uint256 _gasLimit, bytes memory _data ) public payable { bytes32 withdrawalHash = Hashing.hashWithdrawal( Types.WithdrawalTransaction({ nonce: messageNonce(), sender: msg.sender, target: _target, value: msg.value, gasLimit: _gasLimit, data: _data }) ); sentMessages[withdrawalHash] = true; emit MessagePassed( messageNonce(), msg.sender, _target, msg.value, _gasLimit, _data, withdrawalHash ); unchecked { ++msgNonce; } } /** * @notice Retrieves the next message nonce. Message version will be added to the upper two * bytes of the message nonce. Message version allows us to treat messages as having * different structures. * * @return Nonce of the next message to be sent, with added message version. */ function messageNonce() public view returns (uint256) { return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol"; import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol"; /** * @title Arithmetic * @notice Even more math than before. */ library Arithmetic { /** * @notice Clamps a value between a minimum and maximum. * * @param _value The value to clamp. * @param _min The minimum value. * @param _max The maximum value. * * @return The clamped value. */ function clamp( int256 _value, int256 _min, int256 _max ) internal pure returns (int256) { return SignedMath.min(SignedMath.max(_value, _min), _max); } /** * @notice (c)oefficient (d)enominator (exp)onentiation function. * Returns the result of: c * (1 - 1/d)^exp. * * @param _coefficient Coefficient of the function. * @param _denominator Fractional denominator. * @param _exponent Power function exponent. * * @return Result of c * (1 - 1/d)^exp. */ function cdexp( int256 _coefficient, int256 _denominator, int256 _exponent ) internal pure returns (int256) { return (_coefficient * (FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title Burn * @notice Utilities for burning stuff. */ library Burn { /** * Burns a given amount of ETH. * * @param _amount Amount of ETH to burn. */ function eth(uint256 _amount) internal { new Burner{ value: _amount }(); } /** * Burns a given amount of gas. * * @param _amount Amount of gas to burn. */ function gas(uint256 _amount) internal view { uint256 i = 0; uint256 initialGas = gasleft(); while (initialGas - gasleft() < _amount) { ++i; } } } /** * @title Burner * @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to * the contract from the circulating supply. Self-destructing is the only way to remove ETH * from the circulating supply. */ contract Burner { constructor() payable { selfdestruct(payable(address(this))); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { ResourceMetering } from "../L1/ResourceMetering.sol"; /** * @title Constants * @notice Constants is a library for storing constants. Simple! Don't put everything in here, just * the stuff used in multiple contracts. Constants that only apply to a single contract * should be defined in that contract instead. */ library Constants { /** * @notice Special address to be used as the tx origin for gas estimation calls in the * OptimismPortal and CrossDomainMessenger calls. You only need to use this address if * the minimum gas limit specified by the user is not actually enough to execute the * given message and you're attempting to estimate the actual necessary gas limit. We * use address(1) because it's the ecrecover precompile and therefore guaranteed to * never have any code on any EVM chain. */ address internal constant ESTIMATION_ADDRESS = address(1); /** * @notice Value used for the L2 sender storage slot in both the OptimismPortal and the * CrossDomainMessenger contracts before an actual sender is set. This value is * non-zero to reduce the gas cost of message passing transactions. */ address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD; /** * @notice Returns the default values for the ResourceConfig. These are the recommended values * for a production network. */ function DEFAULT_RESOURCE_CONFIG() internal pure returns (ResourceMetering.ResourceConfig memory) { ResourceMetering.ResourceConfig memory config = ResourceMetering.ResourceConfig({ maxResourceLimit: 20_000_000, elasticityMultiplier: 10, baseFeeMaxChangeDenominator: 8, minimumBaseFee: 1 gwei, systemTxMaxGas: 1_000_000, maximumBaseFee: type(uint128).max }); return config; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "./Types.sol"; import { Hashing } from "./Hashing.sol"; import { RLPWriter } from "./rlp/RLPWriter.sol"; /** * @title Encoding * @notice Encoding handles Optimism's various different encoding schemes. */ library Encoding { /** * @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent * to the L2 system. Useful for searching for a deposit in the L2 system. The * transaction is prefixed with 0x7e to identify its EIP-2718 type. * * @param _tx User deposit transaction to encode. * * @return RLP encoded L2 deposit transaction. */ function encodeDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes memory) { bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex); bytes[] memory raw = new bytes[](8); raw[0] = RLPWriter.writeBytes(abi.encodePacked(source)); raw[1] = RLPWriter.writeAddress(_tx.from); raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to); raw[3] = RLPWriter.writeUint(_tx.mint); raw[4] = RLPWriter.writeUint(_tx.value); raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit)); raw[6] = RLPWriter.writeBool(false); raw[7] = RLPWriter.writeBytes(_tx.data); return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw)); } /** * @notice Encodes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { (, uint16 version) = decodeVersionedNonce(_nonce); if (version == 0) { return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Encoding: unknown cross domain message version"); } } /** * @notice Encodes a cross domain message based on the V0 (legacy) encoding. * * @param _target Address of the target of the message. * @param _sender Address of the sender of the message. * @param _data Data to send with the message. * @param _nonce Message nonce. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(address,address,bytes,uint256)", _target, _sender, _data, _nonce ); } /** * @notice Encodes a cross domain message based on the V1 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Encoded cross domain message. */ function encodeCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes memory) { return abi.encodeWithSignature( "relayMessage(uint256,address,address,uint256,uint256,bytes)", _nonce, _sender, _target, _value, _gasLimit, _data ); } /** * @notice Adds a version number into the first two bytes of a message nonce. * * @param _nonce Message nonce to encode into. * @param _version Version number to encode into the message nonce. * * @return Message nonce with version encoded into the first two bytes. */ function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) { uint256 nonce; assembly { nonce := or(shl(240, _version), _nonce) } return nonce; } /** * @notice Pulls the version out of a version-encoded nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * * @return Nonce without encoded version. * @return Version of the message. */ function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) { uint240 nonce; uint16 version; assembly { nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff) version := shr(240, _nonce) } return (nonce, version); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Types } from "./Types.sol"; import { Encoding } from "./Encoding.sol"; /** * @title Hashing * @notice Hashing handles Optimism's various different hashing schemes. */ library Hashing { /** * @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a * given deposit is sent to the L2 system. Useful for searching for a deposit in the L2 * system. * * @param _tx User deposit transaction to hash. * * @return Hash of the RLP encoded L2 deposit transaction. */ function hashDepositTransaction(Types.UserDepositTransaction memory _tx) internal pure returns (bytes32) { return keccak256(Encoding.encodeDepositTransaction(_tx)); } /** * @notice Computes the deposit transaction's "source hash", a value that guarantees the hash * of the L2 transaction that corresponds to a deposit is unique and is * deterministically generated from L1 transaction data. * * @param _l1BlockHash Hash of the L1 block where the deposit was included. * @param _logIndex The index of the log that created the deposit transaction. * * @return Hash of the deposit transaction's "source hash". */ function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex) internal pure returns (bytes32) { bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex)); return keccak256(abi.encode(bytes32(0), depositId)); } /** * @notice Hashes the cross domain message based on the version that is encoded into the * message nonce. * * @param _nonce Message nonce with version encoded into the first two bytes. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); if (version == 0) { return hashCrossDomainMessageV0(_target, _sender, _data, _nonce); } else if (version == 1) { return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data); } else { revert("Hashing: unknown cross domain message version"); } } /** * @notice Hashes a cross domain message based on the V0 (legacy) encoding. * * @param _target Address of the target of the message. * @param _sender Address of the sender of the message. * @param _data Data to send with the message. * @param _nonce Message nonce. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV0( address _target, address _sender, bytes memory _data, uint256 _nonce ) internal pure returns (bytes32) { return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce)); } /** * @notice Hashes a cross domain message based on the V1 (current) encoding. * * @param _nonce Message nonce. * @param _sender Address of the sender of the message. * @param _target Address of the target of the message. * @param _value ETH value to send to the target. * @param _gasLimit Gas limit to use for the message. * @param _data Data to send with the message. * * @return Hashed cross domain message. */ function hashCrossDomainMessageV1( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _gasLimit, bytes memory _data ) internal pure returns (bytes32) { return keccak256( Encoding.encodeCrossDomainMessageV1( _nonce, _sender, _target, _value, _gasLimit, _data ) ); } /** * @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract * * @param _tx Withdrawal transaction to hash. * * @return Hashed withdrawal transaction. */ function hashWithdrawal(Types.WithdrawalTransaction memory _tx) internal pure returns (bytes32) { return keccak256( abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data) ); } /** * @notice Hashes the various elements of an output root proof into an output root hash which * can be used to check if the proof is valid. * * @param _outputRootProof Output root proof which should hash to an output root. * * @return Hashed output root proof. */ function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof) internal pure returns (bytes32) { return keccak256( abi.encode( _outputRootProof.version, _outputRootProof.stateRoot, _outputRootProof.messagePasserStorageRoot, _outputRootProof.latestBlockhash ) ); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Predeploys * @notice Contains constant addresses for contracts that are pre-deployed to the L2 system. */ library Predeploys { /** * @notice Address of the L2ToL1MessagePasser predeploy. */ address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016; /** * @notice Address of the L2CrossDomainMessenger predeploy. */ address internal constant L2_CROSS_DOMAIN_MESSENGER = 0x4200000000000000000000000000000000000007; /** * @notice Address of the L2StandardBridge predeploy. */ address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010; /** * @notice Address of the L2ERC721Bridge predeploy. */ address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014; /** * @notice Address of the SequencerFeeWallet predeploy. */ address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011; /** * @notice Address of the OptimismMintableERC20Factory predeploy. */ address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY = 0x4200000000000000000000000000000000000012; /** * @notice Address of the OptimismMintableERC721Factory predeploy. */ address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY = 0x4200000000000000000000000000000000000017; /** * @notice Address of the L1Block predeploy. */ address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015; /** * @notice Address of the GasPriceOracle predeploy. Includes fee information * and helpers for computing the L1 portion of the transaction fee. */ address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F; /** * @custom:legacy * @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger * or access tx.origin (or msg.sender) in a L1 to L2 transaction instead. */ address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001; /** * @custom:legacy * @notice Address of the DeployerWhitelist predeploy. No longer active. */ address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002; /** * @custom:legacy * @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the * state trie as of the Bedrock upgrade. Contract has been locked and write functions * can no longer be accessed. */ address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000; /** * @custom:legacy * @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy * instead, which exposes more information about the L1 state. */ address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013; /** * @custom:legacy * @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated * L2ToL1MessagePasser contract instead. */ address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000; /** * @notice Address of the ProxyAdmin predeploy. */ address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018; /** * @notice Address of the BaseFeeVault predeploy. */ address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019; /** * @notice Address of the L1FeeVault predeploy. */ address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A; /** * @notice Address of the GovernanceToken predeploy. */ address internal constant GOVERNANCE_TOKEN = 0x4200000000000000000000000000000000000042; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; /** * @title SafeCall * @notice Perform low level safe calls */ library SafeCall { /** * @notice Performs a low level call without copying any returndata. * @dev Passes no calldata to the call context. * * @param _target Address to call * @param _gas Amount of gas to pass to the call * @param _value Amount of value to pass to the call */ function send( address _target, uint256 _gas, uint256 _value ) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value 0, // inloc 0, // inlen 0, // outloc 0 // outlen ) } return _success; } /** * @notice Perform a low level call without copying any returndata * * @param _target Address to call * @param _gas Amount of gas to pass to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function call( address _target, uint256 _gas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; assembly { _success := call( _gas, // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0, // outloc 0 // outlen ) } return _success; } /** * @notice Helper function to determine if there is sufficient gas remaining within the context * to guarantee that the minimum gas requirement for a call will be met as well as * optionally reserving a specified amount of gas for after the call has concluded. * @param _minGas The minimum amount of gas that may be passed to the target context. * @param _reservedGas Optional amount of gas to reserve for the caller after the execution * of the target context. * @return `true` if there is enough gas remaining to safely supply `_minGas` to the target * context as well as reserve `_reservedGas` for the caller after the execution of * the target context. * @dev !!!!! FOOTGUN ALERT !!!!! * 1.) The 40_000 base buffer is to account for the worst case of the dynamic cost of the * `CALL` opcode's `address_access_cost`, `positive_value_cost`, and * `value_to_empty_account_cost` factors with an added buffer of 5,700 gas. It is * still possible to self-rekt by initiating a withdrawal with a minimum gas limit * that does not account for the `memory_expansion_cost` & `code_execution_cost` * factors of the dynamic cost of the `CALL` opcode. * 2.) This function should *directly* precede the external call if possible. There is an * added buffer to account for gas consumed between this check and the call, but it * is only 5,700 gas. * 3.) Because EIP-150 ensures that a maximum of 63/64ths of the remaining gas in the call * frame may be passed to a subcontext, we need to ensure that the gas will not be * truncated. * 4.) Use wisely. This function is not a silver bullet. */ function hasMinGas(uint256 _minGas, uint256 _reservedGas) internal view returns (bool) { bool _hasMinGas; assembly { // Equation: gas × 63 ≥ minGas × 64 + 63(40_000 + reservedGas) _hasMinGas := iszero( lt(mul(gas(), 63), add(mul(_minGas, 64), mul(add(40000, _reservedGas), 63))) ) } return _hasMinGas; } /** * @notice Perform a low level call without copying any returndata. This function * will revert if the call cannot be performed with the specified minimum * gas. * * @param _target Address to call * @param _minGas The minimum amount of gas that may be passed to the call * @param _value Amount of value to pass to the call * @param _calldata Calldata to pass to the call */ function callWithMinGas( address _target, uint256 _minGas, uint256 _value, bytes memory _calldata ) internal returns (bool) { bool _success; bool _hasMinGas = hasMinGas(_minGas, 0); assembly { // Assertion: gasleft() >= (_minGas * 64) / 63 + 40_000 if iszero(_hasMinGas) { // Store the "Error(string)" selector in scratch space. mstore(0, 0x08c379a0) // Store the pointer to the string length in scratch space. mstore(32, 32) // Store the string. // // SAFETY: // - We pad the beginning of the string with two zero bytes as well as the // length (24) to ensure that we override the free memory pointer at offset // 0x40. This is necessary because the free memory pointer is likely to // be greater than 1 byte when this function is called, but it is incredibly // unlikely that it will be greater than 3 bytes. As for the data within // 0x60, it is ensured that it is 0 due to 0x60 being the zero offset. // - It's fine to clobber the free memory pointer, we're reverting. mstore(88, 0x0000185361666543616c6c3a204e6f7420656e6f75676820676173) // Revert with 'Error("SafeCall: Not enough gas")' revert(28, 100) } // The call will be supplied at least ((_minGas * 64) / 63) gas due to the // above assertion. This ensures that, in all circumstances (except for when the // `_minGas` does not account for the `memory_expansion_cost` and `code_execution_cost` // factors of the dynamic cost of the `CALL` opcode), the call will receive at least // the minimum amount of gas specified. _success := call( gas(), // gas _target, // recipient _value, // ether value add(_calldata, 32), // inloc mload(_calldata), // inlen 0x00, // outloc 0x00 // outlen ) } return _success; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @title Types * @notice Contains various types used throughout the Optimism contract system. */ library Types { /** * @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1 * timestamp that the output root is posted. This timestamp is used to verify that the * finalization period has passed since the output root was submitted. * * @custom:field outputRoot Hash of the L2 output. * @custom:field timestamp Timestamp of the L1 block that the output root was submitted in. * @custom:field l2BlockNumber L2 block number that the output corresponds to. */ struct OutputProposal { bytes32 outputRoot; uint128 timestamp; uint128 l2BlockNumber; } /** * @notice Struct representing the elements that are hashed together to generate an output root * which itself represents a snapshot of the L2 state. * * @custom:field version Version of the output root. * @custom:field stateRoot Root of the state trie at the block of this output. * @custom:field messagePasserStorageRoot Root of the message passer storage trie. * @custom:field latestBlockhash Hash of the block this output was generated from. */ struct OutputRootProof { bytes32 version; bytes32 stateRoot; bytes32 messagePasserStorageRoot; bytes32 latestBlockhash; } /** * @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end * user (as opposed to a system deposit transaction generated by the system). * * @custom:field from Address of the sender of the transaction. * @custom:field to Address of the recipient of the transaction. * @custom:field isCreation True if the transaction is a contract creation. * @custom:field value Value to send to the recipient. * @custom:field mint Amount of ETH to mint. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. * @custom:field l1BlockHash Hash of the block the transaction was submitted in. * @custom:field logIndex Index of the log in the block the transaction was submitted in. */ struct UserDepositTransaction { address from; address to; bool isCreation; uint256 value; uint256 mint; uint64 gasLimit; bytes data; bytes32 l1BlockHash; uint256 logIndex; } /** * @notice Struct representing a withdrawal transaction. * * @custom:field nonce Nonce of the withdrawal transaction * @custom:field sender Address of the sender of the transaction. * @custom:field target Address of the recipient of the transaction. * @custom:field value Value to send to the recipient. * @custom:field gasLimit Gas limit of the transaction. * @custom:field data Data of the transaction. */ struct WithdrawalTransaction { uint256 nonce; address sender; address target; uint256 value; uint256 gasLimit; bytes data; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; /** * @custom:attribution https://github.com/bakaoh/solidity-rlp-encode * @title RLPWriter * @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's * RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor * modifications to improve legibility. */ library RLPWriter { /** * @notice RLP encodes a byte string. * * @param _in The byte string to encode. * * @return The RLP encoded string in bytes. */ function writeBytes(bytes memory _in) internal pure returns (bytes memory) { bytes memory encoded; if (_in.length == 1 && uint8(_in[0]) < 128) { encoded = _in; } else { encoded = abi.encodePacked(_writeLength(_in.length, 128), _in); } return encoded; } /** * @notice RLP encodes a list of RLP encoded byte byte strings. * * @param _in The list of RLP encoded byte strings. * * @return The RLP encoded list of items in bytes. */ function writeList(bytes[] memory _in) internal pure returns (bytes memory) { bytes memory list = _flatten(_in); return abi.encodePacked(_writeLength(list.length, 192), list); } /** * @notice RLP encodes a string. * * @param _in The string to encode. * * @return The RLP encoded string in bytes. */ function writeString(string memory _in) internal pure returns (bytes memory) { return writeBytes(bytes(_in)); } /** * @notice RLP encodes an address. * * @param _in The address to encode. * * @return The RLP encoded address in bytes. */ function writeAddress(address _in) internal pure returns (bytes memory) { return writeBytes(abi.encodePacked(_in)); } /** * @notice RLP encodes a uint. * * @param _in The uint256 to encode. * * @return The RLP encoded uint256 in bytes. */ function writeUint(uint256 _in) internal pure returns (bytes memory) { return writeBytes(_toBinary(_in)); } /** * @notice RLP encodes a bool. * * @param _in The bool to encode. * * @return The RLP encoded bool in bytes. */ function writeBool(bool _in) internal pure returns (bytes memory) { bytes memory encoded = new bytes(1); encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80)); return encoded; } /** * @notice Encode the first byte and then the `len` in binary form if `length` is more than 55. * * @param _len The length of the string or the payload. * @param _offset 128 if item is string, 192 if item is list. * * @return RLP encoded bytes. */ function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) { bytes memory encoded; if (_len < 56) { encoded = new bytes(1); encoded[0] = bytes1(uint8(_len) + uint8(_offset)); } else { uint256 lenLen; uint256 i = 1; while (_len / i != 0) { lenLen++; i *= 256; } encoded = new bytes(lenLen + 1); encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55); for (i = 1; i <= lenLen; i++) { encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256)); } } return encoded; } /** * @notice Encode integer in big endian binary form with no leading zeroes. * * @param _x The integer to encode. * * @return RLP encoded bytes. */ function _toBinary(uint256 _x) private pure returns (bytes memory) { bytes memory b = abi.encodePacked(_x); uint256 i = 0; for (; i < 32; i++) { if (b[i] != 0) { break; } } bytes memory res = new bytes(32 - i); for (uint256 j = 0; j < res.length; j++) { res[j] = b[i++]; } return res; } /** * @custom:attribution https://github.com/Arachnid/solidity-stringutils * @notice Copies a piece of memory to another location. * * @param _dest Destination location. * @param _src Source location. * @param _len Length of memory to copy. */ function _memcpy( uint256 _dest, uint256 _src, uint256 _len ) private pure { uint256 dest = _dest; uint256 src = _src; uint256 len = _len; for (; len >= 32; len -= 32) { assembly { mstore(dest, mload(src)) } dest += 32; src += 32; } uint256 mask; unchecked { mask = 256**(32 - len) - 1; } assembly { let srcpart := and(mload(src), not(mask)) let destpart := and(mload(dest), mask) mstore(dest, or(destpart, srcpart)) } } /** * @custom:attribution https://github.com/sammayo/solidity-rlp-encoder * @notice Flattens a list of byte strings into one byte string. * * @param _list List of byte strings to flatten. * * @return The flattened byte string. */ function _flatten(bytes[] memory _list) private pure returns (bytes memory) { if (_list.length == 0) { return new bytes(0); } uint256 len; uint256 i = 0; for (; i < _list.length; i++) { len += _list[i].length; } bytes memory flattened = new bytes(len); uint256 flattenedPtr; assembly { flattenedPtr := add(flattened, 0x20) } for (i = 0; i < _list.length; i++) { bytes memory item = _list[i]; uint256 listPtr; assembly { listPtr := add(item, 0x20) } _memcpy(flattenedPtr, listPtr, item.length); flattenedPtr += _list[i].length; } return flattened; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.15; import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol"; import { SafeCall } from "../libraries/SafeCall.sol"; import { Hashing } from "../libraries/Hashing.sol"; import { Encoding } from "../libraries/Encoding.sol"; import { Constants } from "../libraries/Constants.sol"; /** * @custom:legacy * @title CrossDomainMessengerLegacySpacer0 * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the * libAddressManager variable used to exist. Must be the first contract in the inheritance * tree of the CrossDomainMessenger. */ contract CrossDomainMessengerLegacySpacer0 { /** * @custom:legacy * @custom:spacer libAddressManager * @notice Spacer for backwards compatibility. */ address private spacer_0_0_20; } /** * @custom:legacy * @title CrossDomainMessengerLegacySpacer1 * @notice Contract only exists to add a spacer to the CrossDomainMessenger where the * PausableUpgradable and OwnableUpgradeable variables used to exist. Must be * the third contract in the inheritance tree of the CrossDomainMessenger. */ contract CrossDomainMessengerLegacySpacer1 { /** * @custom:legacy * @custom:spacer ContextUpgradable's __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * ContextUpgradable. * */ uint256[50] private spacer_1_0_1600; /** * @custom:legacy * @custom:spacer OwnableUpgradeable's _owner * @notice Spacer for backwards compatibility. * Come from OpenZeppelin OwnableUpgradeable. */ address private spacer_51_0_20; /** * @custom:legacy * @custom:spacer OwnableUpgradeable's __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * OwnableUpgradeable. */ uint256[49] private spacer_52_0_1568; /** * @custom:legacy * @custom:spacer PausableUpgradable's _paused * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * PausableUpgradable. */ bool private spacer_101_0_1; /** * @custom:legacy * @custom:spacer PausableUpgradable's __gap * @notice Spacer for backwards compatibility. Comes from OpenZeppelin * PausableUpgradable. */ uint256[49] private spacer_102_0_1568; /** * @custom:legacy * @custom:spacer ReentrancyGuardUpgradeable's `_status` field. * @notice Spacer for backwards compatibility. */ uint256 private spacer_151_0_32; /** * @custom:legacy * @custom:spacer ReentrancyGuardUpgradeable's __gap * @notice Spacer for backwards compatibility. */ uint256[49] private spacer_152_0_1568; /** * @custom:legacy * @custom:spacer blockedMessages * @notice Spacer for backwards compatibility. */ mapping(bytes32 => bool) private spacer_201_0_32; /** * @custom:legacy * @custom:spacer relayedMessages * @notice Spacer for backwards compatibility. */ mapping(bytes32 => bool) private spacer_202_0_32; } /** * @custom:upgradeable * @title CrossDomainMessenger * @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2 * cross-chain messenger contracts. It's designed to be a universal interface that only * needs to be extended slightly to provide low-level message passing functionality on each * chain it's deployed on. Currently only designed for message passing between two paired * chains and does not support one-to-many interactions. * * Any changes to this contract MUST result in a semver bump for contracts that inherit it. */ abstract contract CrossDomainMessenger is CrossDomainMessengerLegacySpacer0, Initializable, CrossDomainMessengerLegacySpacer1 { /** * @notice Current message version identifier. */ uint16 public constant MESSAGE_VERSION = 1; /** * @notice Constant overhead added to the base gas for a message. */ uint64 public constant RELAY_CONSTANT_OVERHEAD = 200_000; /** * @notice Numerator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 64; /** * @notice Denominator for dynamic overhead added to the base gas for a message. */ uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 63; /** * @notice Extra gas added to base gas for each byte of calldata in a message. */ uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16; /** * @notice Gas reserved for performing the external call in `relayMessage`. */ uint64 public constant RELAY_CALL_OVERHEAD = 40_000; /** * @notice Gas reserved for finalizing the execution of `relayMessage` after the safe call. */ uint64 public constant RELAY_RESERVED_GAS = 40_000; /** * @notice Gas reserved for the execution between the `hasMinGas` check and the external * call in `relayMessage`. */ uint64 public constant RELAY_GAS_CHECK_BUFFER = 5_000; /** * @notice Address of the paired CrossDomainMessenger contract on the other chain. */ address public immutable OTHER_MESSENGER; /** * @notice Mapping of message hashes to boolean receipt values. Note that a message will only * be present in this mapping if it has successfully been relayed on this chain, and * can therefore not be relayed again. */ mapping(bytes32 => bool) public successfulMessages; /** * @notice Address of the sender of the currently executing message on the other chain. If the * value of this variable is the default value (0x00000000...dead) then no message is * currently being executed. Use the xDomainMessageSender getter which will throw an * error if this is the case. */ address internal xDomainMsgSender; /** * @notice Nonce for the next message to be sent, without the message version applied. Use the * messageNonce getter which will insert the message version into the nonce to give you * the actual nonce to be used for the message. */ uint240 internal msgNonce; /** * @notice Mapping of message hashes to a boolean if and only if the message has failed to be * executed at least once. A message will not be present in this mapping if it * successfully executed on the first attempt. */ mapping(bytes32 => bool) public failedMessages; /** * @notice Reserve extra slots in the storage layout for future upgrades. * A gap size of 41 was chosen here, so that the first slot used in a child contract * would be a multiple of 50. */ uint256[42] private __gap; /** * @notice Emitted whenever a message is sent to the other chain. * * @param target Address of the recipient of the message. * @param sender Address of the sender of the message. * @param message Message to trigger the recipient address with. * @param messageNonce Unique nonce attached to the message. * @param gasLimit Minimum gas limit that the message can be executed with. */ event SentMessage( address indexed target, address sender, bytes message, uint256 messageNonce, uint256 gasLimit ); /** * @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the * SentMessage event without breaking the ABI of this contract, this is good enough. * * @param sender Address of the sender of the message. * @param value ETH value sent along with the message to the recipient. */ event SentMessageExtension1(address indexed sender, uint256 value); /** * @notice Emitted whenever a message is successfully relayed on this chain. * * @param msgHash Hash of the message that was relayed. */ event RelayedMessage(bytes32 indexed msgHash); /** * @notice Emitted whenever a message fails to be relayed on this chain. * * @param msgHash Hash of the message that failed to be relayed. */ event FailedRelayedMessage(bytes32 indexed msgHash); /** * @param _otherMessenger Address of the messenger on the paired chain. */ constructor(address _otherMessenger) { OTHER_MESSENGER = _otherMessenger; } /** * @notice Sends a message to some target address on the other chain. Note that if the call * always reverts, then the message will be unrelayable, and any ETH sent will be * permanently locked. The same will occur if the target on the other chain is * considered unsafe (see the _isUnsafeTarget() function). * * @param _target Target contract or wallet address. * @param _message Message to trigger the target address with. * @param _minGasLimit Minimum gas limit that the message can be executed with. */ function sendMessage( address _target, bytes calldata _message, uint32 _minGasLimit ) external payable { // Triggers a message to the other messenger. Note that the amount of gas provided to the // message is the amount of gas requested by the user PLUS the base gas value. We want to // guarantee the property that the call to the target contract will always have at least // the minimum gas limit specified by the user. _sendMessage( OTHER_MESSENGER, baseGas(_message, _minGasLimit), msg.value, abi.encodeWithSelector( this.relayMessage.selector, messageNonce(), msg.sender, _target, msg.value, _minGasLimit, _message ) ); emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit); emit SentMessageExtension1(msg.sender, msg.value); unchecked { ++msgNonce; } } /** * @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only * be executed via cross-chain call from the other messenger OR if the message was * already received once and is currently being replayed. * * @param _nonce Nonce of the message being relayed. * @param _sender Address of the user who sent the message. * @param _target Address that the message is targeted at. * @param _value ETH value to send with the message. * @param _minGasLimit Minimum amount of gas that the message can be executed with. * @param _message Message to send to the target. */ function relayMessage( uint256 _nonce, address _sender, address _target, uint256 _value, uint256 _minGasLimit, bytes calldata _message ) external payable { (, uint16 version) = Encoding.decodeVersionedNonce(_nonce); require( version < 2, "CrossDomainMessenger: only version 0 or 1 messages are supported at this time" ); // If the message is version 0, then it's a migrated legacy withdrawal. We therefore need // to check that the legacy version of the message has not already been relayed. if (version == 0) { bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce); require( successfulMessages[oldHash] == false, "CrossDomainMessenger: legacy withdrawal already relayed" ); } // We use the v1 message hash as the unique identifier for the message because it commits // to the value and minimum gas limit of the message. bytes32 versionedHash = Hashing.hashCrossDomainMessageV1( _nonce, _sender, _target, _value, _minGasLimit, _message ); if (_isOtherMessenger()) { // These properties should always hold when the message is first submitted (as // opposed to being replayed). assert(msg.value == _value); assert(!failedMessages[versionedHash]); } else { require( msg.value == 0, "CrossDomainMessenger: value must be zero unless message is from a system address" ); require( failedMessages[versionedHash], "CrossDomainMessenger: message cannot be replayed" ); } require( _isUnsafeTarget(_target) == false, "CrossDomainMessenger: cannot send message to blocked system address" ); require( successfulMessages[versionedHash] == false, "CrossDomainMessenger: message has already been relayed" ); // If there is not enough gas left to perform the external call and finish the execution, // return early and assign the message to the failedMessages mapping. // We are asserting that we have enough gas to: // 1. Call the target contract (_minGasLimit + RELAY_CALL_OVERHEAD + RELAY_GAS_CHECK_BUFFER) // 1.a. The RELAY_CALL_OVERHEAD is included in `hasMinGas`. // 2. Finish the execution after the external call (RELAY_RESERVED_GAS). // // If `xDomainMsgSender` is not the default L2 sender, this function // is being re-entered. This marks the message as failed to allow it to be replayed. if ( !SafeCall.hasMinGas(_minGasLimit, RELAY_RESERVED_GAS + RELAY_GAS_CHECK_BUFFER) || xDomainMsgSender != Constants.DEFAULT_L2_SENDER ) { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } return; } xDomainMsgSender = _sender; bool success = SafeCall.call(_target, gasleft() - RELAY_RESERVED_GAS, _value, _message); xDomainMsgSender = Constants.DEFAULT_L2_SENDER; if (success) { successfulMessages[versionedHash] = true; emit RelayedMessage(versionedHash); } else { failedMessages[versionedHash] = true; emit FailedRelayedMessage(versionedHash); // Revert in this case if the transaction was triggered by the estimation address. This // should only be possible during gas estimation or we have bigger problems. Reverting // here will make the behavior of gas estimation change such that the gas limit // computed will be the amount required to relay the message, even if that amount is // greater than the minimum gas limit specified by the user. if (tx.origin == Constants.ESTIMATION_ADDRESS) { revert("CrossDomainMessenger: failed to relay message"); } } } /** * @notice Retrieves the address of the contract or wallet that initiated the currently * executing message on the other chain. Will throw an error if there is no message * currently being executed. Allows the recipient of a call to see who triggered it. * * @return Address of the sender of the currently executing message on the other chain. */ function xDomainMessageSender() external view returns (address) { require( xDomainMsgSender != Constants.DEFAULT_L2_SENDER, "CrossDomainMessenger: xDomainMessageSender is not set" ); return xDomainMsgSender; } /** * @notice Retrieves the next message nonce. Message version will be added to the upper two * bytes of the message nonce. Message version allows us to treat messages as having * different structures. * * @return Nonce of the next message to be sent, with added message version. */ function messageNonce() public view returns (uint256) { return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION); } /** * @notice Computes the amount of gas required to guarantee that a given message will be * received on the other chain without running out of gas. Guaranteeing that a message * will not run out of gas is important because this ensures that a message can always * be replayed on the other chain if it fails to execute completely. * * @param _message Message to compute the amount of required gas for. * @param _minGasLimit Minimum desired gas limit when message goes to target. * * @return Amount of gas required to guarantee message receipt. */ function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) { return // Constant overhead RELAY_CONSTANT_OVERHEAD + // Calldata overhead (uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) + // Dynamic overhead (EIP-150) ((_minGasLimit * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) / MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) + // Gas reserved for the worst-case cost of 3/5 of the `CALL` opcode's dynamic gas // factors. (Conservative) RELAY_CALL_OVERHEAD + // Relay reserved gas (to ensure execution of `relayMessage` completes after the // subcontext finishes executing) (Conservative) RELAY_RESERVED_GAS + // Gas reserved for the execution between the `hasMinGas` check and the `CALL` // opcode. (Conservative) RELAY_GAS_CHECK_BUFFER; } /** * @notice Intializer. */ // solhint-disable-next-line func-name-mixedcase function __CrossDomainMessenger_init() internal onlyInitializing { xDomainMsgSender = Constants.DEFAULT_L2_SENDER; } /** * @notice Sends a low-level message to the other messenger. Needs to be implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @param _to Recipient of the message on the other chain. * @param _gasLimit Minimum gas limit the message can be executed with. * @param _value Amount of ETH to send with the message. * @param _data Message data. */ function _sendMessage( address _to, uint64 _gasLimit, uint256 _value, bytes memory _data ) internal virtual; /** * @notice Checks whether the message is coming from the other messenger. Implemented by child * contracts because the logic for this depends on the network where the messenger is * being deployed. * * @return Whether the message is coming from the other messenger. */ function _isOtherMessenger() internal view virtual returns (bool); /** * @notice Checks whether a given call target is a system address that could cause the * messenger to peform an unsafe action. This is NOT a mechanism for blocking user * addresses. This is ONLY used to prevent the execution of messages to specific * system addresses that could cause security issues, e.g., having the * CrossDomainMessenger send messages to itself. * * @param _target Address of the contract to check. * * @return Whether or not the address is an unsafe system address. */ function _isUnsafeTarget(address _target) internal view virtual returns (bool); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.0; import { Strings } from "@openzeppelin/contracts/utils/Strings.sol"; /** * @title Semver * @notice Semver is a simple contract for managing contract versions. */ contract Semver { /** * @notice Contract version number (major). */ uint256 private immutable MAJOR_VERSION; /** * @notice Contract version number (minor). */ uint256 private immutable MINOR_VERSION; /** * @notice Contract version number (patch). */ uint256 private immutable PATCH_VERSION; /** * @param _major Version number (major). * @param _minor Version number (minor). * @param _patch Version number (patch). */ constructor( uint256 _major, uint256 _minor, uint256 _patch ) { MAJOR_VERSION = _major; MINOR_VERSION = _minor; PATCH_VERSION = _patch; } /** * @notice Returns the full semver contract version. * * @return Semver contract version as a string. */ function version() public view returns (string memory) { return string( abi.encodePacked( Strings.toString(MAJOR_VERSION), ".", Strings.toString(MINOR_VERSION), ".", Strings.toString(PATCH_VERSION) ) ); } }
// SPDX-License-Identifier: Apache-2.0 /* * Copyright 2019-2021, Offchain Labs, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ pragma solidity ^0.8.0; library AddressAliasHelper { uint160 constant offset = uint160(0x1111000000000000000000000000000000001111); /// @notice Utility function that converts the address in the L1 that submitted a tx to /// the inbox to the msg.sender viewed in the L2 /// @param l1Address the address in the L1 that triggered the tx to L2 /// @return l2Address L2 address as viewed in msg.sender function applyL1ToL2Alias(address l1Address) internal pure returns (address l2Address) { unchecked { l2Address = address(uint160(l1Address) + offset); } } /// @notice Utility function that converts the msg.sender viewed in the L2 to the /// address in the L1 that submitted a tx to the inbox /// @param l2Address L2 address as viewed in msg.sender /// @return l1Address the address in the L1 that triggered the tx to L2 function undoL1ToL2Alias(address l2Address) internal pure returns (address l1Address) { unchecked { l1Address = address(uint160(l2Address) - offset); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/Address.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { return functionDelegateCall(target, data, "Address: low-level delegate call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a delegate call. * * _Available since v3.4._ */ function functionDelegateCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { require(isContract(target), "Address: delegate call to non-contract"); (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _HEX_SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { // Inspired by OraclizeAPI's implementation - MIT licence // https://github.com/oraclize/ethereum-api/blob/b42146b063c7d6ee1358846c198246239e9360e8/oraclizeAPI_0.4.25.sol if (value == 0) { return "0"; } uint256 temp = value; uint256 digits; while (temp != 0) { digits++; temp /= 10; } bytes memory buffer = new bytes(digits); while (value != 0) { digits -= 1; buffer[digits] = bytes1(uint8(48 + uint256(value % 10))); value /= 10; } return string(buffer); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { if (value == 0) { return "0x00"; } uint256 temp = value; uint256 length = 0; while (temp != 0) { length++; temp >>= 8; } return toHexString(value, length); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _HEX_SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. It the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. // We also know that `k`, the position of the most significant bit, is such that `msb(a) = 2**k`. // This gives `2**k < a <= 2**(k+1)` → `2**(k/2) <= sqrt(a) < 2 ** (k/2+1)`. // Using an algorithm similar to the msb conmputation, we are able to compute `result = 2**(k/2)` which is a // good first aproximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1; uint256 x = a; if (x >> 128 > 0) { x >>= 128; result <<= 64; } if (x >> 64 > 0) { x >>= 64; result <<= 32; } if (x >> 32 > 0) { x >>= 32; result <<= 16; } if (x >> 16 > 0) { x >>= 16; result <<= 8; } if (x >> 8 > 0) { x >>= 8; result <<= 4; } if (x >> 4 > 0) { x >>= 4; result <<= 2; } if (x >> 2 > 0) { result <<= 1; } // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { uint256 result = sqrt(a); if (rounding == Rounding.Up && result * result < a) { result += 1; } return result; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a >= b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; import "../../utils/AddressUpgradeable.sol"; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. Equivalent to `reinitializer(1)`. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * `initializer` is equivalent to `reinitializer(1)`, so a reinitializer may be used after the original * initialization step. This is essential to configure modules that are added through upgrades and that require * initialization. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. */ modifier reinitializer(uint8 version) { require(!_initializing && _initialized < version, "Initializable: contract is already initialized"); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.7.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, "Address: insufficient balance"); (bool success, ) = recipient.call{value: amount}(""); require(success, "Address: unable to send value, recipient may have reverted"); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCall(target, data, "Address: low-level call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue(target, data, value, "Address: low-level call with value failed"); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require(address(this).balance >= value, "Address: insufficient balance for call"); require(isContract(target), "Address: call to non-contract"); (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall(target, data, "Address: low-level static call failed"); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { require(isContract(target), "Address: static call to non-contract"); (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResult(success, returndata, errorMessage); } /** * @dev Tool to verifies that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.0; /// @notice Arithmetic library with operations for fixed-point numbers. /// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/FixedPointMathLib.sol) library FixedPointMathLib { /*////////////////////////////////////////////////////////////// SIMPLIFIED FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ uint256 internal constant WAD = 1e18; // The scalar of ETH and most ERC20s. function mulWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, y, WAD); // Equivalent to (x * y) / WAD rounded down. } function mulWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, y, WAD); // Equivalent to (x * y) / WAD rounded up. } function divWadDown(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivDown(x, WAD, y); // Equivalent to (x * WAD) / y rounded down. } function divWadUp(uint256 x, uint256 y) internal pure returns (uint256) { return mulDivUp(x, WAD, y); // Equivalent to (x * WAD) / y rounded up. } function powWad(int256 x, int256 y) internal pure returns (int256) { // Equivalent to x to the power of y because x ** y = (e ** ln(x)) ** y = e ** (ln(x) * y) return expWad((lnWad(x) * y) / int256(WAD)); // Using ln(x) means x must be greater than 0. } function expWad(int256 x) internal pure returns (int256 r) { unchecked { // When the result is < 0.5 we return zero. This happens when // x <= floor(log(0.5e18) * 1e18) ~ -42e18 if (x <= -42139678854452767551) return 0; // When the result is > (2**255 - 1) / 1e18 we can not represent it as an // int. This happens when x >= floor(log((2**255 - 1) / 1e18) * 1e18) ~ 135. if (x >= 135305999368893231589) revert("EXP_OVERFLOW"); // x is now in the range (-42, 136) * 1e18. Convert to (-42, 136) * 2**96 // for more intermediate precision and a binary basis. This base conversion // is a multiplication by 1e18 / 2**96 = 5**18 / 2**78. x = (x << 78) / 5**18; // Reduce range of x to (-½ ln 2, ½ ln 2) * 2**96 by factoring out powers // of two such that exp(x) = exp(x') * 2**k, where k is an integer. // Solving this gives k = round(x / log(2)) and x' = x - k * log(2). int256 k = ((x << 96) / 54916777467707473351141471128 + 2**95) >> 96; x = x - k * 54916777467707473351141471128; // k is in the range [-61, 195]. // Evaluate using a (6, 7)-term rational approximation. // p is made monic, we'll multiply by a scale factor later. int256 y = x + 1346386616545796478920950773328; y = ((y * x) >> 96) + 57155421227552351082224309758442; int256 p = y + x - 94201549194550492254356042504812; p = ((p * y) >> 96) + 28719021644029726153956944680412240; p = p * x + (4385272521454847904659076985693276 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. int256 q = x - 2855989394907223263936484059900; q = ((q * x) >> 96) + 50020603652535783019961831881945; q = ((q * x) >> 96) - 533845033583426703283633433725380; q = ((q * x) >> 96) + 3604857256930695427073651918091429; q = ((q * x) >> 96) - 14423608567350463180887372962807573; q = ((q * x) >> 96) + 26449188498355588339934803723976023; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial won't have zeros in the domain as all its roots are complex. // No scaling is necessary because p is already 2**96 too large. r := sdiv(p, q) } // r should be in the range (0.09, 0.25) * 2**96. // We now need to multiply r by: // * the scale factor s = ~6.031367120. // * the 2**k factor from the range reduction. // * the 1e18 / 2**96 factor for base conversion. // We do this all at once, with an intermediate result in 2**213 // basis, so the final right shift is always by a positive amount. r = int256((uint256(r) * 3822833074963236453042738258902158003155416615667) >> uint256(195 - k)); } } function lnWad(int256 x) internal pure returns (int256 r) { unchecked { require(x > 0, "UNDEFINED"); // We want to convert x from 10**18 fixed point to 2**96 fixed point. // We do this by multiplying by 2**96 / 10**18. But since // ln(x * C) = ln(x) + ln(C), we can simply do nothing here // and add ln(2**96 / 10**18) at the end. // Reduce range of x to (1, 2) * 2**96 // ln(2^k * x) = k * ln(2) + ln(x) int256 k = int256(log2(uint256(x))) - 96; x <<= uint256(159 - k); x = int256(uint256(x) >> 159); // Evaluate using a (8, 8)-term rational approximation. // p is made monic, we will multiply by a scale factor later. int256 p = x + 3273285459638523848632254066296; p = ((p * x) >> 96) + 24828157081833163892658089445524; p = ((p * x) >> 96) + 43456485725739037958740375743393; p = ((p * x) >> 96) - 11111509109440967052023855526967; p = ((p * x) >> 96) - 45023709667254063763336534515857; p = ((p * x) >> 96) - 14706773417378608786704636184526; p = p * x - (795164235651350426258249787498 << 96); // We leave p in 2**192 basis so we don't need to scale it back up for the division. // q is monic by convention. int256 q = x + 5573035233440673466300451813936; q = ((q * x) >> 96) + 71694874799317883764090561454958; q = ((q * x) >> 96) + 283447036172924575727196451306956; q = ((q * x) >> 96) + 401686690394027663651624208769553; q = ((q * x) >> 96) + 204048457590392012362485061816622; q = ((q * x) >> 96) + 31853899698501571402653359427138; q = ((q * x) >> 96) + 909429971244387300277376558375; assembly { // Div in assembly because solidity adds a zero check despite the unchecked. // The q polynomial is known not to have zeros in the domain. // No scaling required because p is already 2**96 too large. r := sdiv(p, q) } // r is in the range (0, 0.125) * 2**96 // Finalization, we need to: // * multiply by the scale factor s = 5.549… // * add ln(2**96 / 10**18) // * add k * ln(2) // * multiply by 10**18 / 2**96 = 5**18 >> 78 // mul s * 5e18 * 2**96, base is now 5**18 * 2**192 r *= 1677202110996718588342820967067443963516166; // add ln(2) * k * 5e18 * 2**192 r += 16597577552685614221487285958193947469193820559219878177908093499208371 * k; // add ln(2**96 / 10**18) * 5e18 * 2**192 r += 600920179829731861736702779321621459595472258049074101567377883020018308; // base conversion: mul 2**18 / 2**192 r >>= 174; } } /*////////////////////////////////////////////////////////////// LOW LEVEL FIXED POINT OPERATIONS //////////////////////////////////////////////////////////////*/ function mulDivDown( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // Divide z by the denominator. z := div(z, denominator) } } function mulDivUp( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 z) { assembly { // Store x * y in z for now. z := mul(x, y) // Equivalent to require(denominator != 0 && (x == 0 || (x * y) / x == y)) if iszero(and(iszero(iszero(denominator)), or(iszero(x), eq(div(z, x), y)))) { revert(0, 0) } // First, divide z - 1 by the denominator and add 1. // We allow z - 1 to underflow if z is 0, because we multiply the // end result by 0 if z is zero, ensuring we return 0 if z is zero. z := mul(iszero(iszero(z)), add(div(sub(z, 1), denominator), 1)) } } function rpow( uint256 x, uint256 n, uint256 scalar ) internal pure returns (uint256 z) { assembly { switch x case 0 { switch n case 0 { // 0 ** 0 = 1 z := scalar } default { // 0 ** n = 0 z := 0 } } default { switch mod(n, 2) case 0 { // If n is even, store scalar in z for now. z := scalar } default { // If n is odd, store x in z for now. z := x } // Shifting right by 1 is like dividing by 2. let half := shr(1, scalar) for { // Shift n right by 1 before looping to halve it. n := shr(1, n) } n { // Shift n right by 1 each iteration to halve it. n := shr(1, n) } { // Revert immediately if x ** 2 would overflow. // Equivalent to iszero(eq(div(xx, x), x)) here. if shr(128, x) { revert(0, 0) } // Store x squared. let xx := mul(x, x) // Round to the nearest number. let xxRound := add(xx, half) // Revert if xx + half overflowed. if lt(xxRound, xx) { revert(0, 0) } // Set x to scaled xxRound. x := div(xxRound, scalar) // If n is even: if mod(n, 2) { // Compute z * x. let zx := mul(z, x) // If z * x overflowed: if iszero(eq(div(zx, x), z)) { // Revert if x is non-zero. if iszero(iszero(x)) { revert(0, 0) } } // Round to the nearest number. let zxRound := add(zx, half) // Revert if zx + half overflowed. if lt(zxRound, zx) { revert(0, 0) } // Return properly scaled zxRound. z := div(zxRound, scalar) } } } } } /*////////////////////////////////////////////////////////////// GENERAL NUMBER UTILITIES //////////////////////////////////////////////////////////////*/ function sqrt(uint256 x) internal pure returns (uint256 z) { assembly { let y := x // We start y at x, which will help us make our initial estimate. z := 181 // The "correct" value is 1, but this saves a multiplication later. // This segment is to get a reasonable initial estimate for the Babylonian method. With a bad // start, the correct # of bits increases ~linearly each iteration instead of ~quadratically. // We check y >= 2^(k + 8) but shift right by k bits // each branch to ensure that if x >= 256, then y >= 256. if iszero(lt(y, 0x10000000000000000000000000000000000)) { y := shr(128, y) z := shl(64, z) } if iszero(lt(y, 0x1000000000000000000)) { y := shr(64, y) z := shl(32, z) } if iszero(lt(y, 0x10000000000)) { y := shr(32, y) z := shl(16, z) } if iszero(lt(y, 0x1000000)) { y := shr(16, y) z := shl(8, z) } // Goal was to get z*z*y within a small factor of x. More iterations could // get y in a tighter range. Currently, we will have y in [256, 256*2^16). // We ensured y >= 256 so that the relative difference between y and y+1 is small. // That's not possible if x < 256 but we can just verify those cases exhaustively. // Now, z*z*y <= x < z*z*(y+1), and y <= 2^(16+8), and either y >= 256, or x < 256. // Correctness can be checked exhaustively for x < 256, so we assume y >= 256. // Then z*sqrt(y) is within sqrt(257)/sqrt(256) of sqrt(x), or about 20bps. // For s in the range [1/256, 256], the estimate f(s) = (181/1024) * (s+1) is in the range // (1/2.84 * sqrt(s), 2.84 * sqrt(s)), with largest error when s = 1 and when s = 256 or 1/256. // Since y is in [256, 256*2^16), let a = y/65536, so that a is in [1/256, 256). Then we can estimate // sqrt(y) using sqrt(65536) * 181/1024 * (a + 1) = 181/4 * (y + 65536)/65536 = 181 * (y + 65536)/2^18. // There is no overflow risk here since y < 2^136 after the first branch above. z := shr(18, mul(z, add(y, 65536))) // A mul() is saved from starting z at 181. // Given the worst case multiplicative error of 2.84 above, 7 iterations should be enough. z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) z := shr(1, add(z, div(x, z))) // If x+1 is a perfect square, the Babylonian method cycles between // floor(sqrt(x)) and ceil(sqrt(x)). This statement ensures we return floor. // See: https://en.wikipedia.org/wiki/Integer_square_root#Using_only_integer_division // Since the ceil is rare, we save gas on the assignment and repeat division in the rare case. // If you don't care whether the floor or ceil square root is returned, you can remove this statement. z := sub(z, lt(div(x, z), z)) } } function log2(uint256 x) internal pure returns (uint256 r) { require(x > 0, "UNDEFINED"); assembly { r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x)) r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x)))) r := or(r, shl(5, lt(0xffffffff, shr(r, x)))) r := or(r, shl(4, lt(0xffff, shr(r, x)))) r := or(r, shl(3, lt(0xff, shr(r, x)))) r := or(r, shl(2, lt(0xf, shr(r, x)))) r := or(r, shl(1, lt(0x3, shr(r, x)))) r := or(r, lt(0x1, shr(r, x))) } } }
{ "remappings": [ "@cwia/=node_modules/clones-with-immutable-args/src/", "@eth-optimism/=lib/@eth-optimism/", "@openzeppelin/=lib/@openzeppelin/", "@openzeppelin/contracts-upgradeable/=lib/@openzeppelin/contracts-upgradeable/", "@openzeppelin/contracts/=lib/@openzeppelin/contracts/", "@rari-capital/=node_modules/@rari-capital/", "@rari-capital/solmate/=node_modules/@rari-capital/solmate/", "clones-with-immutable-args/=node_modules/clones-with-immutable-args/", "ds-test/=node_modules/ds-test/src/", "forge-std/=node_modules/forge-std/src/", "hardhat/=node_modules/hardhat/" ], "optimizer": { "enabled": true, "runs": 999999 }, "metadata": { "bytecodeHash": "none" }, "outputSelection": { "*": { "": [ "ast" ], "*": [ "abi", "evm.bytecode", "evm.deployedBytecode", "evm.methodIdentifiers", "metadata", "storageLayout", "devdoc", "userdoc" ] } }, "evmVersion": "london", "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
[{"inputs":[{"internalType":"address","name":"_l1CrossDomainMessenger","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"msgHash","type":"bytes32"}],"name":"FailedRelayedMessage","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"msgHash","type":"bytes32"}],"name":"RelayedMessage","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"target","type":"address"},{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"bytes","name":"message","type":"bytes"},{"indexed":false,"internalType":"uint256","name":"messageNonce","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"gasLimit","type":"uint256"}],"name":"SentMessage","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"SentMessageExtension1","type":"event"},{"inputs":[],"name":"MESSAGE_VERSION","outputs":[{"internalType":"uint16","name":"","type":"uint16"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_GAS_CALLDATA_OVERHEAD","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"OTHER_MESSENGER","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RELAY_CALL_OVERHEAD","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RELAY_CONSTANT_OVERHEAD","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RELAY_GAS_CHECK_BUFFER","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"RELAY_RESERVED_GAS","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes","name":"_message","type":"bytes"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"}],"name":"baseGas","outputs":[{"internalType":"uint64","name":"","type":"uint64"}],"stateMutability":"pure","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"failedMessages","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"l1CrossDomainMessenger","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"messageNonce","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"_nonce","type":"uint256"},{"internalType":"address","name":"_sender","type":"address"},{"internalType":"address","name":"_target","type":"address"},{"internalType":"uint256","name":"_value","type":"uint256"},{"internalType":"uint256","name":"_minGasLimit","type":"uint256"},{"internalType":"bytes","name":"_message","type":"bytes"}],"name":"relayMessage","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"_target","type":"address"},{"internalType":"bytes","name":"_message","type":"bytes"},{"internalType":"uint32","name":"_minGasLimit","type":"uint32"}],"name":"sendMessage","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"name":"successfulMessages","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"version","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"xDomainMessageSender","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
6080604052600436106101445760003560e01c80638129fc1c116100c0578063a711986911610074578063b28ade2511610059578063b28ade251461036e578063d764ad0b1461038e578063ecc70428146103a157600080fd5b8063a71198691461030b578063b1b1b2091461033e57600080fd5b80638cbeeef2116100a55780638cbeeef2146101e35780639fce812c14610297578063a4e7f8bd146102cb57600080fd5b80638129fc1c1461026b57806383a740741461028057600080fd5b80633f827a5a1161011757806354fd4d50116100fc57806354fd4d50146101f95780635644cfdf1461021b5780636e296e451461023157600080fd5b80633f827a5a146101bb5780634c1d6a69146101e357600080fd5b8063028f85f7146101495780630c5684981461017c5780632828d7e8146101915780633dbb202b146101a6575b600080fd5b34801561015557600080fd5b5061015e601081565b60405167ffffffffffffffff90911681526020015b60405180910390f35b34801561018857600080fd5b5061015e603f81565b34801561019d57600080fd5b5061015e604081565b6101b96101b4366004611886565b610406565b005b3480156101c757600080fd5b506101d0600181565b60405161ffff9091168152602001610173565b3480156101ef57600080fd5b5061015e619c4081565b34801561020557600080fd5b5061020e61066a565b6040516101739190611965565b34801561022757600080fd5b5061015e61138881565b34801561023d57600080fd5b5061024661070d565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610173565b34801561027757600080fd5b506101b96107f9565b34801561028c57600080fd5b5061015e62030d4081565b3480156102a357600080fd5b506102467f000000000000000000000000866e82a600a1414e583f7f13623f1ac5d58b0afa81565b3480156102d757600080fd5b506102fb6102e636600461197f565b60ce6020526000908152604090205460ff1681565b6040519015158152602001610173565b34801561031757600080fd5b507f000000000000000000000000866e82a600a1414e583f7f13623f1ac5d58b0afa610246565b34801561034a57600080fd5b506102fb61035936600461197f565b60cb6020526000908152604090205460ff1681565b34801561037a57600080fd5b5061015e610389366004611998565b6109f6565b6101b961039c3660046119ec565b610a64565b3480156103ad57600080fd5b506103f860cd547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b604051908152602001610173565b61053f7f000000000000000000000000866e82a600a1414e583f7f13623f1ac5d58b0afa6104358585856109f6565b347fd764ad0b000000000000000000000000000000000000000000000000000000006104a160cd547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b338a34898c8c6040516024016104bd9796959493929190611ab7565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009093169290921790915261135d565b8373ffffffffffffffffffffffffffffffffffffffff167fcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a3385856105c460cd547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b866040516105d6959493929190611b16565b60405180910390a260405134815233907f8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d5469060200160405180910390a2505060cd80547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff808216600101167fffff0000000000000000000000000000000000000000000000000000000000009091161790555050565b60606106957f00000000000000000000000000000000000000000000000000000000000000016113eb565b6106be7f00000000000000000000000000000000000000000000000000000000000000046113eb565b6106e77f00000000000000000000000000000000000000000000000000000000000000006113eb565b6040516020016106f993929190611b64565b604051602081830303815290604052905090565b60cc5460009073ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff2153016107dc576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603560248201527f43726f7373446f6d61696e4d657373656e6765723a2078446f6d61696e4d657360448201527f7361676553656e646572206973206e6f7420736574000000000000000000000060648201526084015b60405180910390fd5b5060cc5473ffffffffffffffffffffffffffffffffffffffff1690565b6000547501000000000000000000000000000000000000000000900460ff1615808015610844575060005460017401000000000000000000000000000000000000000090910460ff16105b806108765750303b158015610876575060005474010000000000000000000000000000000000000000900460ff166001145b610902576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084016107d3565b600080547fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff1674010000000000000000000000000000000000000000179055801561098857600080547fffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffff1675010000000000000000000000000000000000000000001790555b610990611520565b80156109f357600080547fffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50565b6000611388619c4080603f610a12604063ffffffff8816611c09565b610a1c9190611c68565b610a27601088611c09565b610a349062030d40611c8f565b610a3e9190611c8f565b610a489190611c8f565b610a529190611c8f565b610a5c9190611c8f565b949350505050565b60f087901c60028110610b1f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604d60248201527f43726f7373446f6d61696e4d657373656e6765723a206f6e6c7920766572736960448201527f6f6e2030206f722031206d657373616765732061726520737570706f7274656460648201527f20617420746869732074696d6500000000000000000000000000000000000000608482015260a4016107d3565b8061ffff16600003610c14576000610b70878986868080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152508f92506115f9915050565b600081815260cb602052604090205490915060ff1615610c12576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f43726f7373446f6d61696e4d657373656e6765723a206c65676163792077697460448201527f6864726177616c20616c72656164792072656c6179656400000000000000000060648201526084016107d3565b505b6000610c5a898989898989898080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061161892505050565b905073ffffffffffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffeeeeffffffffffffffffffffffffffffffffeeef330181167f000000000000000000000000866e82a600a1414e583f7f13623f1ac5d58b0afa90911603610cf257853414610cce57610cce611cbb565b600081815260ce602052604090205460ff1615610ced57610ced611cbb565b610e44565b3415610da6576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152605060248201527f43726f7373446f6d61696e4d657373656e6765723a2076616c7565206d75737460448201527f206265207a65726f20756e6c657373206d6573736167652069732066726f6d2060648201527f612073797374656d206164647265737300000000000000000000000000000000608482015260a4016107d3565b600081815260ce602052604090205460ff16610e44576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f43726f7373446f6d61696e4d657373656e6765723a206d65737361676520636160448201527f6e6e6f74206265207265706c617965640000000000000000000000000000000060648201526084016107d3565b610e4d8761163b565b15610f00576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604360248201527f43726f7373446f6d61696e4d657373656e6765723a2063616e6e6f742073656e60448201527f64206d65737361676520746f20626c6f636b65642073797374656d206164647260648201527f6573730000000000000000000000000000000000000000000000000000000000608482015260a4016107d3565b600081815260cb602052604090205460ff1615610f9f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603660248201527f43726f7373446f6d61696e4d657373656e6765723a206d65737361676520686160448201527f7320616c7265616479206265656e2072656c617965640000000000000000000060648201526084016107d3565b610fc085610fb1611388619c40611c8f565b67ffffffffffffffff16611690565b1580610fe6575060cc5473ffffffffffffffffffffffffffffffffffffffff1661dead14155b156110ff57600081815260ce602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555182917f99d0e048484baa1b1540b1367cb128acd7ab2946d1ed91ec10e3c85e4bf51b8f91a27fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff32016110f8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602d60248201527f43726f7373446f6d61696e4d657373656e6765723a206661696c656420746f2060448201527f72656c6179206d6573736167650000000000000000000000000000000000000060648201526084016107d3565b5050611338565b60cc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff8a16179055600061119088619c405a6111539190611cea565b8988888080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506116ae92505050565b60cc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead1790559050801561122757600082815260cb602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555183917f4641df4a962071e12719d8c8c8e5ac7fc4d97b927346a3d7a335b1f7517e133c91a2611334565b600082815260ce602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555183917f99d0e048484baa1b1540b1367cb128acd7ab2946d1ed91ec10e3c85e4bf51b8f91a27fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff3201611334576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602d60248201527f43726f7373446f6d61696e4d657373656e6765723a206661696c656420746f2060448201527f72656c6179206d6573736167650000000000000000000000000000000000000060648201526084016107d3565b5050505b50505050505050565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b6040517fc2b3e5ac0000000000000000000000000000000000000000000000000000000081527342000000000000000000000000000000000000169063c2b3e5ac9084906113b390889088908790600401611d01565b6000604051808303818588803b1580156113cc57600080fd5b505af11580156113e0573d6000803e3d6000fd5b505050505050505050565b60608160000361142e57505060408051808201909152600181527f3000000000000000000000000000000000000000000000000000000000000000602082015290565b8160005b8115611458578061144281611d49565b91506114519050600a83611d81565b9150611432565b60008167ffffffffffffffff81111561147357611473611d95565b6040519080825280601f01601f19166020018201604052801561149d576020820181803683370190505b5090505b8415610a5c576114b2600183611cea565b91506114bf600a86611dc4565b6114ca906030611dd8565b60f81b8183815181106114df576114df611df0565b60200101907effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916908160001a905350611519600a86611d81565b94506114a1565b6000547501000000000000000000000000000000000000000000900460ff166115cb576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e6700000000000000000000000000000000000000000060648201526084016107d3565b60cc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead179055565b6000611607858585856116c8565b805190602001209050949350505050565b6000611628878787878787611761565b8051906020012090509695505050505050565b600073ffffffffffffffffffffffffffffffffffffffff821630148061168a575073ffffffffffffffffffffffffffffffffffffffff8216734200000000000000000000000000000000000016145b92915050565b600080603f83619c4001026040850201603f5a021015949350505050565b600080600080845160208601878a8af19695505050505050565b6060848484846040516024016116e19493929190611e1f565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fcbd4ece9000000000000000000000000000000000000000000000000000000001790529050949350505050565b606086868686868660405160240161177e96959493929190611e69565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fd764ad0b0000000000000000000000000000000000000000000000000000000017905290509695505050505050565b803573ffffffffffffffffffffffffffffffffffffffff8116811461182457600080fd5b919050565b60008083601f84011261183b57600080fd5b50813567ffffffffffffffff81111561185357600080fd5b60208301915083602082850101111561186b57600080fd5b9250929050565b803563ffffffff8116811461182457600080fd5b6000806000806060858703121561189c57600080fd5b6118a585611800565b9350602085013567ffffffffffffffff8111156118c157600080fd5b6118cd87828801611829565b90945092506118e0905060408601611872565b905092959194509250565b60005b838110156119065781810151838201526020016118ee565b83811115611915576000848401525b50505050565b600081518084526119338160208601602086016118eb565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b602081526000611978602083018461191b565b9392505050565b60006020828403121561199157600080fd5b5035919050565b6000806000604084860312156119ad57600080fd5b833567ffffffffffffffff8111156119c457600080fd5b6119d086828701611829565b90945092506119e3905060208501611872565b90509250925092565b600080600080600080600060c0888a031215611a0757600080fd5b87359650611a1760208901611800565b9550611a2560408901611800565b9450606088013593506080880135925060a088013567ffffffffffffffff811115611a4f57600080fd5b611a5b8a828b01611829565b989b979a50959850939692959293505050565b8183528181602085013750600060208284010152600060207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f840116840101905092915050565b878152600073ffffffffffffffffffffffffffffffffffffffff808916602084015280881660408401525085606083015263ffffffff8516608083015260c060a0830152611b0960c083018486611a6e565b9998505050505050505050565b73ffffffffffffffffffffffffffffffffffffffff86168152608060208201526000611b46608083018688611a6e565b905083604083015263ffffffff831660608301529695505050505050565b60008451611b768184602089016118eb565b80830190507f2e000000000000000000000000000000000000000000000000000000000000008082528551611bb2816001850160208a016118eb565b60019201918201528351611bcd8160028401602088016118eb565b0160020195945050505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600067ffffffffffffffff80831681851681830481118215151615611c3057611c30611bda565b02949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600067ffffffffffffffff80841680611c8357611c83611c39565b92169190910492915050565b600067ffffffffffffffff808316818516808303821115611cb257611cb2611bda565b01949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052600160045260246000fd5b600082821015611cfc57611cfc611bda565b500390565b73ffffffffffffffffffffffffffffffffffffffff8416815267ffffffffffffffff83166020820152606060408201526000611d40606083018461191b565b95945050505050565b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203611d7a57611d7a611bda565b5060010190565b600082611d9057611d90611c39565b500490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b600082611dd357611dd3611c39565b500690565b60008219821115611deb57611deb611bda565b500190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b600073ffffffffffffffffffffffffffffffffffffffff808716835280861660208401525060806040830152611e58608083018561191b565b905082606083015295945050505050565b868152600073ffffffffffffffffffffffffffffffffffffffff808816602084015280871660408401525084606083015283608083015260c060a0830152611eb460c083018461191b565b9897505050505050505056fea164736f6c634300080f000a
Deployed Bytecode
0x6080604052600436106101445760003560e01c80638129fc1c116100c0578063a711986911610074578063b28ade2511610059578063b28ade251461036e578063d764ad0b1461038e578063ecc70428146103a157600080fd5b8063a71198691461030b578063b1b1b2091461033e57600080fd5b80638cbeeef2116100a55780638cbeeef2146101e35780639fce812c14610297578063a4e7f8bd146102cb57600080fd5b80638129fc1c1461026b57806383a740741461028057600080fd5b80633f827a5a1161011757806354fd4d50116100fc57806354fd4d50146101f95780635644cfdf1461021b5780636e296e451461023157600080fd5b80633f827a5a146101bb5780634c1d6a69146101e357600080fd5b8063028f85f7146101495780630c5684981461017c5780632828d7e8146101915780633dbb202b146101a6575b600080fd5b34801561015557600080fd5b5061015e601081565b60405167ffffffffffffffff90911681526020015b60405180910390f35b34801561018857600080fd5b5061015e603f81565b34801561019d57600080fd5b5061015e604081565b6101b96101b4366004611886565b610406565b005b3480156101c757600080fd5b506101d0600181565b60405161ffff9091168152602001610173565b3480156101ef57600080fd5b5061015e619c4081565b34801561020557600080fd5b5061020e61066a565b6040516101739190611965565b34801561022757600080fd5b5061015e61138881565b34801561023d57600080fd5b5061024661070d565b60405173ffffffffffffffffffffffffffffffffffffffff9091168152602001610173565b34801561027757600080fd5b506101b96107f9565b34801561028c57600080fd5b5061015e62030d4081565b3480156102a357600080fd5b506102467f000000000000000000000000866e82a600a1414e583f7f13623f1ac5d58b0afa81565b3480156102d757600080fd5b506102fb6102e636600461197f565b60ce6020526000908152604090205460ff1681565b6040519015158152602001610173565b34801561031757600080fd5b507f000000000000000000000000866e82a600a1414e583f7f13623f1ac5d58b0afa610246565b34801561034a57600080fd5b506102fb61035936600461197f565b60cb6020526000908152604090205460ff1681565b34801561037a57600080fd5b5061015e610389366004611998565b6109f6565b6101b961039c3660046119ec565b610a64565b3480156103ad57600080fd5b506103f860cd547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b604051908152602001610173565b61053f7f000000000000000000000000866e82a600a1414e583f7f13623f1ac5d58b0afa6104358585856109f6565b347fd764ad0b000000000000000000000000000000000000000000000000000000006104a160cd547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b338a34898c8c6040516024016104bd9796959493929190611ab7565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fffffffff000000000000000000000000000000000000000000000000000000009093169290921790915261135d565b8373ffffffffffffffffffffffffffffffffffffffff167fcb0f7ffd78f9aee47a248fae8db181db6eee833039123e026dcbff529522e52a3385856105c460cd547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff167e010000000000000000000000000000000000000000000000000000000000001790565b866040516105d6959493929190611b16565b60405180910390a260405134815233907f8ebb2ec2465bdb2a06a66fc37a0963af8a2a6a1479d81d56fdb8cbb98096d5469060200160405180910390a2505060cd80547dffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff808216600101167fffff0000000000000000000000000000000000000000000000000000000000009091161790555050565b60606106957f00000000000000000000000000000000000000000000000000000000000000016113eb565b6106be7f00000000000000000000000000000000000000000000000000000000000000046113eb565b6106e77f00000000000000000000000000000000000000000000000000000000000000006113eb565b6040516020016106f993929190611b64565b604051602081830303815290604052905090565b60cc5460009073ffffffffffffffffffffffffffffffffffffffff167fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff2153016107dc576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603560248201527f43726f7373446f6d61696e4d657373656e6765723a2078446f6d61696e4d657360448201527f7361676553656e646572206973206e6f7420736574000000000000000000000060648201526084015b60405180910390fd5b5060cc5473ffffffffffffffffffffffffffffffffffffffff1690565b6000547501000000000000000000000000000000000000000000900460ff1615808015610844575060005460017401000000000000000000000000000000000000000090910460ff16105b806108765750303b158015610876575060005474010000000000000000000000000000000000000000900460ff166001145b610902576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602e60248201527f496e697469616c697a61626c653a20636f6e747261637420697320616c72656160448201527f647920696e697469616c697a656400000000000000000000000000000000000060648201526084016107d3565b600080547fffffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffff1674010000000000000000000000000000000000000000179055801561098857600080547fffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffff1675010000000000000000000000000000000000000000001790555b610990611520565b80156109f357600080547fffffffffffffffffffff00ffffffffffffffffffffffffffffffffffffffffff169055604051600181527f7f26b83ff96e1f2b6a682f133852f6798a09c465da95921460cefb38474024989060200160405180910390a15b50565b6000611388619c4080603f610a12604063ffffffff8816611c09565b610a1c9190611c68565b610a27601088611c09565b610a349062030d40611c8f565b610a3e9190611c8f565b610a489190611c8f565b610a529190611c8f565b610a5c9190611c8f565b949350505050565b60f087901c60028110610b1f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604d60248201527f43726f7373446f6d61696e4d657373656e6765723a206f6e6c7920766572736960448201527f6f6e2030206f722031206d657373616765732061726520737570706f7274656460648201527f20617420746869732074696d6500000000000000000000000000000000000000608482015260a4016107d3565b8061ffff16600003610c14576000610b70878986868080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152508f92506115f9915050565b600081815260cb602052604090205490915060ff1615610c12576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603760248201527f43726f7373446f6d61696e4d657373656e6765723a206c65676163792077697460448201527f6864726177616c20616c72656164792072656c6179656400000000000000000060648201526084016107d3565b505b6000610c5a898989898989898080601f01602080910402602001604051908101604052809392919081815260200183838082843760009201919091525061161892505050565b905073ffffffffffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffeeeeffffffffffffffffffffffffffffffffeeef330181167f000000000000000000000000866e82a600a1414e583f7f13623f1ac5d58b0afa90911603610cf257853414610cce57610cce611cbb565b600081815260ce602052604090205460ff1615610ced57610ced611cbb565b610e44565b3415610da6576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152605060248201527f43726f7373446f6d61696e4d657373656e6765723a2076616c7565206d75737460448201527f206265207a65726f20756e6c657373206d6573736167652069732066726f6d2060648201527f612073797374656d206164647265737300000000000000000000000000000000608482015260a4016107d3565b600081815260ce602052604090205460ff16610e44576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603060248201527f43726f7373446f6d61696e4d657373656e6765723a206d65737361676520636160448201527f6e6e6f74206265207265706c617965640000000000000000000000000000000060648201526084016107d3565b610e4d8761163b565b15610f00576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152604360248201527f43726f7373446f6d61696e4d657373656e6765723a2063616e6e6f742073656e60448201527f64206d65737361676520746f20626c6f636b65642073797374656d206164647260648201527f6573730000000000000000000000000000000000000000000000000000000000608482015260a4016107d3565b600081815260cb602052604090205460ff1615610f9f576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152603660248201527f43726f7373446f6d61696e4d657373656e6765723a206d65737361676520686160448201527f7320616c7265616479206265656e2072656c617965640000000000000000000060648201526084016107d3565b610fc085610fb1611388619c40611c8f565b67ffffffffffffffff16611690565b1580610fe6575060cc5473ffffffffffffffffffffffffffffffffffffffff1661dead14155b156110ff57600081815260ce602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555182917f99d0e048484baa1b1540b1367cb128acd7ab2946d1ed91ec10e3c85e4bf51b8f91a27fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff32016110f8576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602d60248201527f43726f7373446f6d61696e4d657373656e6765723a206661696c656420746f2060448201527f72656c6179206d6573736167650000000000000000000000000000000000000060648201526084016107d3565b5050611338565b60cc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001673ffffffffffffffffffffffffffffffffffffffff8a16179055600061119088619c405a6111539190611cea565b8988888080601f0160208091040260200160405190810160405280939291908181526020018383808284376000920191909152506116ae92505050565b60cc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead1790559050801561122757600082815260cb602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555183917f4641df4a962071e12719d8c8c8e5ac7fc4d97b927346a3d7a335b1f7517e133c91a2611334565b600082815260ce602052604080822080547fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff001660011790555183917f99d0e048484baa1b1540b1367cb128acd7ab2946d1ed91ec10e3c85e4bf51b8f91a27fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff3201611334576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602d60248201527f43726f7373446f6d61696e4d657373656e6765723a206661696c656420746f2060448201527f72656c6179206d6573736167650000000000000000000000000000000000000060648201526084016107d3565b5050505b50505050505050565b73ffffffffffffffffffffffffffffffffffffffff163b151590565b6040517fc2b3e5ac0000000000000000000000000000000000000000000000000000000081527342000000000000000000000000000000000000169063c2b3e5ac9084906113b390889088908790600401611d01565b6000604051808303818588803b1580156113cc57600080fd5b505af11580156113e0573d6000803e3d6000fd5b505050505050505050565b60608160000361142e57505060408051808201909152600181527f3000000000000000000000000000000000000000000000000000000000000000602082015290565b8160005b8115611458578061144281611d49565b91506114519050600a83611d81565b9150611432565b60008167ffffffffffffffff81111561147357611473611d95565b6040519080825280601f01601f19166020018201604052801561149d576020820181803683370190505b5090505b8415610a5c576114b2600183611cea565b91506114bf600a86611dc4565b6114ca906030611dd8565b60f81b8183815181106114df576114df611df0565b60200101907effffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1916908160001a905350611519600a86611d81565b94506114a1565b6000547501000000000000000000000000000000000000000000900460ff166115cb576040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602b60248201527f496e697469616c697a61626c653a20636f6e7472616374206973206e6f74206960448201527f6e697469616c697a696e6700000000000000000000000000000000000000000060648201526084016107d3565b60cc80547fffffffffffffffffffffffff00000000000000000000000000000000000000001661dead179055565b6000611607858585856116c8565b805190602001209050949350505050565b6000611628878787878787611761565b8051906020012090509695505050505050565b600073ffffffffffffffffffffffffffffffffffffffff821630148061168a575073ffffffffffffffffffffffffffffffffffffffff8216734200000000000000000000000000000000000016145b92915050565b600080603f83619c4001026040850201603f5a021015949350505050565b600080600080845160208601878a8af19695505050505050565b6060848484846040516024016116e19493929190611e1f565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fcbd4ece9000000000000000000000000000000000000000000000000000000001790529050949350505050565b606086868686868660405160240161177e96959493929190611e69565b604080517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe08184030181529190526020810180517bffffffffffffffffffffffffffffffffffffffffffffffffffffffff167fd764ad0b0000000000000000000000000000000000000000000000000000000017905290509695505050505050565b803573ffffffffffffffffffffffffffffffffffffffff8116811461182457600080fd5b919050565b60008083601f84011261183b57600080fd5b50813567ffffffffffffffff81111561185357600080fd5b60208301915083602082850101111561186b57600080fd5b9250929050565b803563ffffffff8116811461182457600080fd5b6000806000806060858703121561189c57600080fd5b6118a585611800565b9350602085013567ffffffffffffffff8111156118c157600080fd5b6118cd87828801611829565b90945092506118e0905060408601611872565b905092959194509250565b60005b838110156119065781810151838201526020016118ee565b83811115611915576000848401525b50505050565b600081518084526119338160208601602086016118eb565b601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0169290920160200192915050565b602081526000611978602083018461191b565b9392505050565b60006020828403121561199157600080fd5b5035919050565b6000806000604084860312156119ad57600080fd5b833567ffffffffffffffff8111156119c457600080fd5b6119d086828701611829565b90945092506119e3905060208501611872565b90509250925092565b600080600080600080600060c0888a031215611a0757600080fd5b87359650611a1760208901611800565b9550611a2560408901611800565b9450606088013593506080880135925060a088013567ffffffffffffffff811115611a4f57600080fd5b611a5b8a828b01611829565b989b979a50959850939692959293505050565b8183528181602085013750600060208284010152600060207fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f840116840101905092915050565b878152600073ffffffffffffffffffffffffffffffffffffffff808916602084015280881660408401525085606083015263ffffffff8516608083015260c060a0830152611b0960c083018486611a6e565b9998505050505050505050565b73ffffffffffffffffffffffffffffffffffffffff86168152608060208201526000611b46608083018688611a6e565b905083604083015263ffffffff831660608301529695505050505050565b60008451611b768184602089016118eb565b80830190507f2e000000000000000000000000000000000000000000000000000000000000008082528551611bb2816001850160208a016118eb565b60019201918201528351611bcd8160028401602088016118eb565b0160020195945050505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601160045260246000fd5b600067ffffffffffffffff80831681851681830481118215151615611c3057611c30611bda565b02949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052601260045260246000fd5b600067ffffffffffffffff80841680611c8357611c83611c39565b92169190910492915050565b600067ffffffffffffffff808316818516808303821115611cb257611cb2611bda565b01949350505050565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052600160045260246000fd5b600082821015611cfc57611cfc611bda565b500390565b73ffffffffffffffffffffffffffffffffffffffff8416815267ffffffffffffffff83166020820152606060408201526000611d40606083018461191b565b95945050505050565b60007fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8203611d7a57611d7a611bda565b5060010190565b600082611d9057611d90611c39565b500490565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b600082611dd357611dd3611c39565b500690565b60008219821115611deb57611deb611bda565b500190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b600073ffffffffffffffffffffffffffffffffffffffff808716835280861660208401525060806040830152611e58608083018561191b565b905082606083015295945050505050565b868152600073ffffffffffffffffffffffffffffffffffffffff808816602084015280871660408401525084606083015283608083015260c060a0830152611eb460c083018461191b565b9897505050505050505056fea164736f6c634300080f000a
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
496e697469616c697a61626c653a20636f6e7472616374206973206e6f742069
-----Decoded View---------------
Arg [0] : _l1CrossDomainMessenger (address): 0x653a20636F6e7472616374206973206e6f742069
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 496e697469616c697a61626c653a20636f6e7472616374206973206e6f742069
Swarm Source
none
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|---|---|---|---|---|
OP | 100.00% | $2,626.55 | 0.00219466 | $5.76 |
[ Download: CSV Export ]
[ Download: CSV Export ]
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.