Contract Name:
OptimismMintableERC20
Contract Source Code:
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Predeploys } from "../libraries/Predeploys.sol";
import { OptimismPortal } from "./OptimismPortal.sol";
import { CrossDomainMessenger } from "../universal/CrossDomainMessenger.sol";
import { Semver } from "../universal/Semver.sol";
/**
* @custom:proxied
* @title L1CrossDomainMessenger
* @notice The L1CrossDomainMessenger is a message passing interface between L1 and L2 responsible
* for sending and receiving data on the L1 side. Users are encouraged to use this
* interface instead of interacting with lower-level contracts directly.
*/
contract L1CrossDomainMessenger is CrossDomainMessenger, Semver {
/**
* @notice Address of the OptimismPortal.
*/
OptimismPortal public immutable PORTAL;
/**
* @custom:semver 1.0.0
*
* @param _portal Address of the OptimismPortal contract on this network.
*/
constructor(OptimismPortal _portal)
Semver(1, 0, 0)
CrossDomainMessenger(Predeploys.L2_CROSS_DOMAIN_MESSENGER)
{
PORTAL = _portal;
initialize(address(0));
}
/**
* @notice Initializer.
*
* @param _owner Address of the initial owner of this contract.
*/
function initialize(address _owner) public initializer {
__CrossDomainMessenger_init();
_transferOwnership(_owner);
}
/**
* @inheritdoc CrossDomainMessenger
*/
function _sendMessage(
address _to,
uint64 _gasLimit,
uint256 _value,
bytes memory _data
) internal override {
PORTAL.depositTransaction{ value: _value }(_to, _value, _gasLimit, false, _data);
}
/**
* @inheritdoc CrossDomainMessenger
*/
function _isOtherMessenger() internal view override returns (bool) {
return msg.sender == address(PORTAL) && PORTAL.l2Sender() == OTHER_MESSENGER;
}
/**
* @inheritdoc CrossDomainMessenger
*/
function _isUnsafeTarget(address _target) internal view override returns (bool) {
return _target == address(this) || _target == address(PORTAL);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { ERC721Bridge } from "../universal/ERC721Bridge.sol";
import { IERC721 } from "@openzeppelin/contracts/token/ERC721/IERC721.sol";
import { L2ERC721Bridge } from "../L2/L2ERC721Bridge.sol";
import { Semver } from "../universal/Semver.sol";
/**
* @title L1ERC721Bridge
* @notice The L1 ERC721 bridge is a contract which works together with the L2 ERC721 bridge to
* make it possible to transfer ERC721 tokens from Ethereum to Optimism. This contract
* acts as an escrow for ERC721 tokens deposited into L2.
*/
contract L1ERC721Bridge is ERC721Bridge, Semver {
/**
* @notice Mapping of L1 token to L2 token to ID to boolean, indicating if the given L1 token
* by ID was deposited for a given L2 token.
*/
mapping(address => mapping(address => mapping(uint256 => bool))) public deposits;
/**
* @custom:semver 1.0.0
*
* @param _messenger Address of the CrossDomainMessenger on this network.
* @param _otherBridge Address of the ERC721 bridge on the other network.
*/
constructor(address _messenger, address _otherBridge)
Semver(1, 0, 0)
ERC721Bridge(_messenger, _otherBridge)
{}
/**
* @notice Completes an ERC721 bridge from the other domain and sends the ERC721 token to the
* recipient on this domain.
*
* @param _localToken Address of the ERC721 token on this domain.
* @param _remoteToken Address of the ERC721 token on the other domain.
* @param _from Address that triggered the bridge on the other domain.
* @param _to Address to receive the token on this domain.
* @param _tokenId ID of the token being deposited.
* @param _extraData Optional data to forward to L2. Data supplied here will not be used to
* execute any code on L2 and is only emitted as extra data for the
* convenience of off-chain tooling.
*/
function finalizeBridgeERC721(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _tokenId,
bytes calldata _extraData
) external onlyOtherBridge {
require(_localToken != address(this), "L1ERC721Bridge: local token cannot be self");
// Checks that the L1/L2 NFT pair has a token ID that is escrowed in the L1 Bridge.
require(
deposits[_localToken][_remoteToken][_tokenId] == true,
"L1ERC721Bridge: Token ID is not escrowed in the L1 Bridge"
);
// Mark that the token ID for this L1/L2 token pair is no longer escrowed in the L1
// Bridge.
deposits[_localToken][_remoteToken][_tokenId] = false;
// When a withdrawal is finalized on L1, the L1 Bridge transfers the NFT to the
// withdrawer.
IERC721(_localToken).safeTransferFrom(address(this), _to, _tokenId);
// slither-disable-next-line reentrancy-events
emit ERC721BridgeFinalized(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
}
/**
* @inheritdoc ERC721Bridge
*/
function _initiateBridgeERC721(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _tokenId,
uint32 _minGasLimit,
bytes calldata _extraData
) internal override {
require(_remoteToken != address(0), "ERC721Bridge: remote token cannot be address(0)");
// Construct calldata for _l2Token.finalizeBridgeERC721(_to, _tokenId)
bytes memory message = abi.encodeWithSelector(
L2ERC721Bridge.finalizeBridgeERC721.selector,
_remoteToken,
_localToken,
_from,
_to,
_tokenId,
_extraData
);
// Lock token into bridge
deposits[_localToken][_remoteToken][_tokenId] = true;
IERC721(_localToken).transferFrom(_from, address(this), _tokenId);
// Send calldata into L2
MESSENGER.sendMessage(OTHER_BRIDGE, message, _minGasLimit);
emit ERC721BridgeInitiated(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Predeploys } from "../libraries/Predeploys.sol";
import { StandardBridge } from "../universal/StandardBridge.sol";
import { Semver } from "../universal/Semver.sol";
/**
* @custom:proxied
* @title L1StandardBridge
* @notice The L1StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
* L2. In the case that an ERC20 token is native to L1, it will be escrowed within this
* contract. If the ERC20 token is native to L2, it will be burnt. Before Bedrock, ETH was
* stored within this contract. After Bedrock, ETH is instead stored inside the
* OptimismPortal contract.
* NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
* of some token types that may not be properly supported by this contract include, but are
* not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
*/
contract L1StandardBridge is StandardBridge, Semver {
/**
* @custom:legacy
* @notice Emitted whenever a deposit of ETH from L1 into L2 is initiated.
*
* @param from Address of the depositor.
* @param to Address of the recipient on L2.
* @param amount Amount of ETH deposited.
* @param extraData Extra data attached to the deposit.
*/
event ETHDepositInitiated(
address indexed from,
address indexed to,
uint256 amount,
bytes extraData
);
/**
* @custom:legacy
* @notice Emitted whenever a withdrawal of ETH from L2 to L1 is finalized.
*
* @param from Address of the withdrawer.
* @param to Address of the recipient on L1.
* @param amount Amount of ETH withdrawn.
* @param extraData Extra data attached to the withdrawal.
*/
event ETHWithdrawalFinalized(
address indexed from,
address indexed to,
uint256 amount,
bytes extraData
);
/**
* @custom:legacy
* @notice Emitted whenever an ERC20 deposit is initiated.
*
* @param l1Token Address of the token on L1.
* @param l2Token Address of the corresponding token on L2.
* @param from Address of the depositor.
* @param to Address of the recipient on L2.
* @param amount Amount of the ERC20 deposited.
* @param extraData Extra data attached to the deposit.
*/
event ERC20DepositInitiated(
address indexed l1Token,
address indexed l2Token,
address indexed from,
address to,
uint256 amount,
bytes extraData
);
/**
* @custom:legacy
* @notice Emitted whenever an ERC20 withdrawal is finalized.
*
* @param l1Token Address of the token on L1.
* @param l2Token Address of the corresponding token on L2.
* @param from Address of the withdrawer.
* @param to Address of the recipient on L1.
* @param amount Amount of the ERC20 withdrawn.
* @param extraData Extra data attached to the withdrawal.
*/
event ERC20WithdrawalFinalized(
address indexed l1Token,
address indexed l2Token,
address indexed from,
address to,
uint256 amount,
bytes extraData
);
/**
* @custom:semver 1.0.0
*
* @param _messenger Address of the L1CrossDomainMessenger.
*/
constructor(address payable _messenger)
Semver(1, 0, 0)
StandardBridge(_messenger, payable(Predeploys.L2_STANDARD_BRIDGE))
{}
/**
* @custom:legacy
* @notice Finalizes a withdrawal of ERC20 tokens from L2.
*
* @param _l1Token Address of the token on L1.
* @param _l2Token Address of the corresponding token on L2.
* @param _from Address of the withdrawer on L2.
* @param _to Address of the recipient on L1.
* @param _amount Amount of the ERC20 to withdraw.
* @param _extraData Optional data forwarded from L2.
*/
function finalizeERC20Withdrawal(
address _l1Token,
address _l2Token,
address _from,
address _to,
uint256 _amount,
bytes calldata _extraData
) external onlyOtherBridge {
emit ERC20WithdrawalFinalized(_l1Token, _l2Token, _from, _to, _amount, _extraData);
finalizeBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _extraData);
}
/**
* @custom:legacy
* @notice Deposits some amount of ETH into the sender's account on L2.
*
* @param _minGasLimit Minimum gas limit for the deposit message on L2.
* @param _extraData Optional data to forward to L2. Data supplied here will not be used to
* execute any code on L2 and is only emitted as extra data for the
* convenience of off-chain tooling.
*/
function depositETH(uint32 _minGasLimit, bytes calldata _extraData) external payable onlyEOA {
_initiateETHDeposit(msg.sender, msg.sender, _minGasLimit, _extraData);
}
/**
* @custom:legacy
* @notice Deposits some amount of ETH into a target account on L2.
* Note that if ETH is sent to a contract on L2 and the call fails, then that ETH will
* be locked in the L2StandardBridge. ETH may be recoverable if the call can be
* successfully replayed by increasing the amount of gas supplied to the call. If the
* call will fail for any amount of gas, then the ETH will be locked permanently.
*
* @param _to Address of the recipient on L2.
* @param _minGasLimit Minimum gas limit for the deposit message on L2.
* @param _extraData Optional data to forward to L2. Data supplied here will not be used to
* execute any code on L2 and is only emitted as extra data for the
* convenience of off-chain tooling.
*/
function depositETHTo(
address _to,
uint32 _minGasLimit,
bytes calldata _extraData
) external payable {
_initiateETHDeposit(msg.sender, _to, _minGasLimit, _extraData);
}
/**
* @custom:legacy
* @notice Deposits some amount of ERC20 tokens into the sender's account on L2.
*
* @param _l1Token Address of the L1 token being deposited.
* @param _l2Token Address of the corresponding token on L2.
* @param _amount Amount of the ERC20 to deposit.
* @param _minGasLimit Minimum gas limit for the deposit message on L2.
* @param _extraData Optional data to forward to L2. Data supplied here will not be used to
* execute any code on L2 and is only emitted as extra data for the
* convenience of off-chain tooling.
*/
function depositERC20(
address _l1Token,
address _l2Token,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
) external virtual onlyEOA {
_initiateERC20Deposit(
_l1Token,
_l2Token,
msg.sender,
msg.sender,
_amount,
_minGasLimit,
_extraData
);
}
/**
* @custom:legacy
* @notice Deposits some amount of ERC20 tokens into a target account on L2.
*
* @param _l1Token Address of the L1 token being deposited.
* @param _l2Token Address of the corresponding token on L2.
* @param _to Address of the recipient on L2.
* @param _amount Amount of the ERC20 to deposit.
* @param _minGasLimit Minimum gas limit for the deposit message on L2.
* @param _extraData Optional data to forward to L2. Data supplied here will not be used to
* execute any code on L2 and is only emitted as extra data for the
* convenience of off-chain tooling.
*/
function depositERC20To(
address _l1Token,
address _l2Token,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
) external virtual {
_initiateERC20Deposit(
_l1Token,
_l2Token,
msg.sender,
_to,
_amount,
_minGasLimit,
_extraData
);
}
/**
* @custom:legacy
* @notice Finalizes a withdrawal of ETH from L2.
*
* @param _from Address of the withdrawer on L2.
* @param _to Address of the recipient on L1.
* @param _amount Amount of ETH to withdraw.
* @param _extraData Optional data forwarded from L2.
*/
function finalizeETHWithdrawal(
address _from,
address _to,
uint256 _amount,
bytes calldata _extraData
) external payable onlyOtherBridge {
emit ETHWithdrawalFinalized(_from, _to, _amount, _extraData);
finalizeBridgeETH(_from, _to, _amount, _extraData);
}
/**
* @custom:legacy
* @notice Retrieves the access of the corresponding L2 bridge contract.
*
* @return Address of the corresponding L2 bridge contract.
*/
function l2TokenBridge() external view returns (address) {
return address(OTHER_BRIDGE);
}
/**
* @notice Internal function for initiating an ETH deposit.
*
* @param _from Address of the sender on L1.
* @param _to Address of the recipient on L2.
* @param _minGasLimit Minimum gas limit for the deposit message on L2.
* @param _extraData Optional data to forward to L2.
*/
function _initiateETHDeposit(
address _from,
address _to,
uint32 _minGasLimit,
bytes calldata _extraData
) internal {
emit ETHDepositInitiated(_from, _to, msg.value, _extraData);
_initiateBridgeETH(_from, _to, msg.value, _minGasLimit, _extraData);
}
/**
* @notice Internal function for initiating an ERC20 deposit.
*
* @param _l1Token Address of the L1 token being deposited.
* @param _l2Token Address of the corresponding token on L2.
* @param _from Address of the sender on L1.
* @param _to Address of the recipient on L2.
* @param _amount Amount of the ERC20 to deposit.
* @param _minGasLimit Minimum gas limit for the deposit message on L2.
* @param _extraData Optional data to forward to L2.
*/
function _initiateERC20Deposit(
address _l1Token,
address _l2Token,
address _from,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
) internal {
emit ERC20DepositInitiated(_l1Token, _l2Token, _from, _to, _amount, _extraData);
_initiateBridgeERC20(_l1Token, _l2Token, _from, _to, _amount, _minGasLimit, _extraData);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Semver } from "../universal/Semver.sol";
import { Types } from "../libraries/Types.sol";
/**
* @custom:proxied
* @title L2OutputOracle
* @notice The L2OutputOracle contains an array of L2 state outputs, where each output is a
* commitment to the state of the L2 chain. Other contracts like the OptimismPortal use
* these outputs to verify information about the state of L2.
*/
contract L2OutputOracle is Initializable, Semver {
/**
* @notice The interval in L2 blocks at which checkpoints must be submitted. Although this is
* immutable, it can safely be modified by upgrading the implementation contract.
*/
uint256 public immutable SUBMISSION_INTERVAL;
/**
* @notice The time between L2 blocks in seconds. Once set, this value MUST NOT be modified.
*/
uint256 public immutable L2_BLOCK_TIME;
/**
* @notice The address of the challenger. Can be updated via upgrade.
*/
address public immutable CHALLENGER;
/**
* @notice The address of the proposer. Can be updated via upgrade.
*/
address public immutable PROPOSER;
/**
* @notice The number of the first L2 block recorded in this contract.
*/
uint256 public startingBlockNumber;
/**
* @notice The timestamp of the first L2 block recorded in this contract.
*/
uint256 public startingTimestamp;
/**
* @notice Array of L2 output proposals.
*/
Types.OutputProposal[] internal l2Outputs;
/**
* @notice Emitted when an output is proposed.
*
* @param outputRoot The output root.
* @param l2OutputIndex The index of the output in the l2Outputs array.
* @param l2BlockNumber The L2 block number of the output root.
* @param l1Timestamp The L1 timestamp when proposed.
*/
event OutputProposed(
bytes32 indexed outputRoot,
uint256 indexed l2OutputIndex,
uint256 indexed l2BlockNumber,
uint256 l1Timestamp
);
/**
* @notice Emitted when outputs are deleted.
*
* @param prevNextOutputIndex Next L2 output index before the deletion.
* @param newNextOutputIndex Next L2 output index after the deletion.
*/
event OutputsDeleted(uint256 indexed prevNextOutputIndex, uint256 indexed newNextOutputIndex);
/**
* @custom:semver 1.0.0
*
* @param _submissionInterval Interval in blocks at which checkpoints must be submitted.
* @param _l2BlockTime The time per L2 block, in seconds.
* @param _startingBlockNumber The number of the first L2 block.
* @param _startingTimestamp The timestamp of the first L2 block.
* @param _proposer The address of the proposer.
* @param _challenger The address of the challenger.
*/
constructor(
uint256 _submissionInterval,
uint256 _l2BlockTime,
uint256 _startingBlockNumber,
uint256 _startingTimestamp,
address _proposer,
address _challenger
) Semver(1, 0, 0) {
SUBMISSION_INTERVAL = _submissionInterval;
L2_BLOCK_TIME = _l2BlockTime;
PROPOSER = _proposer;
CHALLENGER = _challenger;
initialize(_startingBlockNumber, _startingTimestamp);
}
/**
* @notice Initializer.
*
* @param _startingBlockNumber Block number for the first recoded L2 block.
* @param _startingTimestamp Timestamp for the first recoded L2 block.
*/
function initialize(uint256 _startingBlockNumber, uint256 _startingTimestamp)
public
initializer
{
require(
_startingTimestamp <= block.timestamp,
"L2OutputOracle: starting L2 timestamp must be less than current time"
);
startingTimestamp = _startingTimestamp;
startingBlockNumber = _startingBlockNumber;
}
/**
* @notice Deletes all output proposals after and including the proposal that corresponds to
* the given output index. Only the challenger address can delete outputs.
*
* @param _l2OutputIndex Index of the first L2 output to be deleted. All outputs after this
* output will also be deleted.
*/
// solhint-disable-next-line ordering
function deleteL2Outputs(uint256 _l2OutputIndex) external {
require(
msg.sender == CHALLENGER,
"L2OutputOracle: only the challenger address can delete outputs"
);
// Make sure we're not *increasing* the length of the array.
require(
_l2OutputIndex < l2Outputs.length,
"L2OutputOracle: cannot delete outputs after the latest output index"
);
uint256 prevNextL2OutputIndex = nextOutputIndex();
// Use assembly to delete the array elements because Solidity doesn't allow it.
assembly {
sstore(l2Outputs.slot, _l2OutputIndex)
}
emit OutputsDeleted(prevNextL2OutputIndex, _l2OutputIndex);
}
/**
* @notice Accepts an outputRoot and the timestamp of the corresponding L2 block. The timestamp
* must be equal to the current value returned by `nextTimestamp()` in order to be
* accepted. This function may only be called by the Proposer.
*
* @param _outputRoot The L2 output of the checkpoint block.
* @param _l2BlockNumber The L2 block number that resulted in _outputRoot.
* @param _l1BlockHash A block hash which must be included in the current chain.
* @param _l1BlockNumber The block number with the specified block hash.
*/
function proposeL2Output(
bytes32 _outputRoot,
uint256 _l2BlockNumber,
bytes32 _l1BlockHash,
uint256 _l1BlockNumber
) external payable {
require(
msg.sender == PROPOSER,
"L2OutputOracle: only the proposer address can propose new outputs"
);
require(
_l2BlockNumber == nextBlockNumber(),
"L2OutputOracle: block number must be equal to next expected block number"
);
require(
computeL2Timestamp(_l2BlockNumber) < block.timestamp,
"L2OutputOracle: cannot propose L2 output in the future"
);
require(
_outputRoot != bytes32(0),
"L2OutputOracle: L2 output proposal cannot be the zero hash"
);
if (_l1BlockHash != bytes32(0)) {
// This check allows the proposer to propose an output based on a given L1 block,
// without fear that it will be reorged out.
// It will also revert if the blockheight provided is more than 256 blocks behind the
// chain tip (as the hash will return as zero). This does open the door to a griefing
// attack in which the proposer's submission is censored until the block is no longer
// retrievable, if the proposer is experiencing this attack it can simply leave out the
// blockhash value, and delay submission until it is confident that the L1 block is
// finalized.
require(
blockhash(_l1BlockNumber) == _l1BlockHash,
"L2OutputOracle: block hash does not match the hash at the expected height"
);
}
emit OutputProposed(_outputRoot, nextOutputIndex(), _l2BlockNumber, block.timestamp);
l2Outputs.push(
Types.OutputProposal({
outputRoot: _outputRoot,
timestamp: uint128(block.timestamp),
l2BlockNumber: uint128(_l2BlockNumber)
})
);
}
/**
* @notice Returns an output by index. Exists because Solidity's array access will return a
* tuple instead of a struct.
*
* @param _l2OutputIndex Index of the output to return.
*
* @return The output at the given index.
*/
function getL2Output(uint256 _l2OutputIndex)
external
view
returns (Types.OutputProposal memory)
{
return l2Outputs[_l2OutputIndex];
}
/**
* @notice Returns the index of the L2 output that checkpoints a given L2 block number. Uses a
* binary search to find the first output greater than or equal to the given block.
*
* @param _l2BlockNumber L2 block number to find a checkpoint for.
*
* @return Index of the first checkpoint that commits to the given L2 block number.
*/
function getL2OutputIndexAfter(uint256 _l2BlockNumber) public view returns (uint256) {
// Make sure an output for this block number has actually been proposed.
require(
_l2BlockNumber <= latestBlockNumber(),
"L2OutputOracle: cannot get output for a block that has not been proposed"
);
// Make sure there's at least one output proposed.
require(
l2Outputs.length > 0,
"L2OutputOracle: cannot get output as no outputs have been proposed yet"
);
// Find the output via binary search, guaranteed to exist.
uint256 lo = 0;
uint256 hi = l2Outputs.length;
while (lo < hi) {
uint256 mid = (lo + hi) / 2;
if (l2Outputs[mid].l2BlockNumber < _l2BlockNumber) {
lo = mid + 1;
} else {
hi = mid;
}
}
return lo;
}
/**
* @notice Returns the L2 output proposal that checkpoints a given L2 block number. Uses a
* binary search to find the first output greater than or equal to the given block.
*
* @param _l2BlockNumber L2 block number to find a checkpoint for.
*
* @return First checkpoint that commits to the given L2 block number.
*/
function getL2OutputAfter(uint256 _l2BlockNumber)
external
view
returns (Types.OutputProposal memory)
{
return l2Outputs[getL2OutputIndexAfter(_l2BlockNumber)];
}
/**
* @notice Returns the number of outputs that have been proposed. Will revert if no outputs
* have been proposed yet.
*
* @return The number of outputs that have been proposed.
*/
function latestOutputIndex() external view returns (uint256) {
return l2Outputs.length - 1;
}
/**
* @notice Returns the index of the next output to be proposed.
*
* @return The index of the next output to be proposed.
*/
function nextOutputIndex() public view returns (uint256) {
return l2Outputs.length;
}
/**
* @notice Returns the block number of the latest submitted L2 output proposal. If no proposals
* been submitted yet then this function will return the starting block number.
*
* @return Latest submitted L2 block number.
*/
function latestBlockNumber() public view returns (uint256) {
return
l2Outputs.length == 0
? startingBlockNumber
: l2Outputs[l2Outputs.length - 1].l2BlockNumber;
}
/**
* @notice Computes the block number of the next L2 block that needs to be checkpointed.
*
* @return Next L2 block number.
*/
function nextBlockNumber() public view returns (uint256) {
return latestBlockNumber() + SUBMISSION_INTERVAL;
}
/**
* @notice Returns the L2 timestamp corresponding to a given L2 block number.
*
* @param _l2BlockNumber The L2 block number of the target block.
*
* @return L2 timestamp of the given block.
*/
function computeL2Timestamp(uint256 _l2BlockNumber) public view returns (uint256) {
return startingTimestamp + ((_l2BlockNumber - startingBlockNumber) * L2_BLOCK_TIME);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { SafeCall } from "../libraries/SafeCall.sol";
import { L2OutputOracle } from "./L2OutputOracle.sol";
import { Constants } from "../libraries/Constants.sol";
import { Types } from "../libraries/Types.sol";
import { Hashing } from "../libraries/Hashing.sol";
import { SecureMerkleTrie } from "../libraries/trie/SecureMerkleTrie.sol";
import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol";
import { ResourceMetering } from "./ResourceMetering.sol";
import { Semver } from "../universal/Semver.sol";
/**
* @custom:proxied
* @title OptimismPortal
* @notice The OptimismPortal is a low-level contract responsible for passing messages between L1
* and L2. Messages sent directly to the OptimismPortal have no form of replayability.
* Users are encouraged to use the L1CrossDomainMessenger for a higher-level interface.
*/
contract OptimismPortal is Initializable, ResourceMetering, Semver {
/**
* @notice Represents a proven withdrawal.
*
* @custom:field outputRoot Root of the L2 output this was proven against.
* @custom:field timestamp Timestamp at whcih the withdrawal was proven.
* @custom:field l2OutputIndex Index of the output this was proven against.
*/
struct ProvenWithdrawal {
bytes32 outputRoot;
uint128 timestamp;
uint128 l2OutputIndex;
}
/**
* @notice Version of the deposit event.
*/
uint256 internal constant DEPOSIT_VERSION = 0;
/**
* @notice The L2 gas limit set when eth is deposited using the receive() function.
*/
uint64 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
/**
* @notice Additional gas reserved for clean up after finalizing a transaction withdrawal.
*/
uint256 internal constant FINALIZE_GAS_BUFFER = 20_000;
/**
* @notice Minimum time (in seconds) that must elapse before a withdrawal can be finalized.
*/
uint256 public immutable FINALIZATION_PERIOD_SECONDS;
/**
* @notice Address of the L2OutputOracle.
*/
L2OutputOracle public immutable L2_ORACLE;
/**
* @notice Address of the L2 account which initiated a withdrawal in this transaction. If the
* of this variable is the default L2 sender address, then we are NOT inside of a call
* to finalizeWithdrawalTransaction.
*/
address public l2Sender;
/**
* @notice A list of withdrawal hashes which have been successfully finalized.
*/
mapping(bytes32 => bool) public finalizedWithdrawals;
/**
* @notice A mapping of withdrawal hashes to `ProvenWithdrawal` data.
*/
mapping(bytes32 => ProvenWithdrawal) public provenWithdrawals;
/**
* @notice Emitted when a transaction is deposited from L1 to L2. The parameters of this event
* are read by the rollup node and used to derive deposit transactions on L2.
*
* @param from Address that triggered the deposit transaction.
* @param to Address that the deposit transaction is directed to.
* @param version Version of this deposit transaction event.
* @param opaqueData ABI encoded deposit data to be parsed off-chain.
*/
event TransactionDeposited(
address indexed from,
address indexed to,
uint256 indexed version,
bytes opaqueData
);
/**
* @notice Emitted when a withdrawal transaction is proven.
*
* @param withdrawalHash Hash of the withdrawal transaction.
*/
event WithdrawalProven(
bytes32 indexed withdrawalHash,
address indexed from,
address indexed to
);
/**
* @notice Emitted when a withdrawal transaction is finalized.
*
* @param withdrawalHash Hash of the withdrawal transaction.
* @param success Whether the withdrawal transaction was successful.
*/
event WithdrawalFinalized(bytes32 indexed withdrawalHash, bool success);
/**
* @custom:semver 1.0.0
*
* @param _l2Oracle Address of the L2OutputOracle contract.
* @param _finalizationPeriodSeconds Output finalization time in seconds.
*/
constructor(L2OutputOracle _l2Oracle, uint256 _finalizationPeriodSeconds) Semver(1, 0, 0) {
L2_ORACLE = _l2Oracle;
FINALIZATION_PERIOD_SECONDS = _finalizationPeriodSeconds;
initialize();
}
/**
* @notice Initializer.
*/
function initialize() public initializer {
l2Sender = Constants.DEFAULT_L2_SENDER;
__ResourceMetering_init();
}
/**
* @notice Accepts value so that users can send ETH directly to this contract and have the
* funds be deposited to their address on L2. This is intended as a convenience
* function for EOAs. Contracts should call the depositTransaction() function directly
* otherwise any deposited funds will be lost due to address aliasing.
*/
// solhint-disable-next-line ordering
receive() external payable {
depositTransaction(msg.sender, msg.value, RECEIVE_DEFAULT_GAS_LIMIT, false, bytes(""));
}
/**
* @notice Accepts ETH value without triggering a deposit to L2. This function mainly exists
* for the sake of the migration between the legacy Optimism system and Bedrock.
*/
function donateETH() external payable {
// Intentionally empty.
}
/**
* @notice Proves a withdrawal transaction.
*
* @param _tx Withdrawal transaction to finalize.
* @param _l2OutputIndex L2 output index to prove against.
* @param _outputRootProof Inclusion proof of the L2ToL1MessagePasser contract's storage root.
* @param _withdrawalProof Inclusion proof of the withdrawal in L2ToL1MessagePasser contract.
*/
function proveWithdrawalTransaction(
Types.WithdrawalTransaction memory _tx,
uint256 _l2OutputIndex,
Types.OutputRootProof calldata _outputRootProof,
bytes[] calldata _withdrawalProof
) external {
// Prevent users from creating a deposit transaction where this address is the message
// sender on L2. Because this is checked here, we do not need to check again in
// `finalizeWithdrawalTransaction`.
require(
_tx.target != address(this),
"OptimismPortal: you cannot send messages to the portal contract"
);
// Get the output root and load onto the stack to prevent multiple mloads. This will
// revert if there is no output root for the given block number.
bytes32 outputRoot = L2_ORACLE.getL2Output(_l2OutputIndex).outputRoot;
// Verify that the output root can be generated with the elements in the proof.
require(
outputRoot == Hashing.hashOutputRootProof(_outputRootProof),
"OptimismPortal: invalid output root proof"
);
// Load the ProvenWithdrawal into memory, using the withdrawal hash as a unique identifier.
bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
// We generally want to prevent users from proving the same withdrawal multiple times
// because each successive proof will update the timestamp. A malicious user can take
// advantage of this to prevent other users from finalizing their withdrawal. However,
// since withdrawals are proven before an output root is finalized, we need to allow users
// to re-prove their withdrawal only in the case that the output root for their specified
// output index has been updated.
require(
provenWithdrawal.timestamp == 0 ||
(_l2OutputIndex == provenWithdrawal.l2OutputIndex &&
outputRoot != provenWithdrawal.outputRoot),
"OptimismPortal: withdrawal hash has already been proven"
);
// Compute the storage slot of the withdrawal hash in the L2ToL1MessagePasser contract.
// Refer to the Solidity documentation for more information on how storage layouts are
// computed for mappings.
bytes32 storageKey = keccak256(
abi.encode(
withdrawalHash,
uint256(0) // The withdrawals mapping is at the first slot in the layout.
)
);
// Verify that the hash of this withdrawal was stored in the L2toL1MessagePasser contract
// on L2. If this is true, under the assumption that the SecureMerkleTrie does not have
// bugs, then we know that this withdrawal was actually triggered on L2 and can therefore
// be relayed on L1.
require(
SecureMerkleTrie.verifyInclusionProof(
abi.encode(storageKey),
hex"01",
_withdrawalProof,
_outputRootProof.messagePasserStorageRoot
),
"OptimismPortal: invalid withdrawal inclusion proof"
);
// Designate the withdrawalHash as proven by storing the `outputRoot`, `timestamp`, and
// `l2BlockNumber` in the `provenWithdrawals` mapping. A `withdrawalHash` can only be
// proven once unless it is submitted again with a different outputRoot.
provenWithdrawals[withdrawalHash] = ProvenWithdrawal({
outputRoot: outputRoot,
timestamp: uint128(block.timestamp),
l2OutputIndex: uint128(_l2OutputIndex)
});
// Emit a `WithdrawalProven` event.
emit WithdrawalProven(withdrawalHash, _tx.sender, _tx.target);
}
/**
* @notice Finalizes a withdrawal transaction.
*
* @param _tx Withdrawal transaction to finalize.
*/
function finalizeWithdrawalTransaction(Types.WithdrawalTransaction memory _tx) external {
// Make sure that the l2Sender has not yet been set. The l2Sender is set to a value other
// than the default value when a withdrawal transaction is being finalized. This check is
// a defacto reentrancy guard.
require(
l2Sender == Constants.DEFAULT_L2_SENDER,
"OptimismPortal: can only trigger one withdrawal per transaction"
);
// Grab the proven withdrawal from the `provenWithdrawals` map.
bytes32 withdrawalHash = Hashing.hashWithdrawal(_tx);
ProvenWithdrawal memory provenWithdrawal = provenWithdrawals[withdrawalHash];
// A withdrawal can only be finalized if it has been proven. We know that a withdrawal has
// been proven at least once when its timestamp is non-zero. Unproven withdrawals will have
// a timestamp of zero.
require(
provenWithdrawal.timestamp != 0,
"OptimismPortal: withdrawal has not been proven yet"
);
// As a sanity check, we make sure that the proven withdrawal's timestamp is greater than
// starting timestamp inside the L2OutputOracle. Not strictly necessary but extra layer of
// safety against weird bugs in the proving step.
require(
provenWithdrawal.timestamp >= L2_ORACLE.startingTimestamp(),
"OptimismPortal: withdrawal timestamp less than L2 Oracle starting timestamp"
);
// A proven withdrawal must wait at least the finalization period before it can be
// finalized. This waiting period can elapse in parallel with the waiting period for the
// output the withdrawal was proven against. In effect, this means that the minimum
// withdrawal time is proposal submission time + finalization period.
require(
_isFinalizationPeriodElapsed(provenWithdrawal.timestamp),
"OptimismPortal: proven withdrawal finalization period has not elapsed"
);
// Grab the OutputProposal from the L2OutputOracle, will revert if the output that
// corresponds to the given index has not been proposed yet.
Types.OutputProposal memory proposal = L2_ORACLE.getL2Output(
provenWithdrawal.l2OutputIndex
);
// Check that the output root that was used to prove the withdrawal is the same as the
// current output root for the given output index. An output root may change if it is
// deleted by the challenger address and then re-proposed.
require(
proposal.outputRoot == provenWithdrawal.outputRoot,
"OptimismPortal: output root proven is not the same as current output root"
);
// Check that the output proposal has also been finalized.
require(
_isFinalizationPeriodElapsed(proposal.timestamp),
"OptimismPortal: output proposal finalization period has not elapsed"
);
// Check that this withdrawal has not already been finalized, this is replay protection.
require(
finalizedWithdrawals[withdrawalHash] == false,
"OptimismPortal: withdrawal has already been finalized"
);
// Mark the withdrawal as finalized so it can't be replayed.
finalizedWithdrawals[withdrawalHash] = true;
// We want to maintain the property that the amount of gas supplied to the call to the
// target contract is at least the gas limit specified by the user. We can do this by
// enforcing that, at this point in time, we still have gaslimit + buffer gas available.
require(
gasleft() >= _tx.gasLimit + FINALIZE_GAS_BUFFER,
"OptimismPortal: insufficient gas to finalize withdrawal"
);
// Set the l2Sender so contracts know who triggered this withdrawal on L2.
l2Sender = _tx.sender;
// Trigger the call to the target contract. We use SafeCall because we don't
// care about the returndata and we don't want target contracts to be able to force this
// call to run out of gas via a returndata bomb.
bool success = SafeCall.call(
_tx.target,
gasleft() - FINALIZE_GAS_BUFFER,
_tx.value,
_tx.data
);
// Reset the l2Sender back to the default value.
l2Sender = Constants.DEFAULT_L2_SENDER;
// All withdrawals are immediately finalized. Replayability can
// be achieved through contracts built on top of this contract
emit WithdrawalFinalized(withdrawalHash, success);
// Reverting here is useful for determining the exact gas cost to successfully execute the
// sub call to the target contract if the minimum gas limit specified by the user would not
// be sufficient to execute the sub call.
if (success == false && tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("OptimismPortal: withdrawal failed");
}
}
/**
* @notice Accepts deposits of ETH and data, and emits a TransactionDeposited event for use in
* deriving deposit transactions. Note that if a deposit is made by a contract, its
* address will be aliased when retrieved using `tx.origin` or `msg.sender`. Consider
* using the CrossDomainMessenger contracts for a simpler developer experience.
*
* @param _to Target address on L2.
* @param _value ETH value to send to the recipient.
* @param _gasLimit Minimum L2 gas limit (can be greater than or equal to this value).
* @param _isCreation Whether or not the transaction is a contract creation.
* @param _data Data to trigger the recipient with.
*/
function depositTransaction(
address _to,
uint256 _value,
uint64 _gasLimit,
bool _isCreation,
bytes memory _data
) public payable metered(_gasLimit) {
// Just to be safe, make sure that people specify address(0) as the target when doing
// contract creations.
if (_isCreation) {
require(
_to == address(0),
"OptimismPortal: must send to address(0) when creating a contract"
);
}
// Transform the from-address to its alias if the caller is a contract.
address from = msg.sender;
if (msg.sender != tx.origin) {
from = AddressAliasHelper.applyL1ToL2Alias(msg.sender);
}
// Compute the opaque data that will be emitted as part of the TransactionDeposited event.
// We use opaque data so that we can update the TransactionDeposited event in the future
// without breaking the current interface.
bytes memory opaqueData = abi.encodePacked(
msg.value,
_value,
_gasLimit,
_isCreation,
_data
);
// Emit a TransactionDeposited event so that the rollup node can derive a deposit
// transaction for this deposit.
emit TransactionDeposited(from, _to, DEPOSIT_VERSION, opaqueData);
}
/**
* @notice Determine if a given output is finalized. Reverts if the call to
* L2_ORACLE.getL2Output reverts. Returns a boolean otherwise.
*
* @param _l2OutputIndex Index of the L2 output to check.
*
* @return Whether or not the output is finalized.
*/
function isOutputFinalized(uint256 _l2OutputIndex) external view returns (bool) {
return _isFinalizationPeriodElapsed(L2_ORACLE.getL2Output(_l2OutputIndex).timestamp);
}
/**
* @notice Determines whether the finalization period has elapsed w/r/t a given timestamp.
*
* @param _timestamp Timestamp to check.
*
* @return Whether or not the finalization period has elapsed.
*/
function _isFinalizationPeriodElapsed(uint256 _timestamp) internal view returns (bool) {
return block.timestamp > _timestamp + FINALIZATION_PERIOD_SECONDS;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Initializable } from "@openzeppelin/contracts/proxy/utils/Initializable.sol";
import { Math } from "@openzeppelin/contracts/utils/math/Math.sol";
import { Burn } from "../libraries/Burn.sol";
import { Arithmetic } from "../libraries/Arithmetic.sol";
/**
* @custom:upgradeable
* @title ResourceMetering
* @notice ResourceMetering implements an EIP-1559 style resource metering system where pricing
* updates automatically based on current demand.
*/
abstract contract ResourceMetering is Initializable {
/**
* @notice Represents the various parameters that control the way in which resources are
* metered. Corresponds to the EIP-1559 resource metering system.
*
* @custom:field prevBaseFee Base fee from the previous block(s).
* @custom:field prevBoughtGas Amount of gas bought so far in the current block.
* @custom:field prevBlockNum Last block number that the base fee was updated.
*/
struct ResourceParams {
uint128 prevBaseFee;
uint64 prevBoughtGas;
uint64 prevBlockNum;
}
/**
* @notice Maximum amount of the resource that can be used within this block.
*/
int256 public constant MAX_RESOURCE_LIMIT = 8_000_000;
/**
* @notice Along with the resource limit, determines the target resource limit.
*/
int256 public constant ELASTICITY_MULTIPLIER = 4;
/**
* @notice Target amount of the resource that should be used within this block.
*/
int256 public constant TARGET_RESOURCE_LIMIT = MAX_RESOURCE_LIMIT / ELASTICITY_MULTIPLIER;
/**
* @notice Denominator that determines max change on fee per block.
*/
int256 public constant BASE_FEE_MAX_CHANGE_DENOMINATOR = 8;
/**
* @notice Minimum base fee value, cannot go lower than this.
*/
int256 public constant MINIMUM_BASE_FEE = 10_000;
/**
* @notice Maximum base fee value, cannot go higher than this.
*/
int256 public constant MAXIMUM_BASE_FEE = int256(uint256(type(uint128).max));
/**
* @notice Initial base fee value.
*/
uint128 public constant INITIAL_BASE_FEE = 1_000_000_000;
/**
* @notice EIP-1559 style gas parameters.
*/
ResourceParams public params;
/**
* @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
*/
uint256[48] private __gap;
/**
* @notice Meters access to a function based an amount of a requested resource.
*
* @param _amount Amount of the resource requested.
*/
modifier metered(uint64 _amount) {
// Record initial gas amount so we can refund for it later.
uint256 initialGas = gasleft();
// Run the underlying function.
_;
// Update block number and base fee if necessary.
uint256 blockDiff = block.number - params.prevBlockNum;
if (blockDiff > 0) {
// Handle updating EIP-1559 style gas parameters. We use EIP-1559 to restrict the rate
// at which deposits can be created and therefore limit the potential for deposits to
// spam the L2 system. Fee scheme is very similar to EIP-1559 with minor changes.
int256 gasUsedDelta = int256(uint256(params.prevBoughtGas)) - TARGET_RESOURCE_LIMIT;
int256 baseFeeDelta = (int256(uint256(params.prevBaseFee)) * gasUsedDelta) /
TARGET_RESOURCE_LIMIT /
BASE_FEE_MAX_CHANGE_DENOMINATOR;
// Update base fee by adding the base fee delta and clamp the resulting value between
// min and max.
int256 newBaseFee = Arithmetic.clamp(
int256(uint256(params.prevBaseFee)) + baseFeeDelta,
MINIMUM_BASE_FEE,
MAXIMUM_BASE_FEE
);
// If we skipped more than one block, we also need to account for every empty block.
// Empty block means there was no demand for deposits in that block, so we should
// reflect this lack of demand in the fee.
if (blockDiff > 1) {
// Update the base fee by repeatedly applying the exponent 1-(1/change_denominator)
// blockDiff - 1 times. Simulates multiple empty blocks. Clamp the resulting value
// between min and max.
newBaseFee = Arithmetic.clamp(
Arithmetic.cdexp(
newBaseFee,
BASE_FEE_MAX_CHANGE_DENOMINATOR,
int256(blockDiff - 1)
),
MINIMUM_BASE_FEE,
MAXIMUM_BASE_FEE
);
}
// Update new base fee, reset bought gas, and update block number.
params.prevBaseFee = uint128(uint256(newBaseFee));
params.prevBoughtGas = 0;
params.prevBlockNum = uint64(block.number);
}
// Make sure we can actually buy the resource amount requested by the user.
params.prevBoughtGas += _amount;
require(
int256(uint256(params.prevBoughtGas)) <= MAX_RESOURCE_LIMIT,
"ResourceMetering: cannot buy more gas than available gas limit"
);
// Determine the amount of ETH to be paid.
uint256 resourceCost = _amount * params.prevBaseFee;
// We currently charge for this ETH amount as an L1 gas burn, so we convert the ETH amount
// into gas by dividing by the L1 base fee. We assume a minimum base fee of 1 gwei to avoid
// division by zero for L1s that don't support 1559 or to avoid excessive gas burns during
// periods of extremely low L1 demand. One-day average gas fee hasn't dipped below 1 gwei
// during any 1 day period in the last 5 years, so should be fine.
uint256 gasCost = resourceCost / Math.max(block.basefee, 1000000000);
// Give the user a refund based on the amount of gas they used to do all of the work up to
// this point. Since we're at the end of the modifier, this should be pretty accurate. Acts
// effectively like a dynamic stipend (with a minimum value).
uint256 usedGas = initialGas - gasleft();
if (gasCost > usedGas) {
Burn.gas(gasCost - usedGas);
}
}
/**
* @notice Sets initial resource parameter values. This function must either be called by the
* initializer function of an upgradeable child contract.
*/
// solhint-disable-next-line func-name-mixedcase
function __ResourceMetering_init() internal onlyInitializing {
params = ResourceParams({
prevBaseFee: INITIAL_BASE_FEE,
prevBoughtGas: 0,
prevBlockNum: uint64(block.number)
});
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import {
OwnableUpgradeable
} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import { Semver } from "../universal/Semver.sol";
/**
* @title SystemConfig
* @notice The SystemConfig contract is used to manage configuration of an Optimism network. All
* configuration is stored on L1 and picked up by L2 as part of the derviation of the L2
* chain.
*/
contract SystemConfig is OwnableUpgradeable, Semver {
/**
* @notice Enum representing different types of updates.
*
* @custom:value BATCHER Represents an update to the batcher hash.
* @custom:value GAS_CONFIG Represents an update to txn fee config on L2.
* @custom:value GAS_LIMIT Represents an update to gas limit on L2.
* @custom:value UNSAFE_BLOCK_SIGNER Represents an update to the signer key for unsafe
* block distrubution.
*/
enum UpdateType {
BATCHER,
GAS_CONFIG,
GAS_LIMIT,
UNSAFE_BLOCK_SIGNER
}
/**
* @notice Version identifier, used for upgrades.
*/
uint256 public constant VERSION = 0;
/**
* @notice Storage slot that the unsafe block signer is stored at. Storing it at this
* deterministic storage slot allows for decoupling the storage layout from the way
* that `solc` lays out storage. The `op-node` uses a storage proof to fetch this value.
*/
bytes32 public constant UNSAFE_BLOCK_SIGNER_SLOT = keccak256("systemconfig.unsafeblocksigner");
/**
* @notice Minimum gas limit. This should not be lower than the maximum deposit gas resource
* limit in the ResourceMetering contract used by OptimismPortal, to ensure the L2
* block always has sufficient gas to process deposits.
*/
uint64 public constant MINIMUM_GAS_LIMIT = 8_000_000;
/**
* @notice Fixed L2 gas overhead.
*/
uint256 public overhead;
/**
* @notice Dynamic L2 gas overhead.
*/
uint256 public scalar;
/**
* @notice Identifier for the batcher. For version 1 of this configuration, this is represented
* as an address left-padded with zeros to 32 bytes.
*/
bytes32 public batcherHash;
/**
* @notice L2 gas limit.
*/
uint64 public gasLimit;
/**
* @notice Emitted when configuration is updated
*
* @param version SystemConfig version.
* @param updateType Type of update.
* @param data Encoded update data.
*/
event ConfigUpdate(uint256 indexed version, UpdateType indexed updateType, bytes data);
/**
* @custom:semver 1.0.0
*
* @param _owner Initial owner of the contract.
* @param _overhead Initial overhead value.
* @param _scalar Initial scalar value.
* @param _batcherHash Initial batcher hash.
* @param _gasLimit Initial gas limit.
*/
constructor(
address _owner,
uint256 _overhead,
uint256 _scalar,
bytes32 _batcherHash,
uint64 _gasLimit,
address _unsafeBlockSigner
) Semver(1, 0, 0) {
initialize(_owner, _overhead, _scalar, _batcherHash, _gasLimit, _unsafeBlockSigner);
}
/**
* @notice Initializer.
*
* @param _owner Initial owner of the contract.
* @param _overhead Initial overhead value.
* @param _scalar Initial scalar value.
* @param _batcherHash Initial batcher hash.
* @param _gasLimit Initial gas limit.
*/
function initialize(
address _owner,
uint256 _overhead,
uint256 _scalar,
bytes32 _batcherHash,
uint64 _gasLimit,
address _unsafeBlockSigner
) public initializer {
require(_gasLimit >= MINIMUM_GAS_LIMIT, "SystemConfig: gas limit too low");
__Ownable_init();
transferOwnership(_owner);
overhead = _overhead;
scalar = _scalar;
batcherHash = _batcherHash;
gasLimit = _gasLimit;
_setUnsafeBlockSigner(_unsafeBlockSigner);
}
/**
* @notice High level getter for the unsafe block signer address.
* Unsafe blocks can be propagated across the p2p network
* if they are signed by the key corresponding to this address.
*/
function unsafeBlockSigner() public view returns (address) {
address addr;
bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT;
assembly {
addr := sload(slot)
}
return addr;
}
/**
* @notice Updates the batcher hash.
*
* @param _batcherHash New batcher hash.
*/
// solhint-disable-next-line ordering
function setBatcherHash(bytes32 _batcherHash) external onlyOwner {
batcherHash = _batcherHash;
bytes memory data = abi.encode(_batcherHash);
emit ConfigUpdate(VERSION, UpdateType.BATCHER, data);
}
/**
* @notice Updates gas config.
*
* @param _overhead New overhead value.
* @param _scalar New scalar value.
*/
function setGasConfig(uint256 _overhead, uint256 _scalar) external onlyOwner {
overhead = _overhead;
scalar = _scalar;
bytes memory data = abi.encode(_overhead, _scalar);
emit ConfigUpdate(VERSION, UpdateType.GAS_CONFIG, data);
}
function setUnsafeBlockSigner(address _unsafeBlockSigner) external onlyOwner {
_setUnsafeBlockSigner(_unsafeBlockSigner);
bytes memory data = abi.encode(_unsafeBlockSigner);
emit ConfigUpdate(VERSION, UpdateType.UNSAFE_BLOCK_SIGNER, data);
}
/**
* @notice Low level setter for the unsafe block signer address.
* This function exists to deduplicate code around storing
* the unsafeBlockSigner address in storage.
*
* @param _unsafeBlockSigner New unsafeBlockSigner value
*/
function _setUnsafeBlockSigner(address _unsafeBlockSigner) internal {
bytes32 slot = UNSAFE_BLOCK_SIGNER_SLOT;
assembly {
sstore(slot, _unsafeBlockSigner)
}
}
/**
* @notice Updates the L2 gas limit.
*
* @param _gasLimit New gas limit.
*/
function setGasLimit(uint64 _gasLimit) external onlyOwner {
require(_gasLimit >= MINIMUM_GAS_LIMIT, "SystemConfig: gas limit too low");
gasLimit = _gasLimit;
bytes memory data = abi.encode(_gasLimit);
emit ConfigUpdate(VERSION, UpdateType.GAS_LIMIT, data);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Semver } from "../universal/Semver.sol";
import { FeeVault } from "../universal/FeeVault.sol";
/**
* @custom:proxied
* @custom:predeploy 0x4200000000000000000000000000000000000019
* @title BaseFeeVault
* @notice The BaseFeeVault accumulates the base fee that is paid by transactions.
*/
contract BaseFeeVault is FeeVault, Semver {
/**
* @custom:semver 1.0.0
*
* @param _recipient Address that will receive the accumulated fees.
*/
constructor(address _recipient) FeeVault(_recipient, 10 ether) Semver(1, 0, 0) {}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol";
/**
* @title CrossDomainOwnable
* @notice This contract extends the OpenZeppelin `Ownable` contract for L2 contracts to be owned
* by contracts on L1. Note that this contract is only safe to be used if the
* CrossDomainMessenger system is bypassed and the caller on L1 is calling the
* OptimismPortal directly.
*/
abstract contract CrossDomainOwnable is Ownable {
/**
* @notice Overrides the implementation of the `onlyOwner` modifier to check that the unaliased
* `msg.sender` is the owner of the contract.
*/
function _checkOwner() internal view override {
require(
owner() == AddressAliasHelper.undoL1ToL2Alias(msg.sender),
"CrossDomainOwnable: caller is not the owner"
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Predeploys } from "../libraries/Predeploys.sol";
import { L2CrossDomainMessenger } from "./L2CrossDomainMessenger.sol";
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
/**
* @title CrossDomainOwnable2
* @notice This contract extends the OpenZeppelin `Ownable` contract for L2 contracts to be owned
* by contracts on L1. Note that this contract is meant to be used with systems that use
* the CrossDomainMessenger system. It will not work if the OptimismPortal is used
* directly.
*/
abstract contract CrossDomainOwnable2 is Ownable {
/**
* @notice Overrides the implementation of the `onlyOwner` modifier to check that the unaliased
* `xDomainMessageSender` is the owner of the contract. This value is set to the caller
* of the L1CrossDomainMessenger.
*/
function _checkOwner() internal view override {
L2CrossDomainMessenger messenger = L2CrossDomainMessenger(
Predeploys.L2_CROSS_DOMAIN_MESSENGER
);
require(
msg.sender == address(messenger),
"CrossDomainOwnable2: caller is not the messenger"
);
require(
owner() == messenger.xDomainMessageSender(),
"CrossDomainOwnable2: caller is not the owner"
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Semver } from "../universal/Semver.sol";
import { Predeploys } from "../libraries/Predeploys.sol";
import { L1Block } from "../L2/L1Block.sol";
/**
* @custom:proxied
* @custom:predeploy 0x420000000000000000000000000000000000000F
* @title GasPriceOracle
* @notice This contract maintains the variables responsible for computing the L1 portion of the
* total fee charged on L2. Before Bedrock, this contract held variables in state that were
* read during the state transition function to compute the L1 portion of the transaction
* fee. After Bedrock, this contract now simply proxies the L1Block contract, which has
* the values used to compute the L1 portion of the fee in its state.
*
* The contract exposes an API that is useful for knowing how large the L1 portion of the
* transaction fee will be. The following events were deprecated with Bedrock:
* - event OverheadUpdated(uint256 overhead);
* - event ScalarUpdated(uint256 scalar);
* - event DecimalsUpdated(uint256 decimals);
*/
contract GasPriceOracle is Semver {
/**
* @notice Number of decimals used in the scalar.
*/
uint256 public constant DECIMALS = 6;
/**
* @custom:semver 1.0.0
*/
constructor() Semver(1, 0, 0) {}
/**
* @notice Computes the L1 portion of the fee based on the size of the rlp encoded input
* transaction, the current L1 base fee, and the various dynamic parameters.
*
* @param _data Unsigned fully RLP-encoded transaction to get the L1 fee for.
*
* @return L1 fee that should be paid for the tx
*/
function getL1Fee(bytes memory _data) external view returns (uint256) {
uint256 l1GasUsed = getL1GasUsed(_data);
uint256 l1Fee = l1GasUsed * l1BaseFee();
uint256 divisor = 10**DECIMALS;
uint256 unscaled = l1Fee * scalar();
uint256 scaled = unscaled / divisor;
return scaled;
}
/**
* @notice Retrieves the current gas price (base fee).
*
* @return Current L2 gas price (base fee).
*/
function gasPrice() public view returns (uint256) {
return block.basefee;
}
/**
* @notice Retrieves the current base fee.
*
* @return Current L2 base fee.
*/
function baseFee() public view returns (uint256) {
return block.basefee;
}
/**
* @notice Retrieves the current fee overhead.
*
* @return Current fee overhead.
*/
function overhead() public view returns (uint256) {
return L1Block(Predeploys.L1_BLOCK_ATTRIBUTES).l1FeeOverhead();
}
/**
* @notice Retrieves the current fee scalar.
*
* @return Current fee scalar.
*/
function scalar() public view returns (uint256) {
return L1Block(Predeploys.L1_BLOCK_ATTRIBUTES).l1FeeScalar();
}
/**
* @notice Retrieves the latest known L1 base fee.
*
* @return Latest known L1 base fee.
*/
function l1BaseFee() public view returns (uint256) {
return L1Block(Predeploys.L1_BLOCK_ATTRIBUTES).basefee();
}
/**
* @custom:legacy
* @notice Retrieves the number of decimals used in the scalar.
*
* @return Number of decimals used in the scalar.
*/
function decimals() public pure returns (uint256) {
return DECIMALS;
}
/**
* @notice Computes the amount of L1 gas used for a transaction. Adds the overhead which
* represents the per-transaction gas overhead of posting the transaction and state
* roots to L1. Adds 68 bytes of padding to account for the fact that the input does
* not have a signature.
*
* @param _data Unsigned fully RLP-encoded transaction to get the L1 gas for.
*
* @return Amount of L1 gas used to publish the transaction.
*/
function getL1GasUsed(bytes memory _data) public view returns (uint256) {
uint256 total = 0;
uint256 length = _data.length;
for (uint256 i = 0; i < length; i++) {
if (_data[i] == 0) {
total += 4;
} else {
total += 16;
}
}
uint256 unsigned = total + overhead();
return unsigned + (68 * 16);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Semver } from "../universal/Semver.sol";
/**
* @custom:proxied
* @custom:predeploy 0x4200000000000000000000000000000000000015
* @title L1Block
* @notice The L1Block predeploy gives users access to information about the last known L1 block.
* Values within this contract are updated once per epoch (every L1 block) and can only be
* set by the "depositor" account, a special system address. Depositor account transactions
* are created by the protocol whenever we move to a new epoch.
*/
contract L1Block is Semver {
/**
* @notice Address of the special depositor account.
*/
address public constant DEPOSITOR_ACCOUNT = 0xDeaDDEaDDeAdDeAdDEAdDEaddeAddEAdDEAd0001;
/**
* @notice The latest L1 block number known by the L2 system.
*/
uint64 public number;
/**
* @notice The latest L1 timestamp known by the L2 system.
*/
uint64 public timestamp;
/**
* @notice The latest L1 basefee.
*/
uint256 public basefee;
/**
* @notice The latest L1 blockhash.
*/
bytes32 public hash;
/**
* @notice The number of L2 blocks in the same epoch.
*/
uint64 public sequenceNumber;
/**
* @notice The versioned hash to authenticate the batcher by.
*/
bytes32 public batcherHash;
/**
* @notice The overhead value applied to the L1 portion of the transaction
* fee.
*/
uint256 public l1FeeOverhead;
/**
* @notice The scalar value applied to the L1 portion of the transaction fee.
*/
uint256 public l1FeeScalar;
/**
* @custom:semver 1.0.0
*/
constructor() Semver(1, 0, 0) {}
/**
* @notice Updates the L1 block values.
*
* @param _number L1 blocknumber.
* @param _timestamp L1 timestamp.
* @param _basefee L1 basefee.
* @param _hash L1 blockhash.
* @param _sequenceNumber Number of L2 blocks since epoch start.
* @param _batcherHash Versioned hash to authenticate batcher by.
* @param _l1FeeOverhead L1 fee overhead.
* @param _l1FeeScalar L1 fee scalar.
*/
function setL1BlockValues(
uint64 _number,
uint64 _timestamp,
uint256 _basefee,
bytes32 _hash,
uint64 _sequenceNumber,
bytes32 _batcherHash,
uint256 _l1FeeOverhead,
uint256 _l1FeeScalar
) external {
require(
msg.sender == DEPOSITOR_ACCOUNT,
"L1Block: only the depositor account can set L1 block values"
);
number = _number;
timestamp = _timestamp;
basefee = _basefee;
hash = _hash;
sequenceNumber = _sequenceNumber;
batcherHash = _batcherHash;
l1FeeOverhead = _l1FeeOverhead;
l1FeeScalar = _l1FeeScalar;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Semver } from "../universal/Semver.sol";
import { FeeVault } from "../universal/FeeVault.sol";
/**
* @custom:proxied
* @custom:predeploy 0x420000000000000000000000000000000000001A
* @title L1FeeVault
* @notice The L1FeeVault accumulates the L1 portion of the transaction fees.
*/
contract L1FeeVault is FeeVault, Semver {
/**
* @custom:semver 1.0.0
*
* @param _recipient Address that will receive the accumulated fees.
*/
constructor(address _recipient) FeeVault(_recipient, 10 ether) Semver(1, 0, 0) {}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { AddressAliasHelper } from "../vendor/AddressAliasHelper.sol";
import { Predeploys } from "../libraries/Predeploys.sol";
import { CrossDomainMessenger } from "../universal/CrossDomainMessenger.sol";
import { Semver } from "../universal/Semver.sol";
import { L2ToL1MessagePasser } from "./L2ToL1MessagePasser.sol";
/**
* @custom:proxied
* @custom:predeploy 0x4200000000000000000000000000000000000007
* @title L2CrossDomainMessenger
* @notice The L2CrossDomainMessenger is a high-level interface for message passing between L1 and
* L2 on the L2 side. Users are generally encouraged to use this contract instead of lower
* level message passing contracts.
*/
contract L2CrossDomainMessenger is CrossDomainMessenger, Semver {
/**
* @custom:semver 1.0.0
*
* @param _l1CrossDomainMessenger Address of the L1CrossDomainMessenger contract.
*/
constructor(address _l1CrossDomainMessenger)
Semver(1, 0, 0)
CrossDomainMessenger(_l1CrossDomainMessenger)
{
initialize();
}
/**
* @notice Initializer.
*/
function initialize() public initializer {
__CrossDomainMessenger_init();
}
/**
* @custom:legacy
* @notice Legacy getter for the remote messenger. Use otherMessenger going forward.
*
* @return Address of the L1CrossDomainMessenger contract.
*/
function l1CrossDomainMessenger() public view returns (address) {
return OTHER_MESSENGER;
}
/**
* @inheritdoc CrossDomainMessenger
*/
function _sendMessage(
address _to,
uint64 _gasLimit,
uint256 _value,
bytes memory _data
) internal override {
L2ToL1MessagePasser(payable(Predeploys.L2_TO_L1_MESSAGE_PASSER)).initiateWithdrawal{
value: _value
}(_to, _gasLimit, _data);
}
/**
* @inheritdoc CrossDomainMessenger
*/
function _isOtherMessenger() internal view override returns (bool) {
return AddressAliasHelper.undoL1ToL2Alias(msg.sender) == OTHER_MESSENGER;
}
/**
* @inheritdoc CrossDomainMessenger
*/
function _isUnsafeTarget(address _target) internal view override returns (bool) {
return _target == address(this) || _target == address(Predeploys.L2_TO_L1_MESSAGE_PASSER);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { ERC721Bridge } from "../universal/ERC721Bridge.sol";
import { ERC165Checker } from "@openzeppelin/contracts/utils/introspection/ERC165Checker.sol";
import { L1ERC721Bridge } from "../L1/L1ERC721Bridge.sol";
import { IOptimismMintableERC721 } from "../universal/IOptimismMintableERC721.sol";
import { Semver } from "../universal/Semver.sol";
/**
* @title L2ERC721Bridge
* @notice The L2 ERC721 bridge is a contract which works together with the L1 ERC721 bridge to
* make it possible to transfer ERC721 tokens from Ethereum to Optimism. This contract
* acts as a minter for new tokens when it hears about deposits into the L1 ERC721 bridge.
* This contract also acts as a burner for tokens being withdrawn.
* **WARNING**: Do not bridge an ERC721 that was originally deployed on Optimism. This
* bridge ONLY supports ERC721s originally deployed on Ethereum. Users will need to
* wait for the one-week challenge period to elapse before their Optimism-native NFT
* can be refunded on L2.
*/
contract L2ERC721Bridge is ERC721Bridge, Semver {
/**
* @custom:semver 1.0.0
*
* @param _messenger Address of the CrossDomainMessenger on this network.
* @param _otherBridge Address of the ERC721 bridge on the other network.
*/
constructor(address _messenger, address _otherBridge)
Semver(1, 0, 0)
ERC721Bridge(_messenger, _otherBridge)
{}
/**
* @notice Completes an ERC721 bridge from the other domain and sends the ERC721 token to the
* recipient on this domain.
*
* @param _localToken Address of the ERC721 token on this domain.
* @param _remoteToken Address of the ERC721 token on the other domain.
* @param _from Address that triggered the bridge on the other domain.
* @param _to Address to receive the token on this domain.
* @param _tokenId ID of the token being deposited.
* @param _extraData Optional data to forward to L1. Data supplied here will not be used to
* execute any code on L1 and is only emitted as extra data for the
* convenience of off-chain tooling.
*/
function finalizeBridgeERC721(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _tokenId,
bytes calldata _extraData
) external onlyOtherBridge {
require(_localToken != address(this), "L2ERC721Bridge: local token cannot be self");
// Note that supportsInterface makes a callback to the _localToken address which is user
// provided.
require(
ERC165Checker.supportsInterface(_localToken, type(IOptimismMintableERC721).interfaceId),
"L2ERC721Bridge: local token interface is not compliant"
);
require(
_remoteToken == IOptimismMintableERC721(_localToken).remoteToken(),
"L2ERC721Bridge: wrong remote token for Optimism Mintable ERC721 local token"
);
// When a deposit is finalized, we give the NFT with the same tokenId to the account
// on L2. Note that safeMint makes a callback to the _to address which is user provided.
IOptimismMintableERC721(_localToken).safeMint(_to, _tokenId);
// slither-disable-next-line reentrancy-events
emit ERC721BridgeFinalized(_localToken, _remoteToken, _from, _to, _tokenId, _extraData);
}
/**
* @inheritdoc ERC721Bridge
*/
function _initiateBridgeERC721(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _tokenId,
uint32 _minGasLimit,
bytes calldata _extraData
) internal override {
require(_remoteToken != address(0), "ERC721Bridge: remote token cannot be address(0)");
// Check that the withdrawal is being initiated by the NFT owner
require(
_from == IOptimismMintableERC721(_localToken).ownerOf(_tokenId),
"Withdrawal is not being initiated by NFT owner"
);
// Construct calldata for l1ERC721Bridge.finalizeBridgeERC721(_to, _tokenId)
// slither-disable-next-line reentrancy-events
address remoteToken = IOptimismMintableERC721(_localToken).remoteToken();
require(
remoteToken == _remoteToken,
"L2ERC721Bridge: remote token does not match given value"
);
// When a withdrawal is initiated, we burn the withdrawer's NFT to prevent subsequent L2
// usage
// slither-disable-next-line reentrancy-events
IOptimismMintableERC721(_localToken).burn(_from, _tokenId);
bytes memory message = abi.encodeWithSelector(
L1ERC721Bridge.finalizeBridgeERC721.selector,
remoteToken,
_localToken,
_from,
_to,
_tokenId,
_extraData
);
// Send message to L1 bridge
// slither-disable-next-line reentrancy-events
MESSENGER.sendMessage(OTHER_BRIDGE, message, _minGasLimit);
// slither-disable-next-line reentrancy-events
emit ERC721BridgeInitiated(_localToken, remoteToken, _from, _to, _tokenId, _extraData);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Predeploys } from "../libraries/Predeploys.sol";
import { StandardBridge } from "../universal/StandardBridge.sol";
import { Semver } from "../universal/Semver.sol";
import { OptimismMintableERC20 } from "../universal/OptimismMintableERC20.sol";
/**
* @custom:proxied
* @custom:predeploy 0x4200000000000000000000000000000000000010
* @title L2StandardBridge
* @notice The L2StandardBridge is responsible for transfering ETH and ERC20 tokens between L1 and
* L2. In the case that an ERC20 token is native to L2, it will be escrowed within this
* contract. If the ERC20 token is native to L1, it will be burnt.
* NOTE: this contract is not intended to support all variations of ERC20 tokens. Examples
* of some token types that may not be properly supported by this contract include, but are
* not limited to: tokens with transfer fees, rebasing tokens, and tokens with blocklists.
*/
contract L2StandardBridge is StandardBridge, Semver {
/**
* @custom:legacy
* @notice Emitted whenever a withdrawal from L2 to L1 is initiated.
*
* @param l1Token Address of the token on L1.
* @param l2Token Address of the corresponding token on L2.
* @param from Address of the withdrawer.
* @param to Address of the recipient on L1.
* @param amount Amount of the ERC20 withdrawn.
* @param extraData Extra data attached to the withdrawal.
*/
event WithdrawalInitiated(
address indexed l1Token,
address indexed l2Token,
address indexed from,
address to,
uint256 amount,
bytes extraData
);
/**
* @custom:legacy
* @notice Emitted whenever an ERC20 deposit is finalized.
*
* @param l1Token Address of the token on L1.
* @param l2Token Address of the corresponding token on L2.
* @param from Address of the depositor.
* @param to Address of the recipient on L2.
* @param amount Amount of the ERC20 deposited.
* @param extraData Extra data attached to the deposit.
*/
event DepositFinalized(
address indexed l1Token,
address indexed l2Token,
address indexed from,
address to,
uint256 amount,
bytes extraData
);
/**
* @custom:semver 1.0.0
*
* @param _otherBridge Address of the L1StandardBridge.
*/
constructor(address payable _otherBridge)
Semver(1, 0, 0)
StandardBridge(payable(Predeploys.L2_CROSS_DOMAIN_MESSENGER), _otherBridge)
{}
/**
* @custom:legacy
* @notice Initiates a withdrawal from L2 to L1.
*
* @param _l2Token Address of the L2 token to withdraw.
* @param _amount Amount of the L2 token to withdraw.
* @param _minGasLimit Minimum gas limit to use for the transaction.
* @param _extraData Extra data attached to the withdrawal.
*/
function withdraw(
address _l2Token,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
) external payable virtual onlyEOA {
_initiateWithdrawal(_l2Token, msg.sender, msg.sender, _amount, _minGasLimit, _extraData);
}
/**
* @custom:legacy
* @notice Initiates a withdrawal from L2 to L1 to a target account on L1.
* Note that if ETH is sent to a contract on L1 and the call fails, then that ETH will
* be locked in the L1StandardBridge. ETH may be recoverable if the call can be
* successfully replayed by increasing the amount of gas supplied to the call. If the
* call will fail for any amount of gas, then the ETH will be locked permanently.
*
* @param _l2Token Address of the L2 token to withdraw.
* @param _to Recipient account on L1.
* @param _amount Amount of the L2 token to withdraw.
* @param _minGasLimit Minimum gas limit to use for the transaction.
* @param _extraData Extra data attached to the withdrawal.
*/
function withdrawTo(
address _l2Token,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
) external payable virtual {
_initiateWithdrawal(_l2Token, msg.sender, _to, _amount, _minGasLimit, _extraData);
}
/**
* @custom:legacy
* @notice Finalizes a deposit from L1 to L2.
*
* @param _l1Token Address of the L1 token to deposit.
* @param _l2Token Address of the corresponding L2 token.
* @param _from Address of the depositor.
* @param _to Address of the recipient.
* @param _amount Amount of the tokens being deposited.
* @param _extraData Extra data attached to the deposit.
*/
function finalizeDeposit(
address _l1Token,
address _l2Token,
address _from,
address _to,
uint256 _amount,
bytes calldata _extraData
) external payable virtual {
if (_l1Token == address(0) && _l2Token == Predeploys.LEGACY_ERC20_ETH) {
finalizeBridgeETH(_from, _to, _amount, _extraData);
} else {
finalizeBridgeERC20(_l2Token, _l1Token, _from, _to, _amount, _extraData);
}
emit DepositFinalized(_l1Token, _l2Token, _from, _to, _amount, _extraData);
}
/**
* @custom:legacy
* @notice Retrieves the access of the corresponding L1 bridge contract.
*
* @return Address of the corresponding L1 bridge contract.
*/
function l1TokenBridge() external view returns (address) {
return address(OTHER_BRIDGE);
}
/**
* @custom:legacy
* @notice Internal function to a withdrawal from L2 to L1 to a target account on L1.
*
* @param _l2Token Address of the L2 token to withdraw.
* @param _from Address of the withdrawer.
* @param _to Recipient account on L1.
* @param _amount Amount of the L2 token to withdraw.
* @param _minGasLimit Minimum gas limit to use for the transaction.
* @param _extraData Extra data attached to the withdrawal.
*/
function _initiateWithdrawal(
address _l2Token,
address _from,
address _to,
uint256 _amount,
uint32 _minGasLimit,
bytes calldata _extraData
) internal {
address l1Token = OptimismMintableERC20(_l2Token).l1Token();
if (_l2Token == Predeploys.LEGACY_ERC20_ETH) {
_initiateBridgeETH(_from, _to, _amount, _minGasLimit, _extraData);
} else {
_initiateBridgeERC20(_l2Token, l1Token, _from, _to, _amount, _minGasLimit, _extraData);
}
emit WithdrawalInitiated(l1Token, _l2Token, _from, _to, _amount, _extraData);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Types } from "../libraries/Types.sol";
import { Hashing } from "../libraries/Hashing.sol";
import { Encoding } from "../libraries/Encoding.sol";
import { Burn } from "../libraries/Burn.sol";
import { Semver } from "../universal/Semver.sol";
/**
* @custom:proxied
* @custom:predeploy 0x4200000000000000000000000000000000000016
* @title L2ToL1MessagePasser
* @notice The L2ToL1MessagePasser is a dedicated contract where messages that are being sent from
* L2 to L1 can be stored. The storage root of this contract is pulled up to the top level
* of the L2 output to reduce the cost of proving the existence of sent messages.
*/
contract L2ToL1MessagePasser is Semver {
/**
* @notice The L1 gas limit set when eth is withdrawn using the receive() function.
*/
uint256 internal constant RECEIVE_DEFAULT_GAS_LIMIT = 100_000;
/**
* @notice Current message version identifier.
*/
uint16 public constant MESSAGE_VERSION = 1;
/**
* @notice Includes the message hashes for all withdrawals
*/
mapping(bytes32 => bool) public sentMessages;
/**
* @notice A unique value hashed with each withdrawal.
*/
uint240 internal msgNonce;
/**
* @notice Emitted any time a withdrawal is initiated.
*
* @param nonce Unique value corresponding to each withdrawal.
* @param sender The L2 account address which initiated the withdrawal.
* @param target The L1 account address the call will be send to.
* @param value The ETH value submitted for withdrawal, to be forwarded to the target.
* @param gasLimit The minimum amount of gas that must be provided when withdrawing.
* @param data The data to be forwarded to the target on L1.
* @param withdrawalHash The hash of the withdrawal.
*/
event MessagePassed(
uint256 indexed nonce,
address indexed sender,
address indexed target,
uint256 value,
uint256 gasLimit,
bytes data,
bytes32 withdrawalHash
);
/**
* @notice Emitted when the balance of this contract is burned.
*
* @param amount Amount of ETh that was burned.
*/
event WithdrawerBalanceBurnt(uint256 indexed amount);
/**
* @custom:semver 1.0.0
*/
constructor() Semver(1, 0, 0) {}
/**
* @notice Allows users to withdraw ETH by sending directly to this contract.
*/
receive() external payable {
initiateWithdrawal(msg.sender, RECEIVE_DEFAULT_GAS_LIMIT, bytes(""));
}
/**
* @notice Removes all ETH held by this contract from the state. Used to prevent the amount of
* ETH on L2 inflating when ETH is withdrawn. Currently only way to do this is to
* create a contract and self-destruct it to itself. Anyone can call this function. Not
* incentivized since this function is very cheap.
*/
function burn() external {
uint256 balance = address(this).balance;
Burn.eth(balance);
emit WithdrawerBalanceBurnt(balance);
}
/**
* @notice Sends a message from L2 to L1.
*
* @param _target Address to call on L1 execution.
* @param _gasLimit Minimum gas limit for executing the message on L1.
* @param _data Data to forward to L1 target.
*/
function initiateWithdrawal(
address _target,
uint256 _gasLimit,
bytes memory _data
) public payable {
bytes32 withdrawalHash = Hashing.hashWithdrawal(
Types.WithdrawalTransaction({
nonce: messageNonce(),
sender: msg.sender,
target: _target,
value: msg.value,
gasLimit: _gasLimit,
data: _data
})
);
sentMessages[withdrawalHash] = true;
emit MessagePassed(
messageNonce(),
msg.sender,
_target,
msg.value,
_gasLimit,
_data,
withdrawalHash
);
unchecked {
++msgNonce;
}
}
/**
* @notice Retrieves the next message nonce. Message version will be added to the upper two
* bytes of the message nonce. Message version allows us to treat messages as having
* different structures.
*
* @return Nonce of the next message to be sent, with added message version.
*/
function messageNonce() public view returns (uint256) {
return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Semver } from "../universal/Semver.sol";
import { FeeVault } from "../universal/FeeVault.sol";
/**
* @custom:proxied
* @custom:predeploy 0x4200000000000000000000000000000000000011
* @title SequencerFeeVault
* @notice The SequencerFeeVault is the contract that holds any fees paid to the Sequencer during
* transaction processing and block production.
*/
contract SequencerFeeVault is FeeVault, Semver {
/**
* @custom:semver 1.0.0
*
* @param _recipient Address that will receive the accumulated fees.
*/
constructor(address _recipient) FeeVault(_recipient, 10 ether) Semver(1, 0, 0) {}
/**
* @custom:legacy
* @notice Legacy getter for the recipient address.
*
* @return The recipient address.
*/
function l1FeeWallet() public view returns (address) {
return RECIPIENT;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { OptimismPortal } from "../L1/OptimismPortal.sol";
/**
* @title PortalSender
* @notice The PortalSender is a simple intermediate contract that will transfer the balance of the
* L1StandardBridge to the OptimismPortal during the Bedrock migration.
*/
contract PortalSender {
/**
* @notice Address of the OptimismPortal contract.
*/
OptimismPortal public immutable PORTAL;
/**
* @param _portal Address of the OptimismPortal contract.
*/
constructor(OptimismPortal _portal) {
PORTAL = _portal;
}
/**
* @notice Sends balance of this contract to the OptimismPortal.
*/
function donate() public {
PORTAL.donateETH{ value: address(this).balance }();
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import {
OwnableUpgradeable
} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import { L2OutputOracle } from "../L1/L2OutputOracle.sol";
import { OptimismPortal } from "../L1/OptimismPortal.sol";
import { L1CrossDomainMessenger } from "../L1/L1CrossDomainMessenger.sol";
import { L1ERC721Bridge } from "../L1/L1ERC721Bridge.sol";
import { L1StandardBridge } from "../L1/L1StandardBridge.sol";
import { L1ChugSplashProxy } from "../legacy/L1ChugSplashProxy.sol";
import { AddressManager } from "../legacy/AddressManager.sol";
import { Proxy } from "../universal/Proxy.sol";
import { ProxyAdmin } from "../universal/ProxyAdmin.sol";
import { OptimismMintableERC20Factory } from "../universal/OptimismMintableERC20Factory.sol";
import { PortalSender } from "./PortalSender.sol";
import { SystemConfig } from "../L1/SystemConfig.sol";
/**
* @title SystemDictator
* @notice The SystemDictator is responsible for coordinating the deployment of a full Bedrock
* system. The SystemDictator is designed to support both fresh network deployments and
* upgrades to existing pre-Bedrock systems.
*/
contract SystemDictator is OwnableUpgradeable {
/**
* @notice Basic system configuration.
*/
struct GlobalConfig {
AddressManager addressManager;
ProxyAdmin proxyAdmin;
address controller;
address finalOwner;
}
/**
* @notice Set of proxy addresses.
*/
struct ProxyAddressConfig {
address l2OutputOracleProxy;
address optimismPortalProxy;
address l1CrossDomainMessengerProxy;
address l1StandardBridgeProxy;
address optimismMintableERC20FactoryProxy;
address l1ERC721BridgeProxy;
address systemConfigProxy;
}
/**
* @notice Set of implementation addresses.
*/
struct ImplementationAddressConfig {
L2OutputOracle l2OutputOracleImpl;
OptimismPortal optimismPortalImpl;
L1CrossDomainMessenger l1CrossDomainMessengerImpl;
L1StandardBridge l1StandardBridgeImpl;
OptimismMintableERC20Factory optimismMintableERC20FactoryImpl;
L1ERC721Bridge l1ERC721BridgeImpl;
PortalSender portalSenderImpl;
SystemConfig systemConfigImpl;
}
/**
* @notice Dynamic L2OutputOracle config.
*/
struct L2OutputOracleDynamicConfig {
uint256 l2OutputOracleStartingBlockNumber;
uint256 l2OutputOracleStartingTimestamp;
}
/**
* @notice Values for the system config contract.
*/
struct SystemConfigConfig {
address owner;
uint256 overhead;
uint256 scalar;
bytes32 batcherHash;
uint64 gasLimit;
address unsafeBlockSigner;
}
/**
* @notice Combined system configuration.
*/
struct DeployConfig {
GlobalConfig globalConfig;
ProxyAddressConfig proxyAddressConfig;
ImplementationAddressConfig implementationAddressConfig;
SystemConfigConfig systemConfigConfig;
}
/**
* @notice Step after which exit 1 can no longer be used.
*/
uint8 public constant EXIT_1_NO_RETURN_STEP = 3;
/**
* @notice Step where proxy ownership is transferred.
*/
uint8 public constant PROXY_TRANSFER_STEP = 4;
/**
* @notice System configuration.
*/
DeployConfig public config;
/**
* @notice Dynamic configuration for the L2OutputOracle.
*/
L2OutputOracleDynamicConfig public l2OutputOracleDynamicConfig;
/**
* @notice Current step;
*/
uint8 public currentStep;
/**
* @notice Whether or not dynamic config has been set.
*/
bool public dynamicConfigSet;
/**
* @notice Whether or not the deployment is finalized.
*/
bool public finalized;
/**
* @notice Address of the old L1CrossDomainMessenger implementation.
*/
address public oldL1CrossDomainMessenger;
/**
* @notice Checks that the current step is the expected step, then bumps the current step.
*
* @param _step Current step.
*/
modifier step(uint8 _step) {
require(currentStep == _step, "BaseSystemDictator: incorrect step");
_;
currentStep++;
}
/**
* @param _config System configuration.
*/
function initialize(DeployConfig memory _config) public initializer {
config = _config;
currentStep = 1;
__Ownable_init();
_transferOwnership(config.globalConfig.controller);
}
/**
* @notice Allows the owner to update dynamic L2OutputOracle config.
*
* @param _l2OutputOracleDynamicConfig Dynamic L2OutputOracle config.
*/
function updateL2OutputOracleDynamicConfig(
L2OutputOracleDynamicConfig memory _l2OutputOracleDynamicConfig
) external onlyOwner {
l2OutputOracleDynamicConfig = _l2OutputOracleDynamicConfig;
dynamicConfigSet = true;
}
/**
* @notice Configures the ProxyAdmin contract.
*/
function step1() external onlyOwner step(1) {
// Set the AddressManager in the ProxyAdmin.
config.globalConfig.proxyAdmin.setAddressManager(config.globalConfig.addressManager);
// Set the L1CrossDomainMessenger to the RESOLVED proxy type.
config.globalConfig.proxyAdmin.setProxyType(
config.proxyAddressConfig.l1CrossDomainMessengerProxy,
ProxyAdmin.ProxyType.RESOLVED
);
// Set the implementation name for the L1CrossDomainMessenger.
config.globalConfig.proxyAdmin.setImplementationName(
config.proxyAddressConfig.l1CrossDomainMessengerProxy,
"OVM_L1CrossDomainMessenger"
);
// Set the L1StandardBridge to the CHUGSPLASH proxy type.
config.globalConfig.proxyAdmin.setProxyType(
config.proxyAddressConfig.l1StandardBridgeProxy,
ProxyAdmin.ProxyType.CHUGSPLASH
);
}
/**
* @notice Pauses the system by shutting down the L1CrossDomainMessenger and setting the
* deposit halt flag to tell the Sequencer's DTL to stop accepting deposits.
*/
function step2() external onlyOwner step(2) {
// Store the address of the old L1CrossDomainMessenger implementation. We will need this
// address in the case that we have to exit early.
oldL1CrossDomainMessenger = config.globalConfig.addressManager.getAddress(
"OVM_L1CrossDomainMessenger"
);
// Temporarily brick the L1CrossDomainMessenger by setting its implementation address to
// address(0) which will cause the ResolvedDelegateProxy to revert. Better than pausing
// the L1CrossDomainMessenger via pause() because it can be easily reverted.
config.globalConfig.addressManager.setAddress("OVM_L1CrossDomainMessenger", address(0));
// Set the DTL shutoff block, which will tell the DTL to stop syncing new deposits from the
// CanonicalTransactionChain. We do this by setting an address in the AddressManager
// because the DTL already has a reference to the AddressManager and this way we don't also
// need to give it a reference to the SystemDictator.
config.globalConfig.addressManager.setAddress(
"DTL_SHUTOFF_BLOCK",
address(uint160(block.number))
);
}
/**
* @notice Removes deprecated addresses from the AddressManager.
*/
function step3() external onlyOwner step(EXIT_1_NO_RETURN_STEP) {
// Remove all deprecated addresses from the AddressManager
string[17] memory deprecated = [
"OVM_CanonicalTransactionChain",
"OVM_L2CrossDomainMessenger",
"OVM_DecompressionPrecompileAddress",
"OVM_Sequencer",
"OVM_Proposer",
"OVM_ChainStorageContainer-CTC-batches",
"OVM_ChainStorageContainer-CTC-queue",
"OVM_CanonicalTransactionChain",
"OVM_StateCommitmentChain",
"OVM_BondManager",
"OVM_ExecutionManager",
"OVM_FraudVerifier",
"OVM_StateManagerFactory",
"OVM_StateTransitionerFactory",
"OVM_SafetyChecker",
"OVM_L1MultiMessageRelayer",
"BondManager"
];
for (uint256 i = 0; i < deprecated.length; i++) {
config.globalConfig.addressManager.setAddress(deprecated[i], address(0));
}
}
/**
* @notice Transfers system ownership to the ProxyAdmin.
*/
function step4() external onlyOwner step(PROXY_TRANSFER_STEP) {
// Transfer ownership of the AddressManager to the ProxyAdmin.
config.globalConfig.addressManager.transferOwnership(
address(config.globalConfig.proxyAdmin)
);
// Transfer ownership of the L1StandardBridge to the ProxyAdmin.
L1ChugSplashProxy(payable(config.proxyAddressConfig.l1StandardBridgeProxy)).setOwner(
address(config.globalConfig.proxyAdmin)
);
// Transfer ownership of the L1ERC721Bridge to the ProxyAdmin.
Proxy(payable(config.proxyAddressConfig.l1ERC721BridgeProxy)).changeAdmin(
address(config.globalConfig.proxyAdmin)
);
}
/**
* @notice Upgrades and initializes proxy contracts.
*/
function step5() external onlyOwner step(5) {
// Dynamic config must be set before we can initialize the L2OutputOracle.
require(dynamicConfigSet, "SystemDictator: dynamic oracle config is not yet initialized");
// Upgrade and initialize the L2OutputOracle.
config.globalConfig.proxyAdmin.upgradeAndCall(
payable(config.proxyAddressConfig.l2OutputOracleProxy),
address(config.implementationAddressConfig.l2OutputOracleImpl),
abi.encodeCall(
L2OutputOracle.initialize,
(
l2OutputOracleDynamicConfig.l2OutputOracleStartingBlockNumber,
l2OutputOracleDynamicConfig.l2OutputOracleStartingTimestamp
)
)
);
// Upgrade and initialize the OptimismPortal.
config.globalConfig.proxyAdmin.upgradeAndCall(
payable(config.proxyAddressConfig.optimismPortalProxy),
address(config.implementationAddressConfig.optimismPortalImpl),
abi.encodeCall(OptimismPortal.initialize, ())
);
// Upgrade the L1CrossDomainMessenger.
config.globalConfig.proxyAdmin.upgrade(
payable(config.proxyAddressConfig.l1CrossDomainMessengerProxy),
address(config.implementationAddressConfig.l1CrossDomainMessengerImpl)
);
// Try to initialize the L1CrossDomainMessenger, only fail if it's already been initialized.
try
L1CrossDomainMessenger(config.proxyAddressConfig.l1CrossDomainMessengerProxy)
.initialize(address(this))
{
// L1CrossDomainMessenger is the one annoying edge case difference between existing
// networks and fresh networks because in existing networks it'll already be
// initialized but in fresh networks it won't be. Try/catch is the easiest and most
// consistent way to handle this because initialized() is not exposed publicly.
} catch Error(string memory reason) {
require(
keccak256(abi.encodePacked(reason)) ==
keccak256("Initializable: contract is already initialized"),
string.concat("SystemDictator: unexpected error initializing L1XDM: ", reason)
);
} catch {
revert("SystemDictator: unexpected error initializing L1XDM (no reason)");
}
// Transfer ETH from the L1StandardBridge to the OptimismPortal.
config.globalConfig.proxyAdmin.upgradeAndCall(
payable(config.proxyAddressConfig.l1StandardBridgeProxy),
address(config.implementationAddressConfig.portalSenderImpl),
abi.encodeCall(PortalSender.donate, ())
);
// Upgrade the L1StandardBridge (no initializer).
config.globalConfig.proxyAdmin.upgrade(
payable(config.proxyAddressConfig.l1StandardBridgeProxy),
address(config.implementationAddressConfig.l1StandardBridgeImpl)
);
// Upgrade the OptimismMintableERC20Factory (no initializer).
config.globalConfig.proxyAdmin.upgrade(
payable(config.proxyAddressConfig.optimismMintableERC20FactoryProxy),
address(config.implementationAddressConfig.optimismMintableERC20FactoryImpl)
);
// Upgrade the L1ERC721Bridge (no initializer).
config.globalConfig.proxyAdmin.upgrade(
payable(config.proxyAddressConfig.l1ERC721BridgeProxy),
address(config.implementationAddressConfig.l1ERC721BridgeImpl)
);
// Upgrade and initialize the SystemConfig.
config.globalConfig.proxyAdmin.upgradeAndCall(
payable(config.proxyAddressConfig.systemConfigProxy),
address(config.implementationAddressConfig.systemConfigImpl),
abi.encodeCall(
SystemConfig.initialize,
(
config.systemConfigConfig.owner,
config.systemConfigConfig.overhead,
config.systemConfigConfig.scalar,
config.systemConfigConfig.batcherHash,
config.systemConfigConfig.gasLimit,
config.systemConfigConfig.unsafeBlockSigner
)
)
);
// Pause the L1CrossDomainMessenger, chance to check that everything is OK.
L1CrossDomainMessenger(config.proxyAddressConfig.l1CrossDomainMessengerProxy).pause();
}
/**
* @notice Unpauses the system at which point the system should be fully operational.
*/
function step6() external onlyOwner step(6) {
// Unpause the L1CrossDomainMessenger.
L1CrossDomainMessenger(config.proxyAddressConfig.l1CrossDomainMessengerProxy).unpause();
}
/**
* @notice Tranfers admin ownership to the final owner.
*/
function finalize() external onlyOwner {
// Transfer ownership of the L1CrossDomainMessenger to the final owner.
L1CrossDomainMessenger(config.proxyAddressConfig.l1CrossDomainMessengerProxy)
.transferOwnership(config.globalConfig.finalOwner);
// Transfer ownership of the ProxyAdmin to the final owner.
config.globalConfig.proxyAdmin.transferOwnership(config.globalConfig.finalOwner);
// Optionally also transfer AddressManager and L1StandardBridge if we still own it. Might
// happen if we're exiting early.
if (currentStep <= PROXY_TRANSFER_STEP) {
// Transfer ownership of the AddressManager to the final owner.
config.globalConfig.addressManager.transferOwnership(
address(config.globalConfig.finalOwner)
);
// Transfer ownership of the L1StandardBridge to the final owner.
L1ChugSplashProxy(payable(config.proxyAddressConfig.l1StandardBridgeProxy)).setOwner(
address(config.globalConfig.finalOwner)
);
// Transfer ownership of the L1ERC721Bridge to the final owner.
Proxy(payable(config.proxyAddressConfig.l1ERC721BridgeProxy)).changeAdmin(
address(config.globalConfig.finalOwner)
);
}
finalized = true;
}
/**
* @notice First exit point, can only be called before step 3 is executed.
*/
function exit1() external onlyOwner {
require(
currentStep == EXIT_1_NO_RETURN_STEP,
"SystemDictator: can only exit1 before step 3 is executed"
);
// Reset the L1CrossDomainMessenger to the old implementation.
config.globalConfig.addressManager.setAddress(
"OVM_L1CrossDomainMessenger",
oldL1CrossDomainMessenger
);
// Unset the DTL shutoff block which will allow the DTL to sync again.
config.globalConfig.addressManager.setAddress("DTL_SHUTOFF_BLOCK", address(0));
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Ownable } from "@openzeppelin/contracts/access/Ownable.sol";
/**
* @custom:legacy
* @title AddressManager
* @notice AddressManager is a legacy contract that was used in the old version of the Optimism
* system to manage a registry of string names to addresses. We now use a more standard
* proxy system instead, but this contract is still necessary for backwards compatibility
* with several older contracts.
*/
contract AddressManager is Ownable {
/**
* @notice Mapping of the hashes of string names to addresses.
*/
mapping(bytes32 => address) private addresses;
/**
* @notice Emitted when an address is modified in the registry.
*
* @param name String name being set in the registry.
* @param newAddress Address set for the given name.
* @param oldAddress Address that was previously set for the given name.
*/
event AddressSet(string indexed name, address newAddress, address oldAddress);
/**
* @notice Changes the address associated with a particular name.
*
* @param _name String name to associate an address with.
* @param _address Address to associate with the name.
*/
function setAddress(string memory _name, address _address) external onlyOwner {
bytes32 nameHash = _getNameHash(_name);
address oldAddress = addresses[nameHash];
addresses[nameHash] = _address;
emit AddressSet(_name, _address, oldAddress);
}
/**
* @notice Retrieves the address associated with a given name.
*
* @param _name Name to retrieve an address for.
*
* @return Address associated with the given name.
*/
function getAddress(string memory _name) external view returns (address) {
return addresses[_getNameHash(_name)];
}
/**
* @notice Computes the hash of a name.
*
* @param _name Name to compute a hash for.
*
* @return Hash of the given name.
*/
function _getNameHash(string memory _name) internal pure returns (bytes32) {
return keccak256(abi.encodePacked(_name));
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Semver } from "../universal/Semver.sol";
/**
* @custom:legacy
* @custom:proxied
* @custom:predeployed 0x4200000000000000000000000000000000000002
* @title DeployerWhitelist
* @notice DeployerWhitelist is a legacy contract that was originally used to act as a whitelist of
* addresses allowed to the Optimism network. The DeployerWhitelist has since been
* disabled, but the code is kept in state for the sake of full backwards compatibility.
* As of the Bedrock upgrade, the DeployerWhitelist is completely unused by the Optimism
* system and could, in theory, be removed entirely.
*/
contract DeployerWhitelist is Semver {
/**
* @notice Address of the owner of this contract. Note that when this address is set to
* address(0), the whitelist is disabled.
*/
address public owner;
/**
* @notice Mapping of deployer addresses to boolean whitelist status.
*/
mapping(address => bool) public whitelist;
/**
* @notice Emitted when the owner of this contract changes.
*
* @param oldOwner Address of the previous owner.
* @param newOwner Address of the new owner.
*/
event OwnerChanged(address oldOwner, address newOwner);
/**
* @notice Emitted when the whitelist status of a deployer changes.
*
* @param deployer Address of the deployer.
* @param whitelisted Boolean indicating whether the deployer is whitelisted.
*/
event WhitelistStatusChanged(address deployer, bool whitelisted);
/**
* @notice Emitted when the whitelist is disabled.
*
* @param oldOwner Address of the final owner of the whitelist.
*/
event WhitelistDisabled(address oldOwner);
/**
* @notice Blocks functions to anyone except the contract owner.
*/
modifier onlyOwner() {
require(
msg.sender == owner,
"DeployerWhitelist: function can only be called by the owner of this contract"
);
_;
}
/**
* @custom:semver 1.0.0
*/
constructor() Semver(1, 0, 0) {}
/**
* @notice Adds or removes an address from the deployment whitelist.
*
* @param _deployer Address to update permissions for.
* @param _isWhitelisted Whether or not the address is whitelisted.
*/
function setWhitelistedDeployer(address _deployer, bool _isWhitelisted) external onlyOwner {
whitelist[_deployer] = _isWhitelisted;
emit WhitelistStatusChanged(_deployer, _isWhitelisted);
}
/**
* @notice Updates the owner of this contract.
*
* @param _owner Address of the new owner.
*/
function setOwner(address _owner) external onlyOwner {
// Prevent users from setting the whitelist owner to address(0) except via
// enableArbitraryContractDeployment. If you want to burn the whitelist owner, send it to
// any other address that doesn't have a corresponding knowable private key.
require(
_owner != address(0),
"DeployerWhitelist: can only be disabled via enableArbitraryContractDeployment"
);
emit OwnerChanged(owner, _owner);
owner = _owner;
}
/**
* @notice Permanently enables arbitrary contract deployment and deletes the owner.
*/
function enableArbitraryContractDeployment() external onlyOwner {
emit WhitelistDisabled(owner);
owner = address(0);
}
/**
* @notice Checks whether an address is allowed to deploy contracts.
*
* @param _deployer Address to check.
*
* @return Whether or not the address can deploy contracts.
*/
function isDeployerAllowed(address _deployer) external view returns (bool) {
return (owner == address(0) || whitelist[_deployer]);
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { L1Block } from "../L2/L1Block.sol";
import { Predeploys } from "../libraries/Predeploys.sol";
import { Semver } from "../universal/Semver.sol";
/**
* @custom:legacy
* @custom:proxied
* @custom:predeploy 0x4200000000000000000000000000000000000013
* @title L1BlockNumber
* @notice L1BlockNumber is a legacy contract that fills the roll of the OVM_L1BlockNumber contract
* in the old version of the Optimism system. Only necessary for backwards compatibility.
* If you want to access the L1 block number going forward, you should use the L1Block
* contract instead.
*/
contract L1BlockNumber is Semver {
/**
* @custom:semver 1.0.0
*/
constructor() Semver(1, 0, 0) {}
/**
* @notice Returns the L1 block number.
*/
receive() external payable {
uint256 l1BlockNumber = getL1BlockNumber();
assembly {
mstore(0, l1BlockNumber)
return(0, 32)
}
}
/**
* @notice Returns the L1 block number.
*/
// solhint-disable-next-line no-complex-fallback
fallback() external payable {
uint256 l1BlockNumber = getL1BlockNumber();
assembly {
mstore(0, l1BlockNumber)
return(0, 32)
}
}
/**
* @notice Retrieves the latest L1 block number.
*
* @return Latest L1 block number.
*/
function getL1BlockNumber() public view returns (uint256) {
return L1Block(Predeploys.L1_BLOCK_ATTRIBUTES).number();
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
/**
* @title IL1ChugSplashDeployer
*/
interface IL1ChugSplashDeployer {
function isUpgrading() external view returns (bool);
}
/**
* @custom:legacy
* @title L1ChugSplashProxy
* @notice Basic ChugSplash proxy contract for L1. Very close to being a normal proxy but has added
* functions `setCode` and `setStorage` for changing the code or storage of the contract.
*
* Note for future developers: do NOT make anything in this contract 'public' unless you
* know what you're doing. Anything public can potentially have a function signature that
* conflicts with a signature attached to the implementation contract. Public functions
* SHOULD always have the `proxyCallIfNotOwner` modifier unless there's some *really* good
* reason not to have that modifier. And there almost certainly is not a good reason to not
* have that modifier. Beware!
*/
contract L1ChugSplashProxy {
/**
* @notice "Magic" prefix. When prepended to some arbitrary bytecode and used to create a
* contract, the appended bytecode will be deployed as given.
*/
bytes13 internal constant DEPLOY_CODE_PREFIX = 0x600D380380600D6000396000f3;
/**
* @notice bytes32(uint256(keccak256('eip1967.proxy.implementation')) - 1)
*/
bytes32 internal constant IMPLEMENTATION_KEY =
0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc;
/**
* @notice bytes32(uint256(keccak256('eip1967.proxy.admin')) - 1)
*/
bytes32 internal constant OWNER_KEY =
0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103;
/**
* @notice Blocks a function from being called when the parent signals that the system should
* be paused via an isUpgrading function.
*/
modifier onlyWhenNotPaused() {
address owner = _getOwner();
// We do a low-level call because there's no guarantee that the owner actually *is* an
// L1ChugSplashDeployer contract and Solidity will throw errors if we do a normal call and
// it turns out that it isn't the right type of contract.
(bool success, bytes memory returndata) = owner.staticcall(
abi.encodeWithSelector(IL1ChugSplashDeployer.isUpgrading.selector)
);
// If the call was unsuccessful then we assume that there's no "isUpgrading" method and we
// can just continue as normal. We also expect that the return value is exactly 32 bytes
// long. If this isn't the case then we can safely ignore the result.
if (success && returndata.length == 32) {
// Although the expected value is a *boolean*, it's safer to decode as a uint256 in the
// case that the isUpgrading function returned something other than 0 or 1. But we only
// really care about the case where this value is 0 (= false).
uint256 ret = abi.decode(returndata, (uint256));
require(ret == 0, "L1ChugSplashProxy: system is currently being upgraded");
}
_;
}
/**
* @notice Makes a proxy call instead of triggering the given function when the caller is
* either the owner or the zero address. Caller can only ever be the zero address if
* this function is being called off-chain via eth_call, which is totally fine and can
* be convenient for client-side tooling. Avoids situations where the proxy and
* implementation share a sighash and the proxy function ends up being called instead
* of the implementation one.
*
* Note: msg.sender == address(0) can ONLY be triggered off-chain via eth_call. If
* there's a way for someone to send a transaction with msg.sender == address(0) in any
* real context then we have much bigger problems. Primary reason to include this
* additional allowed sender is because the owner address can be changed dynamically
* and we do not want clients to have to keep track of the current owner in order to
* make an eth_call that doesn't trigger the proxied contract.
*/
// slither-disable-next-line incorrect-modifier
modifier proxyCallIfNotOwner() {
if (msg.sender == _getOwner() || msg.sender == address(0)) {
_;
} else {
// This WILL halt the call frame on completion.
_doProxyCall();
}
}
/**
* @param _owner Address of the initial contract owner.
*/
constructor(address _owner) {
_setOwner(_owner);
}
// slither-disable-next-line locked-ether
receive() external payable {
// Proxy call by default.
_doProxyCall();
}
// slither-disable-next-line locked-ether
fallback() external payable {
// Proxy call by default.
_doProxyCall();
}
/**
* @notice Sets the code that should be running behind this proxy.
*
* Note: This scheme is a bit different from the standard proxy scheme where one would
* typically deploy the code separately and then set the implementation address. We're
* doing it this way because it gives us a lot more freedom on the client side. Can
* only be triggered by the contract owner.
*
* @param _code New contract code to run inside this contract.
*/
function setCode(bytes memory _code) external proxyCallIfNotOwner {
// Get the code hash of the current implementation.
address implementation = _getImplementation();
// If the code hash matches the new implementation then we return early.
if (keccak256(_code) == _getAccountCodeHash(implementation)) {
return;
}
// Create the deploycode by appending the magic prefix.
bytes memory deploycode = abi.encodePacked(DEPLOY_CODE_PREFIX, _code);
// Deploy the code and set the new implementation address.
address newImplementation;
assembly {
newImplementation := create(0x0, add(deploycode, 0x20), mload(deploycode))
}
// Check that the code was actually deployed correctly. I'm not sure if you can ever
// actually fail this check. Should only happen if the contract creation from above runs
// out of gas but this parent execution thread does NOT run out of gas. Seems like we
// should be doing this check anyway though.
require(
_getAccountCodeHash(newImplementation) == keccak256(_code),
"L1ChugSplashProxy: code was not correctly deployed"
);
_setImplementation(newImplementation);
}
/**
* @notice Modifies some storage slot within the proxy contract. Gives us a lot of power to
* perform upgrades in a more transparent way. Only callable by the owner.
*
* @param _key Storage key to modify.
* @param _value New value for the storage key.
*/
function setStorage(bytes32 _key, bytes32 _value) external proxyCallIfNotOwner {
assembly {
sstore(_key, _value)
}
}
/**
* @notice Changes the owner of the proxy contract. Only callable by the owner.
*
* @param _owner New owner of the proxy contract.
*/
function setOwner(address _owner) external proxyCallIfNotOwner {
_setOwner(_owner);
}
/**
* @notice Queries the owner of the proxy contract. Can only be called by the owner OR by
* making an eth_call and setting the "from" address to address(0).
*
* @return Owner address.
*/
function getOwner() external proxyCallIfNotOwner returns (address) {
return _getOwner();
}
/**
* @notice Queries the implementation address. Can only be called by the owner OR by making an
* eth_call and setting the "from" address to address(0).
*
* @return Implementation address.
*/
function getImplementation() external proxyCallIfNotOwner returns (address) {
return _getImplementation();
}
/**
* @notice Sets the implementation address.
*
* @param _implementation New implementation address.
*/
function _setImplementation(address _implementation) internal {
assembly {
sstore(IMPLEMENTATION_KEY, _implementation)
}
}
/**
* @notice Changes the owner of the proxy contract.
*
* @param _owner New owner of the proxy contract.
*/
function _setOwner(address _owner) internal {
assembly {
sstore(OWNER_KEY, _owner)
}
}
/**
* @notice Performs the proxy call via a delegatecall.
*/
function _doProxyCall() internal onlyWhenNotPaused {
address implementation = _getImplementation();
require(implementation != address(0), "L1ChugSplashProxy: implementation is not set yet");
assembly {
// Copy calldata into memory at 0x0....calldatasize.
calldatacopy(0x0, 0x0, calldatasize())
// Perform the delegatecall, make sure to pass all available gas.
let success := delegatecall(gas(), implementation, 0x0, calldatasize(), 0x0, 0x0)
// Copy returndata into memory at 0x0....returndatasize. Note that this *will*
// overwrite the calldata that we just copied into memory but that doesn't really
// matter because we'll be returning in a second anyway.
returndatacopy(0x0, 0x0, returndatasize())
// Success == 0 means a revert. We'll revert too and pass the data up.
if iszero(success) {
revert(0x0, returndatasize())
}
// Otherwise we'll just return and pass the data up.
return(0x0, returndatasize())
}
}
/**
* @notice Queries the implementation address.
*
* @return Implementation address.
*/
function _getImplementation() internal view returns (address) {
address implementation;
assembly {
implementation := sload(IMPLEMENTATION_KEY)
}
return implementation;
}
/**
* @notice Queries the owner of the proxy contract.
*
* @return Owner address.
*/
function _getOwner() internal view returns (address) {
address owner;
assembly {
owner := sload(OWNER_KEY)
}
return owner;
}
/**
* @notice Gets the code hash for a given account.
*
* @param _account Address of the account to get a code hash for.
*
* @return Code hash for the account.
*/
function _getAccountCodeHash(address _account) internal view returns (bytes32) {
bytes32 codeHash;
assembly {
codeHash := extcodehash(_account)
}
return codeHash;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Predeploys } from "../libraries/Predeploys.sol";
import { OptimismMintableERC20 } from "../universal/OptimismMintableERC20.sol";
/**
* @custom:legacy
* @custom:proxied
* @custom:predeploy 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000
* @title LegacyERC20ETH
* @notice LegacyERC20ETH is a legacy contract that held ETH balances before the Bedrock upgrade.
* All ETH balances held within this contract were migrated to the state trie as part of
* the Bedrock upgrade. Functions within this contract that mutate state were already
* disabled as part of the EVM equivalence upgrade.
*/
contract LegacyERC20ETH is OptimismMintableERC20 {
/**
* @notice Initializes the contract as an Optimism Mintable ERC20.
*/
constructor()
OptimismMintableERC20(Predeploys.L2_STANDARD_BRIDGE, address(0), "Ether", "ETH")
{}
/**
* @notice Returns the ETH balance of the target account. Overrides the base behavior of the
* contract to preserve the invariant that the balance within this contract always
* matches the balance in the state trie.
*
* @param _who Address of the account to query.
*
* @return The ETH balance of the target account.
*/
function balanceOf(address _who) public view virtual override returns (uint256) {
return address(_who).balance;
}
/**
* @custom:blocked
* @notice Mints some amount of ETH.
*/
function mint(address, uint256) public virtual override {
revert("LegacyERC20ETH: mint is disabled");
}
/**
* @custom:blocked
* @notice Burns some amount of ETH.
*/
function burn(address, uint256) public virtual override {
revert("LegacyERC20ETH: burn is disabled");
}
/**
* @custom:blocked
* @notice Transfers some amount of ETH.
*/
function transfer(address, uint256) public virtual override returns (bool) {
revert("LegacyERC20ETH: transfer is disabled");
}
/**
* @custom:blocked
* @notice Approves a spender to spend some amount of ETH.
*/
function approve(address, uint256) public virtual override returns (bool) {
revert("LegacyERC20ETH: approve is disabled");
}
/**
* @custom:blocked
* @notice Transfers funds from some sender account.
*/
function transferFrom(
address,
address,
uint256
) public virtual override returns (bool) {
revert("LegacyERC20ETH: transferFrom is disabled");
}
/**
* @custom:blocked
* @notice Increases the allowance of a spender.
*/
function increaseAllowance(address, uint256) public virtual override returns (bool) {
revert("LegacyERC20ETH: increaseAllowance is disabled");
}
/**
* @custom:blocked
* @notice Decreases the allowance of a spender.
*/
function decreaseAllowance(address, uint256) public virtual override returns (bool) {
revert("LegacyERC20ETH: decreaseAllowance is disabled");
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { Semver } from "../universal/Semver.sol";
/**
* @custom:legacy
* @custom:proxied
* @custom:predeploy 0x4200000000000000000000000000000000000000
* @title LegacyMessagePasser
* @notice The LegacyMessagePasser was the low-level mechanism used to send messages from L2 to L1
* before the Bedrock upgrade. It is now deprecated in favor of the new MessagePasser.
*/
contract LegacyMessagePasser is Semver {
/**
* @notice Mapping of sent message hashes to boolean status.
*/
mapping(bytes32 => bool) public sentMessages;
/**
* @custom:semver 1.0.0
*/
constructor() Semver(1, 0, 0) {}
/**
* @notice Passes a message to L1.
*
* @param _message Message to pass to L1.
*/
function passMessageToL1(bytes memory _message) external {
sentMessages[keccak256(abi.encodePacked(_message, msg.sender))] = true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { AddressManager } from "./AddressManager.sol";
/**
* @custom:legacy
* @title ResolvedDelegateProxy
* @notice ResolvedDelegateProxy is a legacy proxy contract that makes use of the AddressManager to
* resolve the implementation address. We're maintaining this contract for backwards
* compatibility so we can manage all legacy proxies where necessary.
*/
contract ResolvedDelegateProxy {
/**
* @notice Mapping used to store the implementation name that corresponds to this contract. A
* mapping was originally used as a way to bypass the same issue normally solved by
* storing the implementation address in a specific storage slot that does not conflict
* with any other storage slot. Generally NOT a safe solution but works as long as the
* implementation does not also keep a mapping in the first storage slot.
*/
mapping(address => string) private implementationName;
/**
* @notice Mapping used to store the address of the AddressManager contract where the
* implementation address will be resolved from. Same concept here as with the above
* mapping. Also generally unsafe but fine if the implementation doesn't keep a mapping
* in the second storage slot.
*/
mapping(address => AddressManager) private addressManager;
/**
* @param _addressManager Address of the AddressManager.
* @param _implementationName implementationName of the contract to proxy to.
*/
constructor(AddressManager _addressManager, string memory _implementationName) {
addressManager[address(this)] = _addressManager;
implementationName[address(this)] = _implementationName;
}
/**
* @notice Fallback, performs a delegatecall to the resolved implementation address.
*/
// solhint-disable-next-line no-complex-fallback
fallback() external payable {
address target = addressManager[address(this)].getAddress(
(implementationName[address(this)])
);
require(target != address(0), "ResolvedDelegateProxy: target address must be initialized");
// slither-disable-next-line controlled-delegatecall
(bool success, bytes memory returndata) = target.delegatecall(msg.data);
if (success == true) {
assembly {
return(add(returndata, 0x20), mload(returndata))
}
} else {
assembly {
revert(add(returndata, 0x20), mload(returndata))
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { SignedMath } from "@openzeppelin/contracts/utils/math/SignedMath.sol";
import { FixedPointMathLib } from "@rari-capital/solmate/src/utils/FixedPointMathLib.sol";
/**
* @title Arithmetic
* @notice Even more math than before.
*/
library Arithmetic {
/**
* @notice Clamps a value between a minimum and maximum.
*
* @param _value The value to clamp.
* @param _min The minimum value.
* @param _max The maximum value.
*
* @return The clamped value.
*/
function clamp(
int256 _value,
int256 _min,
int256 _max
) internal pure returns (int256) {
return SignedMath.min(SignedMath.max(_value, _min), _max);
}
/**
* @notice (c)oefficient (d)enominator (exp)onentiation function.
* Returns the result of: c * (1 - 1/d)^exp.
*
* @param _coefficient Coefficient of the function.
* @param _denominator Fractional denominator.
* @param _exponent Power function exponent.
*
* @return Result of c * (1 - 1/d)^exp.
*/
function cdexp(
int256 _coefficient,
int256 _denominator,
int256 _exponent
) internal pure returns (int256) {
return
(_coefficient *
(FixedPointMathLib.powWad(1e18 - (1e18 / _denominator), _exponent * 1e18))) / 1e18;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
/**
* @title Burn
* @notice Utilities for burning stuff.
*/
library Burn {
/**
* Burns a given amount of ETH.
*
* @param _amount Amount of ETH to burn.
*/
function eth(uint256 _amount) internal {
new Burner{ value: _amount }();
}
/**
* Burns a given amount of gas.
*
* @param _amount Amount of gas to burn.
*/
function gas(uint256 _amount) internal view {
uint256 i = 0;
uint256 initialGas = gasleft();
while (initialGas - gasleft() < _amount) {
++i;
}
}
}
/**
* @title Burner
* @notice Burner self-destructs on creation and sends all ETH to itself, removing all ETH given to
* the contract from the circulating supply. Self-destructing is the only way to remove ETH
* from the circulating supply.
*/
contract Burner {
constructor() payable {
selfdestruct(payable(address(this)));
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title Bytes
* @notice Bytes is a library for manipulating byte arrays.
*/
library Bytes {
/**
* @custom:attribution https://github.com/GNSPS/solidity-bytes-utils
* @notice Slices a byte array with a given starting index and length. Returns a new byte array
* as opposed to a pointer to the original array. Will throw if trying to slice more
* bytes than exist in the array.
*
* @param _bytes Byte array to slice.
* @param _start Starting index of the slice.
* @param _length Length of the slice.
*
* @return Slice of the input byte array.
*/
function slice(
bytes memory _bytes,
uint256 _start,
uint256 _length
) internal pure returns (bytes memory) {
unchecked {
require(_length + 31 >= _length, "slice_overflow");
require(_start + _length >= _start, "slice_overflow");
require(_bytes.length >= _start + _length, "slice_outOfBounds");
}
bytes memory tempBytes;
assembly {
switch iszero(_length)
case 0 {
// Get a location of some free memory and store it in tempBytes as
// Solidity does for memory variables.
tempBytes := mload(0x40)
// The first word of the slice result is potentially a partial
// word read from the original array. To read it, we calculate
// the length of that partial word and start copying that many
// bytes into the array. The first word we copy will start with
// data we don't care about, but the last `lengthmod` bytes will
// land at the beginning of the contents of the new array. When
// we're done copying, we overwrite the full first word with
// the actual length of the slice.
let lengthmod := and(_length, 31)
// The multiplication in the next line is necessary
// because when slicing multiples of 32 bytes (lengthmod == 0)
// the following copy loop was copying the origin's length
// and then ending prematurely not copying everything it should.
let mc := add(add(tempBytes, lengthmod), mul(0x20, iszero(lengthmod)))
let end := add(mc, _length)
for {
// The multiplication in the next line has the same exact purpose
// as the one above.
let cc := add(add(add(_bytes, lengthmod), mul(0x20, iszero(lengthmod))), _start)
} lt(mc, end) {
mc := add(mc, 0x20)
cc := add(cc, 0x20)
} {
mstore(mc, mload(cc))
}
mstore(tempBytes, _length)
//update free-memory pointer
//allocating the array padded to 32 bytes like the compiler does now
mstore(0x40, and(add(mc, 31), not(31)))
}
//if we want a zero-length slice let's just return a zero-length array
default {
tempBytes := mload(0x40)
//zero out the 32 bytes slice we are about to return
//we need to do it because Solidity does not garbage collect
mstore(tempBytes, 0)
mstore(0x40, add(tempBytes, 0x20))
}
}
return tempBytes;
}
/**
* @notice Slices a byte array with a given starting index up to the end of the original byte
* array. Returns a new array rathern than a pointer to the original.
*
* @param _bytes Byte array to slice.
* @param _start Starting index of the slice.
*
* @return Slice of the input byte array.
*/
function slice(bytes memory _bytes, uint256 _start) internal pure returns (bytes memory) {
if (_start >= _bytes.length) {
return bytes("");
}
return slice(_bytes, _start, _bytes.length - _start);
}
/**
* @notice Converts a byte array into a nibble array by splitting each byte into two nibbles.
* Resulting nibble array will be exactly twice as long as the input byte array.
*
* @param _bytes Input byte array to convert.
*
* @return Resulting nibble array.
*/
function toNibbles(bytes memory _bytes) internal pure returns (bytes memory) {
uint256 bytesLength = _bytes.length;
bytes memory nibbles = new bytes(bytesLength * 2);
bytes1 b;
for (uint256 i = 0; i < bytesLength; ) {
b = _bytes[i];
nibbles[i * 2] = b >> 4;
nibbles[i * 2 + 1] = b & 0x0f;
unchecked {
++i;
}
}
return nibbles;
}
/**
* @notice Compares two byte arrays by comparing their keccak256 hashes.
*
* @param _bytes First byte array to compare.
* @param _other Second byte array to compare.
*
* @return True if the two byte arrays are equal, false otherwise.
*/
function equal(bytes memory _bytes, bytes memory _other) internal pure returns (bool) {
return keccak256(_bytes) == keccak256(_other);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title Constants
* @notice Constants is a library for storing constants. Simple! Don't put everything in here, just
* the stuff used in multiple contracts. Constants that only apply to a single contract
* should be defined in that contract instead.
*/
library Constants {
/**
* @notice Special address to be used as the tx origin for gas estimation calls in the
* OptimismPortal and CrossDomainMessenger calls. You only need to use this address if
* the minimum gas limit specified by the user is not actually enough to execute the
* given message and you're attempting to estimate the actual necessary gas limit. We
* use address(1) because it's the ecrecover precompile and therefore guaranteed to
* never have any code on any EVM chain.
*/
address internal constant ESTIMATION_ADDRESS = address(1);
/**
* @notice Value used for the L2 sender storage slot in both the OptimismPortal and the
* CrossDomainMessenger contracts before an actual sender is set. This value is
* non-zero to reduce the gas cost of message passing transactions.
*/
address internal constant DEFAULT_L2_SENDER = 0x000000000000000000000000000000000000dEaD;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Types } from "./Types.sol";
import { Hashing } from "./Hashing.sol";
import { RLPWriter } from "./rlp/RLPWriter.sol";
/**
* @title Encoding
* @notice Encoding handles Optimism's various different encoding schemes.
*/
library Encoding {
/**
* @notice RLP encodes the L2 transaction that would be generated when a given deposit is sent
* to the L2 system. Useful for searching for a deposit in the L2 system. The
* transaction is prefixed with 0x7e to identify its EIP-2718 type.
*
* @param _tx User deposit transaction to encode.
*
* @return RLP encoded L2 deposit transaction.
*/
function encodeDepositTransaction(Types.UserDepositTransaction memory _tx)
internal
pure
returns (bytes memory)
{
bytes32 source = Hashing.hashDepositSource(_tx.l1BlockHash, _tx.logIndex);
bytes[] memory raw = new bytes[](8);
raw[0] = RLPWriter.writeBytes(abi.encodePacked(source));
raw[1] = RLPWriter.writeAddress(_tx.from);
raw[2] = _tx.isCreation ? RLPWriter.writeBytes("") : RLPWriter.writeAddress(_tx.to);
raw[3] = RLPWriter.writeUint(_tx.mint);
raw[4] = RLPWriter.writeUint(_tx.value);
raw[5] = RLPWriter.writeUint(uint256(_tx.gasLimit));
raw[6] = RLPWriter.writeBool(false);
raw[7] = RLPWriter.writeBytes(_tx.data);
return abi.encodePacked(uint8(0x7e), RLPWriter.writeList(raw));
}
/**
* @notice Encodes the cross domain message based on the version that is encoded into the
* message nonce.
*
* @param _nonce Message nonce with version encoded into the first two bytes.
* @param _sender Address of the sender of the message.
* @param _target Address of the target of the message.
* @param _value ETH value to send to the target.
* @param _gasLimit Gas limit to use for the message.
* @param _data Data to send with the message.
*
* @return Encoded cross domain message.
*/
function encodeCrossDomainMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
) internal pure returns (bytes memory) {
(, uint16 version) = decodeVersionedNonce(_nonce);
if (version == 0) {
return encodeCrossDomainMessageV0(_target, _sender, _data, _nonce);
} else if (version == 1) {
return encodeCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Encoding: unknown cross domain message version");
}
}
/**
* @notice Encodes a cross domain message based on the V0 (legacy) encoding.
*
* @param _target Address of the target of the message.
* @param _sender Address of the sender of the message.
* @param _data Data to send with the message.
* @param _nonce Message nonce.
*
* @return Encoded cross domain message.
*/
function encodeCrossDomainMessageV0(
address _target,
address _sender,
bytes memory _data,
uint256 _nonce
) internal pure returns (bytes memory) {
return
abi.encodeWithSignature(
"relayMessage(address,address,bytes,uint256)",
_target,
_sender,
_data,
_nonce
);
}
/**
* @notice Encodes a cross domain message based on the V1 (current) encoding.
*
* @param _nonce Message nonce.
* @param _sender Address of the sender of the message.
* @param _target Address of the target of the message.
* @param _value ETH value to send to the target.
* @param _gasLimit Gas limit to use for the message.
* @param _data Data to send with the message.
*
* @return Encoded cross domain message.
*/
function encodeCrossDomainMessageV1(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
) internal pure returns (bytes memory) {
return
abi.encodeWithSignature(
"relayMessage(uint256,address,address,uint256,uint256,bytes)",
_nonce,
_sender,
_target,
_value,
_gasLimit,
_data
);
}
/**
* @notice Adds a version number into the first two bytes of a message nonce.
*
* @param _nonce Message nonce to encode into.
* @param _version Version number to encode into the message nonce.
*
* @return Message nonce with version encoded into the first two bytes.
*/
function encodeVersionedNonce(uint240 _nonce, uint16 _version) internal pure returns (uint256) {
uint256 nonce;
assembly {
nonce := or(shl(240, _version), _nonce)
}
return nonce;
}
/**
* @notice Pulls the version out of a version-encoded nonce.
*
* @param _nonce Message nonce with version encoded into the first two bytes.
*
* @return Nonce without encoded version.
* @return Version of the message.
*/
function decodeVersionedNonce(uint256 _nonce) internal pure returns (uint240, uint16) {
uint240 nonce;
uint16 version;
assembly {
nonce := and(_nonce, 0x0000ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff)
version := shr(240, _nonce)
}
return (nonce, version);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Types } from "./Types.sol";
import { Encoding } from "./Encoding.sol";
/**
* @title Hashing
* @notice Hashing handles Optimism's various different hashing schemes.
*/
library Hashing {
/**
* @notice Computes the hash of the RLP encoded L2 transaction that would be generated when a
* given deposit is sent to the L2 system. Useful for searching for a deposit in the L2
* system.
*
* @param _tx User deposit transaction to hash.
*
* @return Hash of the RLP encoded L2 deposit transaction.
*/
function hashDepositTransaction(Types.UserDepositTransaction memory _tx)
internal
pure
returns (bytes32)
{
return keccak256(Encoding.encodeDepositTransaction(_tx));
}
/**
* @notice Computes the deposit transaction's "source hash", a value that guarantees the hash
* of the L2 transaction that corresponds to a deposit is unique and is
* deterministically generated from L1 transaction data.
*
* @param _l1BlockHash Hash of the L1 block where the deposit was included.
* @param _logIndex The index of the log that created the deposit transaction.
*
* @return Hash of the deposit transaction's "source hash".
*/
function hashDepositSource(bytes32 _l1BlockHash, uint256 _logIndex)
internal
pure
returns (bytes32)
{
bytes32 depositId = keccak256(abi.encode(_l1BlockHash, _logIndex));
return keccak256(abi.encode(bytes32(0), depositId));
}
/**
* @notice Hashes the cross domain message based on the version that is encoded into the
* message nonce.
*
* @param _nonce Message nonce with version encoded into the first two bytes.
* @param _sender Address of the sender of the message.
* @param _target Address of the target of the message.
* @param _value ETH value to send to the target.
* @param _gasLimit Gas limit to use for the message.
* @param _data Data to send with the message.
*
* @return Hashed cross domain message.
*/
function hashCrossDomainMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
) internal pure returns (bytes32) {
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
if (version == 0) {
return hashCrossDomainMessageV0(_target, _sender, _data, _nonce);
} else if (version == 1) {
return hashCrossDomainMessageV1(_nonce, _sender, _target, _value, _gasLimit, _data);
} else {
revert("Hashing: unknown cross domain message version");
}
}
/**
* @notice Hashes a cross domain message based on the V0 (legacy) encoding.
*
* @param _target Address of the target of the message.
* @param _sender Address of the sender of the message.
* @param _data Data to send with the message.
* @param _nonce Message nonce.
*
* @return Hashed cross domain message.
*/
function hashCrossDomainMessageV0(
address _target,
address _sender,
bytes memory _data,
uint256 _nonce
) internal pure returns (bytes32) {
return keccak256(Encoding.encodeCrossDomainMessageV0(_target, _sender, _data, _nonce));
}
/**
* @notice Hashes a cross domain message based on the V1 (current) encoding.
*
* @param _nonce Message nonce.
* @param _sender Address of the sender of the message.
* @param _target Address of the target of the message.
* @param _value ETH value to send to the target.
* @param _gasLimit Gas limit to use for the message.
* @param _data Data to send with the message.
*
* @return Hashed cross domain message.
*/
function hashCrossDomainMessageV1(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _gasLimit,
bytes memory _data
) internal pure returns (bytes32) {
return
keccak256(
Encoding.encodeCrossDomainMessageV1(
_nonce,
_sender,
_target,
_value,
_gasLimit,
_data
)
);
}
/**
* @notice Derives the withdrawal hash according to the encoding in the L2 Withdrawer contract
*
* @param _tx Withdrawal transaction to hash.
*
* @return Hashed withdrawal transaction.
*/
function hashWithdrawal(Types.WithdrawalTransaction memory _tx)
internal
pure
returns (bytes32)
{
return
keccak256(
abi.encode(_tx.nonce, _tx.sender, _tx.target, _tx.value, _tx.gasLimit, _tx.data)
);
}
/**
* @notice Hashes the various elements of an output root proof into an output root hash which
* can be used to check if the proof is valid.
*
* @param _outputRootProof Output root proof which should hash to an output root.
*
* @return Hashed output root proof.
*/
function hashOutputRootProof(Types.OutputRootProof memory _outputRootProof)
internal
pure
returns (bytes32)
{
return
keccak256(
abi.encode(
_outputRootProof.version,
_outputRootProof.stateRoot,
_outputRootProof.messagePasserStorageRoot,
_outputRootProof.latestBlockhash
)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @title Predeploys
* @notice Contains constant addresses for contracts that are pre-deployed to the L2 system.
*/
library Predeploys {
/**
* @notice Address of the L2ToL1MessagePasser predeploy.
*/
address internal constant L2_TO_L1_MESSAGE_PASSER = 0x4200000000000000000000000000000000000016;
/**
* @notice Address of the L2CrossDomainMessenger predeploy.
*/
address internal constant L2_CROSS_DOMAIN_MESSENGER =
0x4200000000000000000000000000000000000007;
/**
* @notice Address of the L2StandardBridge predeploy.
*/
address internal constant L2_STANDARD_BRIDGE = 0x4200000000000000000000000000000000000010;
/**
* @notice Address of the L2ERC721Bridge predeploy.
*/
address internal constant L2_ERC721_BRIDGE = 0x4200000000000000000000000000000000000014;
/**
* @notice Address of the SequencerFeeWallet predeploy.
*/
address internal constant SEQUENCER_FEE_WALLET = 0x4200000000000000000000000000000000000011;
/**
* @notice Address of the OptimismMintableERC20Factory predeploy.
*/
address internal constant OPTIMISM_MINTABLE_ERC20_FACTORY =
0x4200000000000000000000000000000000000012;
/**
* @notice Address of the OptimismMintableERC721Factory predeploy.
*/
address internal constant OPTIMISM_MINTABLE_ERC721_FACTORY =
0x4200000000000000000000000000000000000017;
/**
* @notice Address of the L1Block predeploy.
*/
address internal constant L1_BLOCK_ATTRIBUTES = 0x4200000000000000000000000000000000000015;
/**
* @notice Address of the GasPriceOracle predeploy. Includes fee information
* and helpers for computing the L1 portion of the transaction fee.
*/
address internal constant GAS_PRICE_ORACLE = 0x420000000000000000000000000000000000000F;
/**
* @custom:legacy
* @notice Address of the L1MessageSender predeploy. Deprecated. Use L2CrossDomainMessenger
* or access tx.origin (or msg.sender) in a L1 to L2 transaction instead.
*/
address internal constant L1_MESSAGE_SENDER = 0x4200000000000000000000000000000000000001;
/**
* @custom:legacy
* @notice Address of the DeployerWhitelist predeploy. No longer active.
*/
address internal constant DEPLOYER_WHITELIST = 0x4200000000000000000000000000000000000002;
/**
* @custom:legacy
* @notice Address of the LegacyERC20ETH predeploy. Deprecated. Balances are migrated to the
* state trie as of the Bedrock upgrade. Contract has been locked and write functions
* can no longer be accessed.
*/
address internal constant LEGACY_ERC20_ETH = 0xDeadDeAddeAddEAddeadDEaDDEAdDeaDDeAD0000;
/**
* @custom:legacy
* @notice Address of the L1BlockNumber predeploy. Deprecated. Use the L1Block predeploy
* instead, which exposes more information about the L1 state.
*/
address internal constant L1_BLOCK_NUMBER = 0x4200000000000000000000000000000000000013;
/**
* @custom:legacy
* @notice Address of the LegacyMessagePasser predeploy. Deprecate. Use the updated
* L2ToL1MessagePasser contract instead.
*/
address internal constant LEGACY_MESSAGE_PASSER = 0x4200000000000000000000000000000000000000;
/**
* @notice Address of the ProxyAdmin predeploy.
*/
address internal constant PROXY_ADMIN = 0x4200000000000000000000000000000000000018;
/**
* @notice Address of the BaseFeeVault predeploy.
*/
address internal constant BASE_FEE_VAULT = 0x4200000000000000000000000000000000000019;
/**
* @notice Address of the L1FeeVault predeploy.
*/
address internal constant L1_FEE_VAULT = 0x420000000000000000000000000000000000001A;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
/**
* @title SafeCall
* @notice Perform low level safe calls
*/
library SafeCall {
/**
* @notice Perform a low level call without copying any returndata
*
* @param _target Address to call
* @param _gas Amount of gas to pass to the call
* @param _value Amount of value to pass to the call
* @param _calldata Calldata to pass to the call
*/
function call(
address _target,
uint256 _gas,
uint256 _value,
bytes memory _calldata
) internal returns (bool) {
bool _success;
assembly {
_success := call(
_gas, // gas
_target, // recipient
_value, // ether value
add(_calldata, 0x20), // inloc
mload(_calldata), // inlen
0, // outloc
0 // outlen
)
}
return _success;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.9;
/**
* @title Types
* @notice Contains various types used throughout the Optimism contract system.
*/
library Types {
/**
* @notice OutputProposal represents a commitment to the L2 state. The timestamp is the L1
* timestamp that the output root is posted. This timestamp is used to verify that the
* finalization period has passed since the output root was submitted.
*
* @custom:field outputRoot Hash of the L2 output.
* @custom:field timestamp Timestamp of the L1 block that the output root was submitted in.
* @custom:field l2BlockNumber L2 block number that the output corresponds to.
*/
struct OutputProposal {
bytes32 outputRoot;
uint128 timestamp;
uint128 l2BlockNumber;
}
/**
* @notice Struct representing the elements that are hashed together to generate an output root
* which itself represents a snapshot of the L2 state.
*
* @custom:field version Version of the output root.
* @custom:field stateRoot Root of the state trie at the block of this output.
* @custom:field messagePasserStorageRoot Root of the message passer storage trie.
* @custom:field latestBlockhash Hash of the block this output was generated from.
*/
struct OutputRootProof {
bytes32 version;
bytes32 stateRoot;
bytes32 messagePasserStorageRoot;
bytes32 latestBlockhash;
}
/**
* @notice Struct representing a deposit transaction (L1 => L2 transaction) created by an end
* user (as opposed to a system deposit transaction generated by the system).
*
* @custom:field from Address of the sender of the transaction.
* @custom:field to Address of the recipient of the transaction.
* @custom:field isCreation True if the transaction is a contract creation.
* @custom:field value Value to send to the recipient.
* @custom:field mint Amount of ETH to mint.
* @custom:field gasLimit Gas limit of the transaction.
* @custom:field data Data of the transaction.
* @custom:field l1BlockHash Hash of the block the transaction was submitted in.
* @custom:field logIndex Index of the log in the block the transaction was submitted in.
*/
struct UserDepositTransaction {
address from;
address to;
bool isCreation;
uint256 value;
uint256 mint;
uint64 gasLimit;
bytes data;
bytes32 l1BlockHash;
uint256 logIndex;
}
/**
* @notice Struct representing a withdrawal transaction.
*
* @custom:field nonce Nonce of the withdrawal transaction
* @custom:field sender Address of the sender of the transaction.
* @custom:field target Address of the recipient of the transaction.
* @custom:field value Value to send to the recipient.
* @custom:field gasLimit Gas limit of the transaction.
* @custom:field data Data of the transaction.
*/
struct WithdrawalTransaction {
uint256 nonce;
address sender;
address target;
uint256 value;
uint256 gasLimit;
bytes data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.8;
/**
* @custom:attribution https://github.com/hamdiallam/Solidity-RLP
* @title RLPReader
* @notice RLPReader is a library for parsing RLP-encoded byte arrays into Solidity types. Adapted
* from Solidity-RLP (https://github.com/hamdiallam/Solidity-RLP) by Hamdi Allam with
* various tweaks to improve readability.
*/
library RLPReader {
/**
* Custom pointer type to avoid confusion between pointers and uint256s.
*/
type MemoryPointer is uint256;
/**
* @notice RLP item types.
*
* @custom:value DATA_ITEM Represents an RLP data item (NOT a list).
* @custom:value LIST_ITEM Represents an RLP list item.
*/
enum RLPItemType {
DATA_ITEM,
LIST_ITEM
}
/**
* @notice Struct representing an RLP item.
*
* @custom:field length Length of the RLP item.
* @custom:field ptr Pointer to the RLP item in memory.
*/
struct RLPItem {
uint256 length;
MemoryPointer ptr;
}
/**
* @notice Max list length that this library will accept.
*/
uint256 internal constant MAX_LIST_LENGTH = 32;
/**
* @notice Converts bytes to a reference to memory position and length.
*
* @param _in Input bytes to convert.
*
* @return Output memory reference.
*/
function toRLPItem(bytes memory _in) internal pure returns (RLPItem memory) {
// Empty arrays are not RLP items.
require(
_in.length > 0,
"RLPReader: length of an RLP item must be greater than zero to be decodable"
);
MemoryPointer ptr;
assembly {
ptr := add(_in, 32)
}
return RLPItem({ length: _in.length, ptr: ptr });
}
/**
* @notice Reads an RLP list value into a list of RLP items.
*
* @param _in RLP list value.
*
* @return Decoded RLP list items.
*/
function readList(RLPItem memory _in) internal pure returns (RLPItem[] memory) {
(uint256 listOffset, uint256 listLength, RLPItemType itemType) = _decodeLength(_in);
require(
itemType == RLPItemType.LIST_ITEM,
"RLPReader: decoded item type for list is not a list item"
);
require(
listOffset + listLength == _in.length,
"RLPReader: list item has an invalid data remainder"
);
// Solidity in-memory arrays can't be increased in size, but *can* be decreased in size by
// writing to the length. Since we can't know the number of RLP items without looping over
// the entire input, we'd have to loop twice to accurately size this array. It's easier to
// simply set a reasonable maximum list length and decrease the size before we finish.
RLPItem[] memory out = new RLPItem[](MAX_LIST_LENGTH);
uint256 itemCount = 0;
uint256 offset = listOffset;
while (offset < _in.length) {
(uint256 itemOffset, uint256 itemLength, ) = _decodeLength(
RLPItem({
length: _in.length - offset,
ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
})
);
// We don't need to check itemCount < out.length explicitly because Solidity already
// handles this check on our behalf, we'd just be wasting gas.
out[itemCount] = RLPItem({
length: itemLength + itemOffset,
ptr: MemoryPointer.wrap(MemoryPointer.unwrap(_in.ptr) + offset)
});
itemCount += 1;
offset += itemOffset + itemLength;
}
// Decrease the array size to match the actual item count.
assembly {
mstore(out, itemCount)
}
return out;
}
/**
* @notice Reads an RLP list value into a list of RLP items.
*
* @param _in RLP list value.
*
* @return Decoded RLP list items.
*/
function readList(bytes memory _in) internal pure returns (RLPItem[] memory) {
return readList(toRLPItem(_in));
}
/**
* @notice Reads an RLP bytes value into bytes.
*
* @param _in RLP bytes value.
*
* @return Decoded bytes.
*/
function readBytes(RLPItem memory _in) internal pure returns (bytes memory) {
(uint256 itemOffset, uint256 itemLength, RLPItemType itemType) = _decodeLength(_in);
require(
itemType == RLPItemType.DATA_ITEM,
"RLPReader: decoded item type for bytes is not a data item"
);
require(
_in.length == itemOffset + itemLength,
"RLPReader: bytes value contains an invalid remainder"
);
return _copy(_in.ptr, itemOffset, itemLength);
}
/**
* @notice Reads an RLP bytes value into bytes.
*
* @param _in RLP bytes value.
*
* @return Decoded bytes.
*/
function readBytes(bytes memory _in) internal pure returns (bytes memory) {
return readBytes(toRLPItem(_in));
}
/**
* @notice Reads the raw bytes of an RLP item.
*
* @param _in RLP item to read.
*
* @return Raw RLP bytes.
*/
function readRawBytes(RLPItem memory _in) internal pure returns (bytes memory) {
return _copy(_in.ptr, 0, _in.length);
}
/**
* @notice Decodes the length of an RLP item.
*
* @param _in RLP item to decode.
*
* @return Offset of the encoded data.
* @return Length of the encoded data.
* @return RLP item type (LIST_ITEM or DATA_ITEM).
*/
function _decodeLength(RLPItem memory _in)
private
pure
returns (
uint256,
uint256,
RLPItemType
)
{
// Short-circuit if there's nothing to decode, note that we perform this check when
// the user creates an RLP item via toRLPItem, but it's always possible for them to bypass
// that function and create an RLP item directly. So we need to check this anyway.
require(
_in.length > 0,
"RLPReader: length of an RLP item must be greater than zero to be decodable"
);
MemoryPointer ptr = _in.ptr;
uint256 prefix;
assembly {
prefix := byte(0, mload(ptr))
}
if (prefix <= 0x7f) {
// Single byte.
return (0, 1, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xb7) {
// Short string.
// slither-disable-next-line variable-scope
uint256 strLen = prefix - 0x80;
require(
_in.length > strLen,
"RLPReader: length of content must be greater than string length (short string)"
);
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
require(
strLen != 1 || firstByteOfContent >= 0x80,
"RLPReader: invalid prefix, single byte < 0x80 are not prefixed (short string)"
);
return (1, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xbf) {
// Long string.
uint256 lenOfStrLen = prefix - 0xb7;
require(
_in.length > lenOfStrLen,
"RLPReader: length of content must be > than length of string length (long string)"
);
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
require(
firstByteOfContent != 0x00,
"RLPReader: length of content must not have any leading zeros (long string)"
);
uint256 strLen;
assembly {
strLen := shr(sub(256, mul(8, lenOfStrLen)), mload(add(ptr, 1)))
}
require(
strLen > 55,
"RLPReader: length of content must be greater than 55 bytes (long string)"
);
require(
_in.length > lenOfStrLen + strLen,
"RLPReader: length of content must be greater than total length (long string)"
);
return (1 + lenOfStrLen, strLen, RLPItemType.DATA_ITEM);
} else if (prefix <= 0xf7) {
// Short list.
// slither-disable-next-line variable-scope
uint256 listLen = prefix - 0xc0;
require(
_in.length > listLen,
"RLPReader: length of content must be greater than list length (short list)"
);
return (1, listLen, RLPItemType.LIST_ITEM);
} else {
// Long list.
uint256 lenOfListLen = prefix - 0xf7;
require(
_in.length > lenOfListLen,
"RLPReader: length of content must be > than length of list length (long list)"
);
bytes1 firstByteOfContent;
assembly {
firstByteOfContent := and(mload(add(ptr, 1)), shl(248, 0xff))
}
require(
firstByteOfContent != 0x00,
"RLPReader: length of content must not have any leading zeros (long list)"
);
uint256 listLen;
assembly {
listLen := shr(sub(256, mul(8, lenOfListLen)), mload(add(ptr, 1)))
}
require(
listLen > 55,
"RLPReader: length of content must be greater than 55 bytes (long list)"
);
require(
_in.length > lenOfListLen + listLen,
"RLPReader: length of content must be greater than total length (long list)"
);
return (1 + lenOfListLen, listLen, RLPItemType.LIST_ITEM);
}
}
/**
* @notice Copies the bytes from a memory location.
*
* @param _src Pointer to the location to read from.
* @param _offset Offset to start reading from.
* @param _length Number of bytes to read.
*
* @return Copied bytes.
*/
function _copy(
MemoryPointer _src,
uint256 _offset,
uint256 _length
) private pure returns (bytes memory) {
bytes memory out = new bytes(_length);
if (_length == 0) {
return out;
}
// Mostly based on Solidity's copy_memory_to_memory:
// solhint-disable max-line-length
// https://github.com/ethereum/solidity/blob/34dd30d71b4da730488be72ff6af7083cf2a91f6/libsolidity/codegen/YulUtilFunctions.cpp#L102-L114
uint256 src = MemoryPointer.unwrap(_src) + _offset;
assembly {
let dest := add(out, 32)
let i := 0
for {
} lt(i, _length) {
i := add(i, 32)
} {
mstore(add(dest, i), mload(add(src, i)))
}
if gt(i, _length) {
mstore(add(dest, _length), 0)
}
}
return out;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/**
* @custom:attribution https://github.com/bakaoh/solidity-rlp-encode
* @title RLPWriter
* @author RLPWriter is a library for encoding Solidity types to RLP bytes. Adapted from Bakaoh's
* RLPEncode library (https://github.com/bakaoh/solidity-rlp-encode) with minor
* modifications to improve legibility.
*/
library RLPWriter {
/**
* @notice RLP encodes a byte string.
*
* @param _in The byte string to encode.
*
* @return The RLP encoded string in bytes.
*/
function writeBytes(bytes memory _in) internal pure returns (bytes memory) {
bytes memory encoded;
if (_in.length == 1 && uint8(_in[0]) < 128) {
encoded = _in;
} else {
encoded = abi.encodePacked(_writeLength(_in.length, 128), _in);
}
return encoded;
}
/**
* @notice RLP encodes a list of RLP encoded byte byte strings.
*
* @param _in The list of RLP encoded byte strings.
*
* @return The RLP encoded list of items in bytes.
*/
function writeList(bytes[] memory _in) internal pure returns (bytes memory) {
bytes memory list = _flatten(_in);
return abi.encodePacked(_writeLength(list.length, 192), list);
}
/**
* @notice RLP encodes a string.
*
* @param _in The string to encode.
*
* @return The RLP encoded string in bytes.
*/
function writeString(string memory _in) internal pure returns (bytes memory) {
return writeBytes(bytes(_in));
}
/**
* @notice RLP encodes an address.
*
* @param _in The address to encode.
*
* @return The RLP encoded address in bytes.
*/
function writeAddress(address _in) internal pure returns (bytes memory) {
return writeBytes(abi.encodePacked(_in));
}
/**
* @notice RLP encodes a uint.
*
* @param _in The uint256 to encode.
*
* @return The RLP encoded uint256 in bytes.
*/
function writeUint(uint256 _in) internal pure returns (bytes memory) {
return writeBytes(_toBinary(_in));
}
/**
* @notice RLP encodes a bool.
*
* @param _in The bool to encode.
*
* @return The RLP encoded bool in bytes.
*/
function writeBool(bool _in) internal pure returns (bytes memory) {
bytes memory encoded = new bytes(1);
encoded[0] = (_in ? bytes1(0x01) : bytes1(0x80));
return encoded;
}
/**
* @notice Encode the first byte and then the `len` in binary form if `length` is more than 55.
*
* @param _len The length of the string or the payload.
* @param _offset 128 if item is string, 192 if item is list.
*
* @return RLP encoded bytes.
*/
function _writeLength(uint256 _len, uint256 _offset) private pure returns (bytes memory) {
bytes memory encoded;
if (_len < 56) {
encoded = new bytes(1);
encoded[0] = bytes1(uint8(_len) + uint8(_offset));
} else {
uint256 lenLen;
uint256 i = 1;
while (_len / i != 0) {
lenLen++;
i *= 256;
}
encoded = new bytes(lenLen + 1);
encoded[0] = bytes1(uint8(lenLen) + uint8(_offset) + 55);
for (i = 1; i <= lenLen; i++) {
encoded[i] = bytes1(uint8((_len / (256**(lenLen - i))) % 256));
}
}
return encoded;
}
/**
* @notice Encode integer in big endian binary form with no leading zeroes.
*
* @param _x The integer to encode.
*
* @return RLP encoded bytes.
*/
function _toBinary(uint256 _x) private pure returns (bytes memory) {
bytes memory b = abi.encodePacked(_x);
uint256 i = 0;
for (; i < 32; i++) {
if (b[i] != 0) {
break;
}
}
bytes memory res = new bytes(32 - i);
for (uint256 j = 0; j < res.length; j++) {
res[j] = b[i++];
}
return res;
}
/**
* @custom:attribution https://github.com/Arachnid/solidity-stringutils
* @notice Copies a piece of memory to another location.
*
* @param _dest Destination location.
* @param _src Source location.
* @param _len Length of memory to copy.
*/
function _memcpy(
uint256 _dest,
uint256 _src,
uint256 _len
) private pure {
uint256 dest = _dest;
uint256 src = _src;
uint256 len = _len;
for (; len >= 32; len -= 32) {
assembly {
mstore(dest, mload(src))
}
dest += 32;
src += 32;
}
uint256 mask;
unchecked {
mask = 256**(32 - len) - 1;
}
assembly {
let srcpart := and(mload(src), not(mask))
let destpart := and(mload(dest), mask)
mstore(dest, or(destpart, srcpart))
}
}
/**
* @custom:attribution https://github.com/sammayo/solidity-rlp-encoder
* @notice Flattens a list of byte strings into one byte string.
*
* @param _list List of byte strings to flatten.
*
* @return The flattened byte string.
*/
function _flatten(bytes[] memory _list) private pure returns (bytes memory) {
if (_list.length == 0) {
return new bytes(0);
}
uint256 len;
uint256 i = 0;
for (; i < _list.length; i++) {
len += _list[i].length;
}
bytes memory flattened = new bytes(len);
uint256 flattenedPtr;
assembly {
flattenedPtr := add(flattened, 0x20)
}
for (i = 0; i < _list.length; i++) {
bytes memory item = _list[i];
uint256 listPtr;
assembly {
listPtr := add(item, 0x20)
}
_memcpy(flattenedPtr, listPtr, item.length);
flattenedPtr += _list[i].length;
}
return flattened;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { Bytes } from "../Bytes.sol";
import { RLPReader } from "../rlp/RLPReader.sol";
/**
* @title MerkleTrie
* @notice MerkleTrie is a small library for verifying standard Ethereum Merkle-Patricia trie
* inclusion proofs. By default, this library assumes a hexary trie. One can change the
* trie radix constant to support other trie radixes.
*/
library MerkleTrie {
/**
* @notice Struct representing a node in the trie.
*
* @custom:field encoded The RLP-encoded node.
* @custom:field decoded The RLP-decoded node.
*/
struct TrieNode {
bytes encoded;
RLPReader.RLPItem[] decoded;
}
/**
* @notice Determines the number of elements per branch node.
*/
uint256 internal constant TREE_RADIX = 16;
/**
* @notice Branch nodes have TREE_RADIX elements and one value element.
*/
uint256 internal constant BRANCH_NODE_LENGTH = TREE_RADIX + 1;
/**
* @notice Leaf nodes and extension nodes have two elements, a `path` and a `value`.
*/
uint256 internal constant LEAF_OR_EXTENSION_NODE_LENGTH = 2;
/**
* @notice Prefix for even-nibbled extension node paths.
*/
uint8 internal constant PREFIX_EXTENSION_EVEN = 0;
/**
* @notice Prefix for odd-nibbled extension node paths.
*/
uint8 internal constant PREFIX_EXTENSION_ODD = 1;
/**
* @notice Prefix for even-nibbled leaf node paths.
*/
uint8 internal constant PREFIX_LEAF_EVEN = 2;
/**
* @notice Prefix for odd-nibbled leaf node paths.
*/
uint8 internal constant PREFIX_LEAF_ODD = 3;
/**
* @notice Verifies a proof that a given key/value pair is present in the trie.
*
* @param _key Key of the node to search for, as a hex string.
* @param _value Value of the node to search for, as a hex string.
* @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
* trees, this proof is executed top-down and consists of a list of RLP-encoded
* nodes that make a path down to the target node.
* @param _root Known root of the Merkle trie. Used to verify that the included proof is
* correctly constructed.
*
* @return Whether or not the proof is valid.
*/
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes[] memory _proof,
bytes32 _root
) internal pure returns (bool) {
return Bytes.equal(_value, get(_key, _proof, _root));
}
/**
* @notice Retrieves the value associated with a given key.
*
* @param _key Key to search for, as hex bytes.
* @param _proof Merkle trie inclusion proof for the key.
* @param _root Known root of the Merkle trie.
*
* @return Value of the key if it exists.
*/
function get(
bytes memory _key,
bytes[] memory _proof,
bytes32 _root
) internal pure returns (bytes memory) {
require(_key.length > 0, "MerkleTrie: empty key");
TrieNode[] memory proof = _parseProof(_proof);
bytes memory key = Bytes.toNibbles(_key);
bytes memory currentNodeID = abi.encodePacked(_root);
uint256 currentKeyIndex = 0;
// Proof is top-down, so we start at the first element (root).
for (uint256 i = 0; i < proof.length; i++) {
TrieNode memory currentNode = proof[i];
// Key index should never exceed total key length or we'll be out of bounds.
require(
currentKeyIndex <= key.length,
"MerkleTrie: key index exceeds total key length"
);
if (currentKeyIndex == 0) {
// First proof element is always the root node.
require(
Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
"MerkleTrie: invalid root hash"
);
} else if (currentNode.encoded.length >= 32) {
// Nodes 32 bytes or larger are hashed inside branch nodes.
require(
Bytes.equal(abi.encodePacked(keccak256(currentNode.encoded)), currentNodeID),
"MerkleTrie: invalid large internal hash"
);
} else {
// Nodes smaller than 32 bytes aren't hashed.
require(
Bytes.equal(currentNode.encoded, currentNodeID),
"MerkleTrie: invalid internal node hash"
);
}
if (currentNode.decoded.length == BRANCH_NODE_LENGTH) {
if (currentKeyIndex == key.length) {
// Value is the last element of the decoded list (for branch nodes). There's
// some ambiguity in the Merkle trie specification because bytes(0) is a
// valid value to place into the trie, but for branch nodes bytes(0) can exist
// even when the value wasn't explicitly placed there. Geth treats a value of
// bytes(0) as "key does not exist" and so we do the same.
bytes memory value = RLPReader.readBytes(currentNode.decoded[TREE_RADIX]);
require(
value.length > 0,
"MerkleTrie: value length must be greater than zero (branch)"
);
// Extra proof elements are not allowed.
require(
i == proof.length - 1,
"MerkleTrie: value node must be last node in proof (branch)"
);
return value;
} else {
// We're not at the end of the key yet.
// Figure out what the next node ID should be and continue.
uint8 branchKey = uint8(key[currentKeyIndex]);
RLPReader.RLPItem memory nextNode = currentNode.decoded[branchKey];
currentNodeID = _getNodeID(nextNode);
currentKeyIndex += 1;
}
} else if (currentNode.decoded.length == LEAF_OR_EXTENSION_NODE_LENGTH) {
bytes memory path = _getNodePath(currentNode);
uint8 prefix = uint8(path[0]);
uint8 offset = 2 - (prefix % 2);
bytes memory pathRemainder = Bytes.slice(path, offset);
bytes memory keyRemainder = Bytes.slice(key, currentKeyIndex);
uint256 sharedNibbleLength = _getSharedNibbleLength(pathRemainder, keyRemainder);
// Whether this is a leaf node or an extension node, the path remainder MUST be a
// prefix of the key remainder (or be equal to the key remainder) or the proof is
// considered invalid.
require(
pathRemainder.length == sharedNibbleLength,
"MerkleTrie: path remainder must share all nibbles with key"
);
if (prefix == PREFIX_LEAF_EVEN || prefix == PREFIX_LEAF_ODD) {
// Prefix of 2 or 3 means this is a leaf node. For the leaf node to be valid,
// the key remainder must be exactly equal to the path remainder. We already
// did the necessary byte comparison, so it's more efficient here to check that
// the key remainder length equals the shared nibble length, which implies
// equality with the path remainder (since we already did the same check with
// the path remainder and the shared nibble length).
require(
keyRemainder.length == sharedNibbleLength,
"MerkleTrie: key remainder must be identical to path remainder"
);
// Our Merkle Trie is designed specifically for the purposes of the Ethereum
// state trie. Empty values are not allowed in the state trie, so we can safely
// say that if the value is empty, the key should not exist and the proof is
// invalid.
bytes memory value = RLPReader.readBytes(currentNode.decoded[1]);
require(
value.length > 0,
"MerkleTrie: value length must be greater than zero (leaf)"
);
// Extra proof elements are not allowed.
require(
i == proof.length - 1,
"MerkleTrie: value node must be last node in proof (leaf)"
);
return value;
} else if (prefix == PREFIX_EXTENSION_EVEN || prefix == PREFIX_EXTENSION_ODD) {
// Prefix of 0 or 1 means this is an extension node. We move onto the next node
// in the proof and increment the key index by the length of the path remainder
// which is equal to the shared nibble length.
currentNodeID = _getNodeID(currentNode.decoded[1]);
currentKeyIndex += sharedNibbleLength;
} else {
revert("MerkleTrie: received a node with an unknown prefix");
}
} else {
revert("MerkleTrie: received an unparseable node");
}
}
revert("MerkleTrie: ran out of proof elements");
}
/**
* @notice Parses an array of proof elements into a new array that contains both the original
* encoded element and the RLP-decoded element.
*
* @param _proof Array of proof elements to parse.
*
* @return Proof parsed into easily accessible structs.
*/
function _parseProof(bytes[] memory _proof) private pure returns (TrieNode[] memory) {
uint256 length = _proof.length;
TrieNode[] memory proof = new TrieNode[](length);
for (uint256 i = 0; i < length; ) {
proof[i] = TrieNode({ encoded: _proof[i], decoded: RLPReader.readList(_proof[i]) });
unchecked {
++i;
}
}
return proof;
}
/**
* @notice Picks out the ID for a node. Node ID is referred to as the "hash" within the
* specification, but nodes < 32 bytes are not actually hashed.
*
* @param _node Node to pull an ID for.
*
* @return ID for the node, depending on the size of its contents.
*/
function _getNodeID(RLPReader.RLPItem memory _node) private pure returns (bytes memory) {
return _node.length < 32 ? RLPReader.readRawBytes(_node) : RLPReader.readBytes(_node);
}
/**
* @notice Gets the path for a leaf or extension node.
*
* @param _node Node to get a path for.
*
* @return Node path, converted to an array of nibbles.
*/
function _getNodePath(TrieNode memory _node) private pure returns (bytes memory) {
return Bytes.toNibbles(RLPReader.readBytes(_node.decoded[0]));
}
/**
* @notice Utility; determines the number of nibbles shared between two nibble arrays.
*
* @param _a First nibble array.
* @param _b Second nibble array.
*
* @return Number of shared nibbles.
*/
function _getSharedNibbleLength(bytes memory _a, bytes memory _b)
private
pure
returns (uint256)
{
uint256 shared;
uint256 max = (_a.length < _b.length) ? _a.length : _b.length;
for (; shared < max && _a[shared] == _b[shared]; ) {
unchecked {
++shared;
}
}
return shared;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
/* Library Imports */
import { MerkleTrie } from "./MerkleTrie.sol";
/**
* @title SecureMerkleTrie
* @notice SecureMerkleTrie is a thin wrapper around the MerkleTrie library that hashes the input
* keys. Ethereum's state trie hashes input keys before storing them.
*/
library SecureMerkleTrie {
/**
* @notice Verifies a proof that a given key/value pair is present in the Merkle trie.
*
* @param _key Key of the node to search for, as a hex string.
* @param _value Value of the node to search for, as a hex string.
* @param _proof Merkle trie inclusion proof for the desired node. Unlike traditional Merkle
* trees, this proof is executed top-down and consists of a list of RLP-encoded
* nodes that make a path down to the target node.
* @param _root Known root of the Merkle trie. Used to verify that the included proof is
* correctly constructed.
*
* @return Whether or not the proof is valid.
*/
function verifyInclusionProof(
bytes memory _key,
bytes memory _value,
bytes[] memory _proof,
bytes32 _root
) internal pure returns (bool) {
bytes memory key = _getSecureKey(_key);
return MerkleTrie.verifyInclusionProof(key, _value, _proof, _root);
}
/**
* @notice Retrieves the value associated with a given key.
*
* @param _key Key to search for, as hex bytes.
* @param _proof Merkle trie inclusion proof for the key.
* @param _root Known root of the Merkle trie.
*
* @return Value of the key if it exists.
*/
function get(
bytes memory _key,
bytes[] memory _proof,
bytes32 _root
) internal pure returns (bytes memory) {
bytes memory key = _getSecureKey(_key);
return MerkleTrie.get(key, _proof, _root);
}
/**
* @notice Computes the hashed version of the input key.
*
* @param _key Key to hash.
*
* @return Hashed version of the key.
*/
function _getSecureKey(bytes memory _key) private pure returns (bytes memory) {
return abi.encodePacked(keccak256(_key));
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import {
OwnableUpgradeable
} from "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import {
PausableUpgradeable
} from "@openzeppelin/contracts-upgradeable/security/PausableUpgradeable.sol";
import {
ReentrancyGuardUpgradeable
} from "@openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol";
import { SafeCall } from "../libraries/SafeCall.sol";
import { Hashing } from "../libraries/Hashing.sol";
import { Encoding } from "../libraries/Encoding.sol";
import { Constants } from "../libraries/Constants.sol";
/**
* @custom:legacy
* @title CrossDomainMessengerLegacySpacer
* @notice Contract only exists to add a spacer to the CrossDomainMessenger where the
* libAddressManager variable used to exist. Must be the first contract in the inheritance
* tree of the CrossDomainMessenger
*/
contract CrossDomainMessengerLegacySpacer {
/**
* @custom:legacy
* @custom:spacer libAddressManager
* @notice Spacer for backwards compatibility.
*/
address private spacer_0_0_20;
}
/**
* @custom:upgradeable
* @title CrossDomainMessenger
* @notice CrossDomainMessenger is a base contract that provides the core logic for the L1 and L2
* cross-chain messenger contracts. It's designed to be a universal interface that only
* needs to be extended slightly to provide low-level message passing functionality on each
* chain it's deployed on. Currently only designed for message passing between two paired
* chains and does not support one-to-many interactions.
*/
abstract contract CrossDomainMessenger is
CrossDomainMessengerLegacySpacer,
OwnableUpgradeable,
PausableUpgradeable,
ReentrancyGuardUpgradeable
{
/**
* @notice Current message version identifier.
*/
uint16 public constant MESSAGE_VERSION = 1;
/**
* @notice Constant overhead added to the base gas for a message.
*/
uint64 public constant MIN_GAS_CONSTANT_OVERHEAD = 200_000;
/**
* @notice Numerator for dynamic overhead added to the base gas for a message.
*/
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR = 1016;
/**
* @notice Denominator for dynamic overhead added to the base gas for a message.
*/
uint64 public constant MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR = 1000;
/**
* @notice Extra gas added to base gas for each byte of calldata in a message.
*/
uint64 public constant MIN_GAS_CALLDATA_OVERHEAD = 16;
/**
* @notice Minimum amount of gas required to relay a message.
*/
uint256 internal constant RELAY_GAS_REQUIRED = 45_000;
/**
* @notice Amount of gas held in reserve to guarantee that relay execution completes.
*/
uint256 internal constant RELAY_GAS_BUFFER = RELAY_GAS_REQUIRED - 5000;
/**
* @notice Address of the paired CrossDomainMessenger contract on the other chain.
*/
address public immutable OTHER_MESSENGER;
/**
* @custom:legacy
* @custom:spacer blockedMessages
* @notice Spacer for backwards compatibility.
*/
mapping(bytes32 => bool) private spacer_201_0_32;
/**
* @custom:legacy
* @custom:spacer relayedMessages
* @notice Spacer for backwards compatibility.
*/
mapping(bytes32 => bool) private spacer_202_0_32;
/**
* @notice Mapping of message hashes to boolean receipt values. Note that a message will only
* be present in this mapping if it has successfully been relayed on this chain, and
* can therefore not be relayed again.
*/
mapping(bytes32 => bool) public successfulMessages;
/**
* @notice Address of the sender of the currently executing message on the other chain. If the
* value of this variable is the default value (0x00000000...dead) then no message is
* currently being executed. Use the xDomainMessageSender getter which will throw an
* error if this is the case.
*/
address internal xDomainMsgSender;
/**
* @notice Nonce for the next message to be sent, without the message version applied. Use the
* messageNonce getter which will insert the message version into the nonce to give you
* the actual nonce to be used for the message.
*/
uint240 internal msgNonce;
/**
* @notice Mapping of message hashes to a boolean if and only if the message has failed to be
* executed at least once. A message will not be present in this mapping if it
* successfully executed on the first attempt.
*/
mapping(bytes32 => bool) public failedMessages;
/**
* @notice Reserve extra slots in the storage layout for future upgrades.
* A gap size of 41 was chosen here, so that the first slot used in a child contract
* would be a multiple of 50.
*/
uint256[42] private __gap;
/**
* @notice Emitted whenever a message is sent to the other chain.
*
* @param target Address of the recipient of the message.
* @param sender Address of the sender of the message.
* @param message Message to trigger the recipient address with.
* @param messageNonce Unique nonce attached to the message.
* @param gasLimit Minimum gas limit that the message can be executed with.
*/
event SentMessage(
address indexed target,
address sender,
bytes message,
uint256 messageNonce,
uint256 gasLimit
);
/**
* @notice Additional event data to emit, required as of Bedrock. Cannot be merged with the
* SentMessage event without breaking the ABI of this contract, this is good enough.
*
* @param sender Address of the sender of the message.
* @param value ETH value sent along with the message to the recipient.
*/
event SentMessageExtension1(address indexed sender, uint256 value);
/**
* @notice Emitted whenever a message is successfully relayed on this chain.
*
* @param msgHash Hash of the message that was relayed.
*/
event RelayedMessage(bytes32 indexed msgHash);
/**
* @notice Emitted whenever a message fails to be relayed on this chain.
*
* @param msgHash Hash of the message that failed to be relayed.
*/
event FailedRelayedMessage(bytes32 indexed msgHash);
/**
* @param _otherMessenger Address of the messenger on the paired chain.
*/
constructor(address _otherMessenger) {
OTHER_MESSENGER = _otherMessenger;
}
/**
* @notice Allows the owner of this contract to temporarily pause message relaying. Backup
* security mechanism just in case. Owner should be the same as the upgrade wallet to
* maintain the security model of the system as a whole.
*/
function pause() external onlyOwner {
_pause();
}
/**
* @notice Allows the owner of this contract to resume message relaying once paused.
*/
function unpause() external onlyOwner {
_unpause();
}
/**
* @notice Sends a message to some target address on the other chain. Note that if the call
* always reverts, then the message will be unrelayable, and any ETH sent will be
* permanently locked. The same will occur if the target on the other chain is
* considered unsafe (see the _isUnsafeTarget() function).
*
* @param _target Target contract or wallet address.
* @param _message Message to trigger the target address with.
* @param _minGasLimit Minimum gas limit that the message can be executed with.
*/
function sendMessage(
address _target,
bytes calldata _message,
uint32 _minGasLimit
) external payable {
// Triggers a message to the other messenger. Note that the amount of gas provided to the
// message is the amount of gas requested by the user PLUS the base gas value. We want to
// guarantee the property that the call to the target contract will always have at least
// the minimum gas limit specified by the user.
_sendMessage(
OTHER_MESSENGER,
baseGas(_message, _minGasLimit),
msg.value,
abi.encodeWithSelector(
this.relayMessage.selector,
messageNonce(),
msg.sender,
_target,
msg.value,
_minGasLimit,
_message
)
);
emit SentMessage(_target, msg.sender, _message, messageNonce(), _minGasLimit);
emit SentMessageExtension1(msg.sender, msg.value);
unchecked {
++msgNonce;
}
}
/**
* @notice Relays a message that was sent by the other CrossDomainMessenger contract. Can only
* be executed via cross-chain call from the other messenger OR if the message was
* already received once and is currently being replayed.
*
* @param _nonce Nonce of the message being relayed.
* @param _sender Address of the user who sent the message.
* @param _target Address that the message is targeted at.
* @param _value ETH value to send with the message.
* @param _minGasLimit Minimum amount of gas that the message can be executed with.
* @param _message Message to send to the target.
*/
function relayMessage(
uint256 _nonce,
address _sender,
address _target,
uint256 _value,
uint256 _minGasLimit,
bytes calldata _message
) external payable nonReentrant whenNotPaused {
(, uint16 version) = Encoding.decodeVersionedNonce(_nonce);
require(
version < 2,
"CrossDomainMessenger: only version 0 or 1 messages are supported at this time"
);
// If the message is version 0, then it's a migrated legacy withdrawal. We therefore need
// to check that the legacy version of the message has not already been relayed.
if (version == 0) {
bytes32 oldHash = Hashing.hashCrossDomainMessageV0(_target, _sender, _message, _nonce);
require(
successfulMessages[oldHash] == false,
"CrossDomainMessenger: legacy withdrawal already relayed"
);
}
// We use the v1 message hash as the unique identifier for the message because it commits
// to the value and minimum gas limit of the message.
bytes32 versionedHash = Hashing.hashCrossDomainMessageV1(
_nonce,
_sender,
_target,
_value,
_minGasLimit,
_message
);
if (_isOtherMessenger()) {
// These properties should always hold when the message is first submitted (as
// opposed to being replayed).
assert(msg.value == _value);
assert(!failedMessages[versionedHash]);
} else {
require(
msg.value == 0,
"CrossDomainMessenger: value must be zero unless message is from a system address"
);
require(
failedMessages[versionedHash],
"CrossDomainMessenger: message cannot be replayed"
);
}
require(
_isUnsafeTarget(_target) == false,
"CrossDomainMessenger: cannot send message to blocked system address"
);
require(
successfulMessages[versionedHash] == false,
"CrossDomainMessenger: message has already been relayed"
);
require(
gasleft() >= _minGasLimit + RELAY_GAS_REQUIRED,
"CrossDomainMessenger: insufficient gas to relay message"
);
xDomainMsgSender = _sender;
bool success = SafeCall.call(_target, gasleft() - RELAY_GAS_BUFFER, _value, _message);
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
if (success == true) {
successfulMessages[versionedHash] = true;
emit RelayedMessage(versionedHash);
} else {
failedMessages[versionedHash] = true;
emit FailedRelayedMessage(versionedHash);
// Revert in this case if the transaction was triggered by the estimation address. This
// should only be possible during gas estimation or we have bigger problems. Reverting
// here will make the behavior of gas estimation change such that the gas limit
// computed will be the amount required to relay the message, even if that amount is
// greater than the minimum gas limit specified by the user.
if (tx.origin == Constants.ESTIMATION_ADDRESS) {
revert("CrossDomainMessenger: failed to relay message");
}
}
}
/**
* @notice Retrieves the address of the contract or wallet that initiated the currently
* executing message on the other chain. Will throw an error if there is no message
* currently being executed. Allows the recipient of a call to see who triggered it.
*
* @return Address of the sender of the currently executing message on the other chain.
*/
function xDomainMessageSender() external view returns (address) {
require(
xDomainMsgSender != Constants.DEFAULT_L2_SENDER,
"CrossDomainMessenger: xDomainMessageSender is not set"
);
return xDomainMsgSender;
}
/**
* @notice Retrieves the next message nonce. Message version will be added to the upper two
* bytes of the message nonce. Message version allows us to treat messages as having
* different structures.
*
* @return Nonce of the next message to be sent, with added message version.
*/
function messageNonce() public view returns (uint256) {
return Encoding.encodeVersionedNonce(msgNonce, MESSAGE_VERSION);
}
/**
* @notice Computes the amount of gas required to guarantee that a given message will be
* received on the other chain without running out of gas. Guaranteeing that a message
* will not run out of gas is important because this ensures that a message can always
* be replayed on the other chain if it fails to execute completely.
*
* @param _message Message to compute the amount of required gas for.
* @param _minGasLimit Minimum desired gas limit when message goes to target.
*
* @return Amount of gas required to guarantee message receipt.
*/
function baseGas(bytes calldata _message, uint32 _minGasLimit) public pure returns (uint64) {
// We peform the following math on uint64s to avoid overflow errors. Multiplying the
// by MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR would otherwise limit the _minGasLimit to
// type(uint32).max / MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR ~= 4.2m.
return
// Dynamic overhead
((uint64(_minGasLimit) * MIN_GAS_DYNAMIC_OVERHEAD_NUMERATOR) /
MIN_GAS_DYNAMIC_OVERHEAD_DENOMINATOR) +
// Calldata overhead
(uint64(_message.length) * MIN_GAS_CALLDATA_OVERHEAD) +
// Constant overhead
MIN_GAS_CONSTANT_OVERHEAD;
}
/**
* @notice Intializer.
*/
// solhint-disable-next-line func-name-mixedcase
function __CrossDomainMessenger_init() internal onlyInitializing {
xDomainMsgSender = Constants.DEFAULT_L2_SENDER;
__Context_init_unchained();
__Ownable_init_unchained();
__Pausable_init_unchained();
__ReentrancyGuard_init_unchained();
}
/**
* @notice Sends a low-level message to the other messenger. Needs to be implemented by child
* contracts because the logic for this depends on the network where the messenger is
* being deployed.
*
* @param _to Recipient of the message on the other chain.
* @param _gasLimit Minimum gas limit the message can be executed with.
* @param _value Amount of ETH to send with the message.
* @param _data Message data.
*/
function _sendMessage(
address _to,
uint64 _gasLimit,
uint256 _value,
bytes memory _data
) internal virtual;
/**
* @notice Checks whether the message is coming from the other messenger. Implemented by child
* contracts because the logic for this depends on the network where the messenger is
* being deployed.
*
* @return Whether the message is coming from the other messenger.
*/
function _isOtherMessenger() internal view virtual returns (bool);
/**
* @notice Checks whether a given call target is a system address that could cause the
* messenger to peform an unsafe action. This is NOT a mechanism for blocking user
* addresses. This is ONLY used to prevent the execution of messages to specific
* system addresses that could cause security issues, e.g., having the
* CrossDomainMessenger send messages to itself.
*
* @param _target Address of the contract to check.
*
* @return Whether or not the address is an unsafe system address.
*/
function _isUnsafeTarget(address _target) internal view virtual returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { CrossDomainMessenger } from "./CrossDomainMessenger.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";
/**
* @title ERC721Bridge
* @notice ERC721Bridge is a base contract for the L1 and L2 ERC721 bridges.
*/
abstract contract ERC721Bridge {
/**
* @notice Messenger contract on this domain.
*/
CrossDomainMessenger public immutable MESSENGER;
/**
* @notice Address of the bridge on the other network.
*/
address public immutable OTHER_BRIDGE;
/**
* @notice Reserve extra slots (to a total of 50) in the storage layout for future upgrades.
*/
uint256[49] private __gap;
/**
* @notice Emitted when an ERC721 bridge to the other network is initiated.
*
* @param localToken Address of the token on this domain.
* @param remoteToken Address of the token on the remote domain.
* @param from Address that initiated bridging action.
* @param to Address to receive the token.
* @param tokenId ID of the specific token deposited.
* @param extraData Extra data for use on the client-side.
*/
event ERC721BridgeInitiated(
address indexed localToken,
address indexed remoteToken,
address indexed from,
address to,
uint256 tokenId,
bytes extraData
);
/**
* @notice Emitted when an ERC721 bridge from the other network is finalized.
*
* @param localToken Address of the token on this domain.
* @param remoteToken Address of the token on the remote domain.
* @param from Address that initiated bridging action.
* @param to Address to receive the token.
* @param tokenId ID of the specific token deposited.
* @param extraData Extra data for use on the client-side.
*/
event ERC721BridgeFinalized(
address indexed localToken,
address indexed remoteToken,
address indexed from,
address to,
uint256 tokenId,
bytes extraData
);
/**
* @notice Ensures that the caller is a cross-chain message from the other bridge.
*/
modifier onlyOtherBridge() {
require(
msg.sender == address(MESSENGER) && MESSENGER.xDomainMessageSender() == OTHER_BRIDGE,
"ERC721Bridge: function can only be called from the other bridge"
);
_;
}
/**
* @param _messenger Address of the CrossDomainMessenger on this network.
* @param _otherBridge Address of the ERC721 bridge on the other network.
*/
constructor(address _messenger, address _otherBridge) {
require(_messenger != address(0), "ERC721Bridge: messenger cannot be address(0)");
require(_otherBridge != address(0), "ERC721Bridge: other bridge cannot be address(0)");
MESSENGER = CrossDomainMessenger(_messenger);
OTHER_BRIDGE = _otherBridge;
}
/**
* @custom:legacy
* @notice Legacy getter for messenger contract.
*
* @return Messenger contract on this domain.
*/
function messenger() external view returns (CrossDomainMessenger) {
return MESSENGER;
}
/**
* @custom:legacy
* @notice Legacy getter for other bridge address.
*
* @return Address of the bridge on the other network.
*/
function otherBridge() external view returns (address) {
return OTHER_BRIDGE;
}
/**
* @notice Initiates a bridge of an NFT to the caller's account on the other chain. Note that
* this function can only be called by EOAs. Smart contract wallets should use the
* `bridgeERC721To` function after ensuring that the recipient address on the remote
* chain exists. Also note that the current owner of the token on this chain must
* approve this contract to operate the NFT before it can be bridged.
* **WARNING**: Do not bridge an ERC721 that was originally deployed on Optimism. This
* bridge only supports ERC721s originally deployed on Ethereum. Users will need to
* wait for the one-week challenge period to elapse before their Optimism-native NFT
* can be refunded on L2.
*
* @param _localToken Address of the ERC721 on this domain.
* @param _remoteToken Address of the ERC721 on the remote domain.
* @param _tokenId Token ID to bridge.
* @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
* @param _extraData Optional data to forward to the other chain. Data supplied here will not
* be used to execute any code on the other chain and is only emitted as
* extra data for the convenience of off-chain tooling.
*/
function bridgeERC721(
address _localToken,
address _remoteToken,
uint256 _tokenId,
uint32 _minGasLimit,
bytes calldata _extraData
) external {
// Modifier requiring sender to be EOA. This prevents against a user error that would occur
// if the sender is a smart contract wallet that has a different address on the remote chain
// (or doesn't have an address on the remote chain at all). The user would fail to receive
// the NFT if they use this function because it sends the NFT to the same address as the
// caller. This check could be bypassed by a malicious contract via initcode, but it takes
// care of the user error we want to avoid.
require(!Address.isContract(msg.sender), "ERC721Bridge: account is not externally owned");
_initiateBridgeERC721(
_localToken,
_remoteToken,
msg.sender,
msg.sender,
_tokenId,
_minGasLimit,
_extraData
);
}
/**
* @notice Initiates a bridge of an NFT to some recipient's account on the other chain. Note
* that the current owner of the token on this chain must approve this contract to
* operate the NFT before it can be bridged.
* **WARNING**: Do not bridge an ERC721 that was originally deployed on Optimism. This
* bridge only supports ERC721s originally deployed on Ethereum. Users will need to
* wait for the one-week challenge period to elapse before their Optimism-native NFT
* can be refunded on L2.
*
* @param _localToken Address of the ERC721 on this domain.
* @param _remoteToken Address of the ERC721 on the remote domain.
* @param _to Address to receive the token on the other domain.
* @param _tokenId Token ID to bridge.
* @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
* @param _extraData Optional data to forward to the other chain. Data supplied here will not
* be used to execute any code on the other chain and is only emitted as
* extra data for the convenience of off-chain tooling.
*/
function bridgeERC721To(
address _localToken,
address _remoteToken,
address _to,
uint256 _tokenId,
uint32 _minGasLimit,
bytes calldata _extraData
) external {
require(_to != address(0), "ERC721Bridge: nft recipient cannot be address(0)");
_initiateBridgeERC721(
_localToken,
_remoteToken,
msg.sender,
_to,
_tokenId,
_minGasLimit,
_extraData
);
}
/**
* @notice Internal function for initiating a token bridge to the other domain.
*
* @param _localToken Address of the ERC721 on this domain.
* @param _remoteToken Address of the ERC721 on the remote domain.
* @param _from Address of the sender on this domain.
* @param _to Address to receive the token on the other domain.
* @param _tokenId Token ID to bridge.
* @param _minGasLimit Minimum gas limit for the bridge message on the other domain.
* @param _extraData Optional data to forward to the other domain. Data supplied here will
* not be used to execute any code on the other domain and is only emitted
* as extra data for the convenience of off-chain tooling.
*/
function _initiateBridgeERC721(
address _localToken,
address _remoteToken,
address _from,
address _to,
uint256 _tokenId,
uint32 _minGasLimit,
bytes calldata _extraData
) internal virtual;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { L2StandardBridge } from "../L2/L2StandardBridge.sol";
import { Predeploys } from "../libraries/Predeploys.sol";
/**
* @title FeeVault
* @notice The FeeVault contract contains the basic logic for the various different vault contracts
* used to hold fee revenue generated by the L2 system.
*/
abstract contract FeeVault {
/**
* @notice Emits each time that a withdrawal occurs.
*
* @param value Amount that was withdrawn (in wei).
* @param to Address that the funds were sent to.
* @param from Address that triggered the withdrawal.
*/
event Withdrawal(uint256 value, address to, address from);
/**
* @notice Minimum balance before a withdrawal can be triggered.
*/
uint256 public immutable MIN_WITHDRAWAL_AMOUNT;
/**
* @notice Wallet that will receive the fees on L1.
*/
address public immutable RECIPIENT;
/**
* @notice Total amount of wei processed by the contract.
*/
uint256 public totalProcessed;
/**
* @param _recipient Wallet that will receive the fees on L1.
* @param _minWithdrawalAmount Minimum balance before a withdrawal can be triggered.
*/
constructor(address _recipient, uint256 _minWithdrawalAmount) {
MIN_WITHDRAWAL_AMOUNT = _minWithdrawalAmount;
RECIPIENT = _recipient;
}
/**
* @notice Allow the contract to receive ETH.
*/
receive() external payable {}
/**
* @notice Triggers a withdrawal of funds to the L1 fee wallet.
*/
function withdraw() external {
require(
address(this).balance >= MIN_WITHDRAWAL_AMOUNT,
"FeeVault: withdrawal amount must be greater than minimum withdrawal amount"
);
uint256 value = address(this).balance;
totalProcessed += value;
emit Withdrawal(value, RECIPIENT, msg.sender);
L2StandardBridge(payable(Predeploys.L2_STANDARD_BRIDGE)).bridgeETHTo{ value: value }(
RECIPIENT,
20000,
bytes("")
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
/**
* @title IOptimismMintableERC20
* @notice This interface is available on the OptimismMintableERC20 contract. We declare it as a
* separate interface so that it can be used in custom implementations of
* OptimismMintableERC20.
*/
interface IOptimismMintableERC20 {
function remoteToken() external returns (address);
function bridge() external returns (address);
function mint(address _to, uint256 _amount) external;
function burn(address _from, uint256 _amount) external;
}
/**
* @custom:legacy
* @title ILegacyMintableERC20
* @notice This interface was available on the legacy L2StandardERC20 contract. It remains available
* on the OptimismMintableERC20 contract for backwards compatibility.
*/
interface ILegacyMintableERC20 is IERC165 {
function l1Token() external returns (address);
function mint(address _to, uint256 _amount) external;
function burn(address _from, uint256 _amount) external;
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {
IERC721Enumerable
} from "@openzeppelin/contracts/token/ERC721/extensions/IERC721Enumerable.sol";
/**
* @title IOptimismMintableERC721
* @notice Interface for contracts that are compatible with the OptimismMintableERC721 standard.
* Tokens that follow this standard can be easily transferred across the ERC721 bridge.
*/
interface IOptimismMintableERC721 is IERC721Enumerable {
/**
* @notice Emitted when a token is minted.
*
* @param account Address of the account the token was minted to.
* @param tokenId Token ID of the minted token.
*/
event Mint(address indexed account, uint256 tokenId);
/**
* @notice Emitted when a token is burned.
*
* @param account Address of the account the token was burned from.
* @param tokenId Token ID of the burned token.
*/
event Burn(address indexed account, uint256 tokenId);
/**
* @notice Mints some token ID for a user, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* @param _to Address of the user to mint the token for.
* @param _tokenId Token ID to mint.
*/
function safeMint(address _to, uint256 _tokenId) external;
/**
* @notice Burns a token ID from a user.
*
* @param _from Address of the user to burn the token from.
* @param _tokenId Token ID to burn.
*/
function burn(address _from, uint256 _tokenId) external;
/**
* @notice Chain ID of the chain where the remote token is deployed.
*/
function REMOTE_CHAIN_ID() external view returns (uint256);
/**
* @notice Address of the token on the remote domain.
*/
function REMOTE_TOKEN() external view returns (address);
/**
* @notice Address of the ERC721 bridge on this network.
*/
function BRIDGE() external view returns (address);
/**
* @notice Chain ID of the chain where the remote token is deployed.
*/
function remoteChainId() external view returns (uint256);
/**
* @notice Address of the token on the remote domain.
*/
function remoteToken() external view returns (address);
/**
* @notice Address of the ERC721 bridge on this network.
*/
function bridge() external view returns (address);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
import { ERC20 } from "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import { ILegacyMintableERC20, IOptimismMintableERC20 } from "./IOptimismMintableERC20.sol";
import { Semver } from "../universal/Semver.sol";
/// @title OptimismMintableERC20
/// @notice OptimismMintableERC20 is a standard extension of the base ERC20 token contract designed
/// to allow the StandardBridge contracts to mint and burn tokens. This makes it possible to
/// use an OptimismMintablERC20 as the L2 representation of an L1 token, or vice-versa.
/// Designed to be backwards compatible with the older StandardL2ERC20 token which was only
/// meant for use on L2.
contract OptimismMintableERC20 is IOptimismMintableERC20, ILegacyMintableERC20, ERC20, Semver {
/// @notice Address of the corresponding version of this token on the remote chain.
address public immutable REMOTE_TOKEN;
/// @notice Address of the StandardBridge on this network.
address public immutable BRIDGE;
/// @notice Emitted whenever tokens are minted for an account.
/// @param account Address of the account tokens are being minted for.
/// @param amount Amount of tokens minted.
event Mint(address indexed account, uint256 amount);
/// @notice Emitted whenever tokens are burned from an account.
/// @param account Address of the account tokens are being burned from.
/// @param amount Amount of tokens burned.
event Burn(address indexed account, uint256 amount);
/// @notice A modifier that only allows the bridge to call
modifier onlyBridge() {
require(msg.sender == BRIDGE, "OptimismMintableERC20: only bridge can mint and burn");
_;
}
/// @custom:semver 1.0.1
/// @param _bridge Address of the L2 standard bridge.
/// @param _remoteToken Address of the corresponding L1 token.
/// @param _name ERC20 name.
/// @param _symbol ERC20 symbol.
constructor(
address _bridge,
address _remoteToken,
string memory _name,
string memory _symbol
) ERC20(_name, _symbol) Semver(1, 0, 0) {
REMOTE_TOKEN = _remoteToken;
BRIDGE = _bridge;
}
/// @notice Allows the StandardBridge on this network to mint tokens.
/// @param _to Address to mint tokens to.
/// @param _amount Amount of tokens to mint.
function mint(address _to, uint256 _amount)
external
virtual
override(IOptimismMintableERC20, ILegacyMintableERC20)
onlyBridge
{
_mint(_to, _amount);
emit Mint(_to, _amount);
}
/// @notice Allows the StandardBridge on this network to burn tokens.
/// @param _from Address to burn tokens from.
/// @param _amount Amount of tokens to burn.
function burn(address _from, uint256 _amount)
external
virtual
override(IOptimismMintableERC20, ILegacyMintableERC20)
onlyBridge
{
_burn(_from, _amount);
emit Burn(_from, _amount);
}
/// @notice ERC165 interface check function.
/// @param _interfaceId Interface ID to check.
/// @return Whether or not the interface is supported by this contract.
function supportsInterface(bytes4 _interfaceId) external pure returns (bool) {
bytes4 iface1 = type(IERC165).interfaceId;
// Interface corresponding to the legacy L2StandardERC20.
bytes4 iface2 = type(ILegacyMintableERC20).interfaceId;
// Interface corresponding to the updated OptimismMintableERC20 (this contract).
bytes4 iface3 = type(IOptimismMintableERC20).interfaceId;
return _interfaceId == iface1 || _interfaceId == iface2 || _interfaceId == iface3;
}
/// @custom:legacy
/// @notice Legacy getter for the remote token. Use REMOTE_TOKEN going forward.
function l1Token() public view returns (address) {
return REMOTE_TOKEN;
}
/// @custom:legacy
/// @notice Legacy getter for the bridge. Use BRIDGE going forward.
function l2Bridge() public view returns (address) {
return BRIDGE;
}
/// @custom:legacy
/// @notice Legacy getter for REMOTE_TOKEN.
function remoteToken() public view returns (address) {
return REMOTE_TOKEN;
}
/// @custom:legacy
/// @notice Legacy getter for BRIDGE.
function bridge() public view returns (address) {
return BRIDGE;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.8.15;
/* Contract Imports */
import { OptimismMintableERC20 } from "../universal/OptimismMintableERC20.sol";
import { Semver } from "./Semver.sol";
/**
* @custom:proxied
* @custom:predeployed 0x4200000000000000000000000000000000000012
* @title OptimismMintableERC20Factory
* @notice OptimismMintableERC20Factory is a factory contract that generates OptimismMintableERC20
* contracts on the network it's deployed to. Simplifies the deployment process for users
* who may be less familiar with deploying smart contracts. Designed to be backwards
* compatible with the older StandardL2ERC20Factory contract.
*/
contract OptimismMintableERC20Factory is Semver {
/**
* @notice Address of the StandardBridge on this chain.
*/
address public immutable BRIDGE;
/**
* @custom:legacy
* @notice Emitted whenever a new OptimismMintableERC20 is created. Legacy version of the newer
* OptimismMintableERC20Created event. We recommend relying on that event instead.
*
* @param remoteToken Address of the token on the remote chain.
* @param localToken Address of the created token on the local chain.
*/
event StandardL2TokenCreated(address indexed remoteToken, address indexed localToken);
/**
* @notice Emitted whenever a new OptimismMintableERC20 is created.
*
* @param localToken Address of the created token on the local chain.
* @param remoteToken Address of the corresponding token on the remote chain.
* @param deployer Address of the account that deployed the token.
*/
event OptimismMintableERC20Created(
address indexed localToken,
address indexed remoteToken,
address deployer
);
/**
* @custom:semver 1.0.0
*
* @param _bridge Address of the StandardBridge on this chain.
*/
constructor(address _bridge) Semver(1, 0, 0) {
BRIDGE = _bridge;
}
/**
* @custom:legacy
* @notice Creates an instance of the OptimismMintableERC20 contract. Legacy version of the
* newer createOptimismMintableERC20 function, which has a more intuitive name.
*
* @param _remoteToken Address of the token on the remote chain.
* @param _name ERC20 name.
* @param _symbol ERC20 symbol.
*
* @return Address of the newly created token.
*/
function createStandardL2Token(
address _remoteToken,
string memory _name,
string memory _symbol
) external returns (address) {
return createOptimismMintableERC20(_remoteToken, _name, _symbol);
}
/**
* @notice Creates an instance of the OptimismMintableERC20 contract.
*
* @param _remoteToken Address of the token on the remote chain.
* @param _name ERC20 name.
* @param _symbol ERC20 symbol.
*
* @return Address of the newly created token.
*/
function createOptimismMintableERC20(
address _remoteToken,
string memory _name,
string memory _symbol
) public returns (address) {
require(
_remoteToken != address(0),
"OptimismMintableERC20Factory: must provide remote token address"
);
address localToken = address(
new OptimismMintableERC20(BRIDGE, _remoteToken, _name, _symbol)
);
// Emit the old event too for legacy support.
emit StandardL2TokenCreated(_remoteToken, localToken);
// Emit the updated event. The arguments here differ from the legacy event, but
// are consistent with the ordering used in StandardBridge events.
emit OptimismMintableERC20Created(localToken, _remoteToken, msg.sender);
return localToken;
}
}
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;
import {
ERC721Enumerable
} from "@openzeppelin/contracts/token/ERC721/extensions/ERC721Enumerable.sol";
import { ERC721 } from "@openzeppelin/contracts/token/ERC721/ERC721.sol";
import { IERC165 } from "@openzeppelin/contracts/utils/introspection/IERC165.sol";
import { Strings } from "@openzeppelin/contracts/utils/Strings.sol";
import { IOptimismMintableERC721 } from "./IOptimismMintableERC721.sol";
/**
* @title OptimismMintableERC721
* @notice This contract is the remote representation for some token that lives on another network,
* typically an Optimism representation of an Ethereum-based token. Standard reference
* implementation that can be extended or modified according to your needs.
*/
contract Opt