ETH Price: $3,056.18 (-6.57%)

Token

Rocket Fuel (BPT-rETH-ETH)
 

Overview

Max Total Supply

1,202.228093723225299015 BPT-rETH-ETH

Holders

11,358

Market

Price

$0.00 @ 0.000000 ETH

Onchain Market Cap

$0.00

Circulating Supply Market Cap

-

Other Info

Token Contract (WITH 18 Decimals)

Balance
0.049782882947175185 BPT-rETH-ETH

Value
$0.00
0x68108902de3a5031197a6eb3b74b3b033e8e8e4d
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Contract Source Code Verified (Exact Match)

Contract Name:
MetaStablePool

Compiler Version
v0.7.1+commit.f4a555be

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion
File 1 of 47 : IVault.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ISignaturesValidator.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/ITemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/misc/IWETH.sol";

import "./IAsset.sol";
import "./IAuthorizer.sol";
import "./IFlashLoanRecipient.sol";
import "./IProtocolFeesCollector.sol";

pragma solidity ^0.7.0;

/**
 * @dev Full external interface for the Vault core contract - no external or public methods exist in the contract that
 * don't override one of these declarations.
 */
interface IVault is ISignaturesValidator, ITemporarilyPausable {
    // Generalities about the Vault:
    //
    // - Whenever documentation refers to 'tokens', it strictly refers to ERC20-compliant token contracts. Tokens are
    // transferred out of the Vault by calling the `IERC20.transfer` function, and transferred in by calling
    // `IERC20.transferFrom`. In these cases, the sender must have previously allowed the Vault to use their tokens by
    // calling `IERC20.approve`. The only deviation from the ERC20 standard that is supported is functions not returning
    // a boolean value: in these scenarios, a non-reverting call is assumed to be successful.
    //
    // - All non-view functions in the Vault are non-reentrant: calling them while another one is mid-execution (e.g.
    // while execution control is transferred to a token contract during a swap) will result in a revert. View
    // functions can be called in a re-reentrant way, but doing so might cause them to return inconsistent results.
    // Contracts calling view functions in the Vault must make sure the Vault has not already been entered.
    //
    // - View functions revert if referring to either unregistered Pools, or unregistered tokens for registered Pools.

    // Authorizer
    //
    // Some system actions are permissioned, like setting and collecting protocol fees. This permissioning system exists
    // outside of the Vault in the Authorizer contract: the Vault simply calls the Authorizer to check if the caller
    // can perform a given action.

    /**
     * @dev Returns the Vault's Authorizer.
     */
    function getAuthorizer() external view returns (IAuthorizer);

    /**
     * @dev Sets a new Authorizer for the Vault. The caller must be allowed by the current Authorizer to do this.
     *
     * Emits an `AuthorizerChanged` event.
     */
    function setAuthorizer(IAuthorizer newAuthorizer) external;

    /**
     * @dev Emitted when a new authorizer is set by `setAuthorizer`.
     */
    event AuthorizerChanged(IAuthorizer indexed newAuthorizer);

    // Relayers
    //
    // Additionally, it is possible for an account to perform certain actions on behalf of another one, using their
    // Vault ERC20 allowance and Internal Balance. These accounts are said to be 'relayers' for these Vault functions,
    // and are expected to be smart contracts with sound authentication mechanisms. For an account to be able to wield
    // this power, two things must occur:
    //  - The Authorizer must grant the account the permission to be a relayer for the relevant Vault function. This
    //    means that Balancer governance must approve each individual contract to act as a relayer for the intended
    //    functions.
    //  - Each user must approve the relayer to act on their behalf.
    // This double protection means users cannot be tricked into approving malicious relayers (because they will not
    // have been allowed by the Authorizer via governance), nor can malicious relayers approved by a compromised
    // Authorizer or governance drain user funds, since they would also need to be approved by each individual user.

    /**
     * @dev Returns true if `user` has approved `relayer` to act as a relayer for them.
     */
    function hasApprovedRelayer(address user, address relayer) external view returns (bool);

    /**
     * @dev Allows `relayer` to act as a relayer for `sender` if `approved` is true, and disallows it otherwise.
     *
     * Emits a `RelayerApprovalChanged` event.
     */
    function setRelayerApproval(
        address sender,
        address relayer,
        bool approved
    ) external;

    /**
     * @dev Emitted every time a relayer is approved or disapproved by `setRelayerApproval`.
     */
    event RelayerApprovalChanged(address indexed relayer, address indexed sender, bool approved);

    // Internal Balance
    //
    // Users can deposit tokens into the Vault, where they are allocated to their Internal Balance, and later
    // transferred or withdrawn. It can also be used as a source of tokens when joining Pools, as a destination
    // when exiting them, and as either when performing swaps. This usage of Internal Balance results in greatly reduced
    // gas costs when compared to relying on plain ERC20 transfers, leading to large savings for frequent users.
    //
    // Internal Balance management features batching, which means a single contract call can be used to perform multiple
    // operations of different kinds, with different senders and recipients, at once.

    /**
     * @dev Returns `user`'s Internal Balance for a set of tokens.
     */
    function getInternalBalance(address user, IERC20[] memory tokens) external view returns (uint256[] memory);

    /**
     * @dev Performs a set of user balance operations, which involve Internal Balance (deposit, withdraw or transfer)
     * and plain ERC20 transfers using the Vault's allowance. This last feature is particularly useful for relayers, as
     * it lets integrators reuse a user's Vault allowance.
     *
     * For each operation, if the caller is not `sender`, it must be an authorized relayer for them.
     */
    function manageUserBalance(UserBalanceOp[] memory ops) external payable;

    /**
     * @dev Data for `manageUserBalance` operations, which include the possibility for ETH to be sent and received
     without manual WETH wrapping or unwrapping.
     */
    struct UserBalanceOp {
        UserBalanceOpKind kind;
        IAsset asset;
        uint256 amount;
        address sender;
        address payable recipient;
    }

    // There are four possible operations in `manageUserBalance`:
    //
    // - DEPOSIT_INTERNAL
    // Increases the Internal Balance of the `recipient` account by transferring tokens from the corresponding
    // `sender`. The sender must have allowed the Vault to use their tokens via `IERC20.approve()`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset and forwarding ETH in the call: it will be wrapped
    // and deposited as WETH. Any ETH amount remaining will be sent back to the caller (not the sender, which is
    // relevant for relayers).
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - WITHDRAW_INTERNAL
    // Decreases the Internal Balance of the `sender` account by transferring tokens to the `recipient`.
    //
    // ETH can be used by passing the ETH sentinel value as the asset. This will deduct WETH instead, unwrap it and send
    // it to the recipient as ETH.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_INTERNAL
    // Transfers tokens from the Internal Balance of the `sender` account to the Internal Balance of `recipient`.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `InternalBalanceChanged` event.
    //
    //
    // - TRANSFER_EXTERNAL
    // Transfers tokens from `sender` to `recipient`, using the Vault's ERC20 allowance. This is typically used by
    // relayers, as it lets them reuse a user's Vault allowance.
    //
    // Reverts if the ETH sentinel value is passed.
    //
    // Emits an `ExternalBalanceTransfer` event.

    enum UserBalanceOpKind { DEPOSIT_INTERNAL, WITHDRAW_INTERNAL, TRANSFER_INTERNAL, TRANSFER_EXTERNAL }

    /**
     * @dev Emitted when a user's Internal Balance changes, either from calls to `manageUserBalance`, or through
     * interacting with Pools using Internal Balance.
     *
     * Because Internal Balance works exclusively with ERC20 tokens, ETH deposits and withdrawals will use the WETH
     * address.
     */
    event InternalBalanceChanged(address indexed user, IERC20 indexed token, int256 delta);

    /**
     * @dev Emitted when a user's Vault ERC20 allowance is used by the Vault to transfer tokens to an external account.
     */
    event ExternalBalanceTransfer(IERC20 indexed token, address indexed sender, address recipient, uint256 amount);

    // Pools
    //
    // There are three specialization settings for Pools, which allow for cheaper swaps at the cost of reduced
    // functionality:
    //
    //  - General: no specialization, suited for all Pools. IGeneralPool is used for swap request callbacks, passing the
    // balance of all tokens in the Pool. These Pools have the largest swap costs (because of the extra storage reads),
    // which increase with the number of registered tokens.
    //
    //  - Minimal Swap Info: IMinimalSwapInfoPool is used instead of IGeneralPool, which saves gas by only passing the
    // balance of the two tokens involved in the swap. This is suitable for some pricing algorithms, like the weighted
    // constant product one popularized by Balancer V1. Swap costs are smaller compared to general Pools, and are
    // independent of the number of registered tokens.
    //
    //  - Two Token: only allows two tokens to be registered. This achieves the lowest possible swap gas cost. Like
    // minimal swap info Pools, these are called via IMinimalSwapInfoPool.

    enum PoolSpecialization { GENERAL, MINIMAL_SWAP_INFO, TWO_TOKEN }

    /**
     * @dev Registers the caller account as a Pool with a given specialization setting. Returns the Pool's ID, which
     * is used in all Pool-related functions. Pools cannot be deregistered, nor can the Pool's specialization be
     * changed.
     *
     * The caller is expected to be a smart contract that implements either `IGeneralPool` or `IMinimalSwapInfoPool`,
     * depending on the chosen specialization setting. This contract is known as the Pool's contract.
     *
     * Note that the same contract may register itself as multiple Pools with unique Pool IDs, or in other words,
     * multiple Pools may share the same contract.
     *
     * Emits a `PoolRegistered` event.
     */
    function registerPool(PoolSpecialization specialization) external returns (bytes32);

    /**
     * @dev Emitted when a Pool is registered by calling `registerPool`.
     */
    event PoolRegistered(bytes32 indexed poolId, address indexed poolAddress, PoolSpecialization specialization);

    /**
     * @dev Returns a Pool's contract address and specialization setting.
     */
    function getPool(bytes32 poolId) external view returns (address, PoolSpecialization);

    /**
     * @dev Registers `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Pools can only interact with tokens they have registered. Users join a Pool by transferring registered tokens,
     * exit by receiving registered tokens, and can only swap registered tokens.
     *
     * Each token can only be registered once. For Pools with the Two Token specialization, `tokens` must have a length
     * of two, that is, both tokens must be registered in the same `registerTokens` call, and they must be sorted in
     * ascending order.
     *
     * The `tokens` and `assetManagers` arrays must have the same length, and each entry in these indicates the Asset
     * Manager for the corresponding token. Asset Managers can manage a Pool's tokens via `managePoolBalance`,
     * depositing and withdrawing them directly, and can even set their balance to arbitrary amounts. They are therefore
     * expected to be highly secured smart contracts with sound design principles, and the decision to register an
     * Asset Manager should not be made lightly.
     *
     * Pools can choose not to assign an Asset Manager to a given token by passing in the zero address. Once an Asset
     * Manager is set, it cannot be changed except by deregistering the associated token and registering again with a
     * different Asset Manager.
     *
     * Emits a `TokensRegistered` event.
     */
    function registerTokens(
        bytes32 poolId,
        IERC20[] memory tokens,
        address[] memory assetManagers
    ) external;

    /**
     * @dev Emitted when a Pool registers tokens by calling `registerTokens`.
     */
    event TokensRegistered(bytes32 indexed poolId, IERC20[] tokens, address[] assetManagers);

    /**
     * @dev Deregisters `tokens` for the `poolId` Pool. Must be called by the Pool's contract.
     *
     * Only registered tokens (via `registerTokens`) can be deregistered. Additionally, they must have zero total
     * balance. For Pools with the Two Token specialization, `tokens` must have a length of two, that is, both tokens
     * must be deregistered in the same `deregisterTokens` call.
     *
     * A deregistered token can be re-registered later on, possibly with a different Asset Manager.
     *
     * Emits a `TokensDeregistered` event.
     */
    function deregisterTokens(bytes32 poolId, IERC20[] memory tokens) external;

    /**
     * @dev Emitted when a Pool deregisters tokens by calling `deregisterTokens`.
     */
    event TokensDeregistered(bytes32 indexed poolId, IERC20[] tokens);

    /**
     * @dev Returns detailed information for a Pool's registered token.
     *
     * `cash` is the number of tokens the Vault currently holds for the Pool. `managed` is the number of tokens
     * withdrawn and held outside the Vault by the Pool's token Asset Manager. The Pool's total balance for `token`
     * equals the sum of `cash` and `managed`.
     *
     * Internally, `cash` and `managed` are stored using 112 bits. No action can ever cause a Pool's token `cash`,
     * `managed` or `total` balance to be greater than 2^112 - 1.
     *
     * `lastChangeBlock` is the number of the block in which `token`'s total balance was last modified (via either a
     * join, exit, swap, or Asset Manager update). This value is useful to avoid so-called 'sandwich attacks', for
     * example when developing price oracles. A change of zero (e.g. caused by a swap with amount zero) is considered a
     * change for this purpose, and will update `lastChangeBlock`.
     *
     * `assetManager` is the Pool's token Asset Manager.
     */
    function getPoolTokenInfo(bytes32 poolId, IERC20 token)
        external
        view
        returns (
            uint256 cash,
            uint256 managed,
            uint256 lastChangeBlock,
            address assetManager
        );

    /**
     * @dev Returns a Pool's registered tokens, the total balance for each, and the latest block when *any* of
     * the tokens' `balances` changed.
     *
     * The order of the `tokens` array is the same order that will be used in `joinPool`, `exitPool`, as well as in all
     * Pool hooks (where applicable). Calls to `registerTokens` and `deregisterTokens` may change this order.
     *
     * If a Pool only registers tokens once, and these are sorted in ascending order, they will be stored in the same
     * order as passed to `registerTokens`.
     *
     * Total balances include both tokens held by the Vault and those withdrawn by the Pool's Asset Managers. These are
     * the amounts used by joins, exits and swaps. For a detailed breakdown of token balances, use `getPoolTokenInfo`
     * instead.
     */
    function getPoolTokens(bytes32 poolId)
        external
        view
        returns (
            IERC20[] memory tokens,
            uint256[] memory balances,
            uint256 lastChangeBlock
        );

    /**
     * @dev Called by users to join a Pool, which transfers tokens from `sender` into the Pool's balance. This will
     * trigger custom Pool behavior, which will typically grant something in return to `recipient` - often tokenized
     * Pool shares.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `assets` and `maxAmountsIn` arrays must have the same length, and each entry indicates the maximum amount
     * to send for each asset. The amounts to send are decided by the Pool and not the Vault: it just enforces
     * these maximums.
     *
     * If joining a Pool that holds WETH, it is possible to send ETH directly: the Vault will do the wrapping. To enable
     * this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead of the
     * WETH address. Note that it is not possible to combine ETH and WETH in the same join. Any excess ETH will be sent
     * back to the caller (not the sender, which is important for relayers).
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If sending ETH however, the array must be
     * sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the final
     * `assets` array might not be sorted. Pools with no registered tokens cannot be joined.
     *
     * If `fromInternalBalance` is true, the caller's Internal Balance will be preferred: ERC20 transfers will only
     * be made for the difference between the requested amount and Internal Balance (if any). Note that ETH cannot be
     * withdrawn from Internal Balance: attempting to do so will trigger a revert.
     *
     * This causes the Vault to call the `IBasePool.onJoinPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares). This can be encoded in the `userData` argument, which is ignored by the Vault and passed
     * directly to the Pool's contract, as is `recipient`.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function joinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        JoinPoolRequest memory request
    ) external payable;

    struct JoinPoolRequest {
        IAsset[] assets;
        uint256[] maxAmountsIn;
        bytes userData;
        bool fromInternalBalance;
    }

    /**
     * @dev Called by users to exit a Pool, which transfers tokens from the Pool's balance to `recipient`. This will
     * trigger custom Pool behavior, which will typically ask for something in return from `sender` - often tokenized
     * Pool shares. The amount of tokens that can be withdrawn is limited by the Pool's `cash` balance (see
     * `getPoolTokenInfo`).
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * The `tokens` and `minAmountsOut` arrays must have the same length, and each entry in these indicates the minimum
     * token amount to receive for each token contract. The amounts to send are decided by the Pool and not the Vault:
     * it just enforces these minimums.
     *
     * If exiting a Pool that holds WETH, it is possible to receive ETH directly: the Vault will do the unwrapping. To
     * enable this mechanism, the IAsset sentinel value (the zero address) must be passed in the `assets` array instead
     * of the WETH address. Note that it is not possible to combine ETH and WETH in the same exit.
     *
     * `assets` must have the same length and order as the array returned by `getPoolTokens`. This prevents issues when
     * interacting with Pools that register and deregister tokens frequently. If receiving ETH however, the array must
     * be sorted *before* replacing the WETH address with the ETH sentinel value (the zero address), which means the
     * final `assets` array might not be sorted. Pools with no registered tokens cannot be exited.
     *
     * If `toInternalBalance` is true, the tokens will be deposited to `recipient`'s Internal Balance. Otherwise,
     * an ERC20 transfer will be performed. Note that ETH cannot be deposited to Internal Balance: attempting to
     * do so will trigger a revert.
     *
     * `minAmountsOut` is the minimum amount of tokens the user expects to get out of the Pool, for each token in the
     * `tokens` array. This array must match the Pool's registered tokens.
     *
     * This causes the Vault to call the `IBasePool.onExitPool` hook on the Pool's contract, where Pools implement
     * their own custom logic. This typically requires additional information from the user (such as the expected number
     * of Pool shares to return). This can be encoded in the `userData` argument, which is ignored by the Vault and
     * passed directly to the Pool's contract.
     *
     * Emits a `PoolBalanceChanged` event.
     */
    function exitPool(
        bytes32 poolId,
        address sender,
        address payable recipient,
        ExitPoolRequest memory request
    ) external;

    struct ExitPoolRequest {
        IAsset[] assets;
        uint256[] minAmountsOut;
        bytes userData;
        bool toInternalBalance;
    }

    /**
     * @dev Emitted when a user joins or exits a Pool by calling `joinPool` or `exitPool`, respectively.
     */
    event PoolBalanceChanged(
        bytes32 indexed poolId,
        address indexed liquidityProvider,
        IERC20[] tokens,
        int256[] deltas,
        uint256[] protocolFeeAmounts
    );

    enum PoolBalanceChangeKind { JOIN, EXIT }

    // Swaps
    //
    // Users can swap tokens with Pools by calling the `swap` and `batchSwap` functions. To do this,
    // they need not trust Pool contracts in any way: all security checks are made by the Vault. They must however be
    // aware of the Pools' pricing algorithms in order to estimate the prices Pools will quote.
    //
    // The `swap` function executes a single swap, while `batchSwap` can perform multiple swaps in sequence.
    // In each individual swap, tokens of one kind are sent from the sender to the Pool (this is the 'token in'),
    // and tokens of another kind are sent from the Pool to the recipient in exchange (this is the 'token out').
    // More complex swaps, such as one token in to multiple tokens out can be achieved by batching together
    // individual swaps.
    //
    // There are two swap kinds:
    //  - 'given in' swaps, where the amount of tokens in (sent to the Pool) is known, and the Pool determines (via the
    // `onSwap` hook) the amount of tokens out (to send to the recipient).
    //  - 'given out' swaps, where the amount of tokens out (received from the Pool) is known, and the Pool determines
    // (via the `onSwap` hook) the amount of tokens in (to receive from the sender).
    //
    // Additionally, it is possible to chain swaps using a placeholder input amount, which the Vault replaces with
    // the calculated output of the previous swap. If the previous swap was 'given in', this will be the calculated
    // tokenOut amount. If the previous swap was 'given out', it will use the calculated tokenIn amount. These extended
    // swaps are known as 'multihop' swaps, since they 'hop' through a number of intermediate tokens before arriving at
    // the final intended token.
    //
    // In all cases, tokens are only transferred in and out of the Vault (or withdrawn from and deposited into Internal
    // Balance) after all individual swaps have been completed, and the net token balance change computed. This makes
    // certain swap patterns, such as multihops, or swaps that interact with the same token pair in multiple Pools, cost
    // much less gas than they would otherwise.
    //
    // It also means that under certain conditions it is possible to perform arbitrage by swapping with multiple
    // Pools in a way that results in net token movement out of the Vault (profit), with no tokens being sent in (only
    // updating the Pool's internal accounting).
    //
    // To protect users from front-running or the market changing rapidly, they supply a list of 'limits' for each token
    // involved in the swap, where either the maximum number of tokens to send (by passing a positive value) or the
    // minimum amount of tokens to receive (by passing a negative value) is specified.
    //
    // Additionally, a 'deadline' timestamp can also be provided, forcing the swap to fail if it occurs after
    // this point in time (e.g. if the transaction failed to be included in a block promptly).
    //
    // If interacting with Pools that hold WETH, it is possible to both send and receive ETH directly: the Vault will do
    // the wrapping and unwrapping. To enable this mechanism, the IAsset sentinel value (the zero address) must be
    // passed in the `assets` array instead of the WETH address. Note that it is possible to combine ETH and WETH in the
    // same swap. Any excess ETH will be sent back to the caller (not the sender, which is relevant for relayers).
    //
    // Finally, Internal Balance can be used when either sending or receiving tokens.

    enum SwapKind { GIVEN_IN, GIVEN_OUT }

    /**
     * @dev Performs a swap with a single Pool.
     *
     * If the swap is 'given in' (the number of tokens to send to the Pool is known), it returns the amount of tokens
     * taken from the Pool, which must be greater than or equal to `limit`.
     *
     * If the swap is 'given out' (the number of tokens to take from the Pool is known), it returns the amount of tokens
     * sent to the Pool, which must be less than or equal to `limit`.
     *
     * Internal Balance usage and the recipient are determined by the `funds` struct.
     *
     * Emits a `Swap` event.
     */
    function swap(
        SingleSwap memory singleSwap,
        FundManagement memory funds,
        uint256 limit,
        uint256 deadline
    ) external payable returns (uint256);

    /**
     * @dev Data for a single swap executed by `swap`. `amount` is either `amountIn` or `amountOut` depending on
     * the `kind` value.
     *
     * `assetIn` and `assetOut` are either token addresses, or the IAsset sentinel value for ETH (the zero address).
     * Note that Pools never interact with ETH directly: it will be wrapped to or unwrapped from WETH by the Vault.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct SingleSwap {
        bytes32 poolId;
        SwapKind kind;
        IAsset assetIn;
        IAsset assetOut;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Performs a series of swaps with one or multiple Pools. In each individual swap, the caller determines either
     * the amount of tokens sent to or received from the Pool, depending on the `kind` value.
     *
     * Returns an array with the net Vault asset balance deltas. Positive amounts represent tokens (or ETH) sent to the
     * Vault, and negative amounts represent tokens (or ETH) sent by the Vault. Each delta corresponds to the asset at
     * the same index in the `assets` array.
     *
     * Swaps are executed sequentially, in the order specified by the `swaps` array. Each array element describes a
     * Pool, the token to be sent to this Pool, the token to receive from it, and an amount that is either `amountIn` or
     * `amountOut` depending on the swap kind.
     *
     * Multihop swaps can be executed by passing an `amount` value of zero for a swap. This will cause the amount in/out
     * of the previous swap to be used as the amount in for the current one. In a 'given in' swap, 'tokenIn' must equal
     * the previous swap's `tokenOut`. For a 'given out' swap, `tokenOut` must equal the previous swap's `tokenIn`.
     *
     * The `assets` array contains the addresses of all assets involved in the swaps. These are either token addresses,
     * or the IAsset sentinel value for ETH (the zero address). Each entry in the `swaps` array specifies tokens in and
     * out by referencing an index in `assets`. Note that Pools never interact with ETH directly: it will be wrapped to
     * or unwrapped from WETH by the Vault.
     *
     * Internal Balance usage, sender, and recipient are determined by the `funds` struct. The `limits` array specifies
     * the minimum or maximum amount of each token the vault is allowed to transfer.
     *
     * `batchSwap` can be used to make a single swap, like `swap` does, but doing so requires more gas than the
     * equivalent `swap` call.
     *
     * Emits `Swap` events.
     */
    function batchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds,
        int256[] memory limits,
        uint256 deadline
    ) external payable returns (int256[] memory);

    /**
     * @dev Data for each individual swap executed by `batchSwap`. The asset in and out fields are indexes into the
     * `assets` array passed to that function, and ETH assets are converted to WETH.
     *
     * If `amount` is zero, the multihop mechanism is used to determine the actual amount based on the amount in/out
     * from the previous swap, depending on the swap kind.
     *
     * The `userData` field is ignored by the Vault, but forwarded to the Pool in the `onSwap` hook, and may be
     * used to extend swap behavior.
     */
    struct BatchSwapStep {
        bytes32 poolId;
        uint256 assetInIndex;
        uint256 assetOutIndex;
        uint256 amount;
        bytes userData;
    }

    /**
     * @dev Emitted for each individual swap performed by `swap` or `batchSwap`.
     */
    event Swap(
        bytes32 indexed poolId,
        IERC20 indexed tokenIn,
        IERC20 indexed tokenOut,
        uint256 amountIn,
        uint256 amountOut
    );

    /**
     * @dev All tokens in a swap are either sent from the `sender` account to the Vault, or from the Vault to the
     * `recipient` account.
     *
     * If the caller is not `sender`, it must be an authorized relayer for them.
     *
     * If `fromInternalBalance` is true, the `sender`'s Internal Balance will be preferred, performing an ERC20
     * transfer for the difference between the requested amount and the User's Internal Balance (if any). The `sender`
     * must have allowed the Vault to use their tokens via `IERC20.approve()`. This matches the behavior of
     * `joinPool`.
     *
     * If `toInternalBalance` is true, tokens will be deposited to `recipient`'s internal balance instead of
     * transferred. This matches the behavior of `exitPool`.
     *
     * Note that ETH cannot be deposited to or withdrawn from Internal Balance: attempting to do so will trigger a
     * revert.
     */
    struct FundManagement {
        address sender;
        bool fromInternalBalance;
        address payable recipient;
        bool toInternalBalance;
    }

    /**
     * @dev Simulates a call to `batchSwap`, returning an array of Vault asset deltas. Calls to `swap` cannot be
     * simulated directly, but an equivalent `batchSwap` call can and will yield the exact same result.
     *
     * Each element in the array corresponds to the asset at the same index, and indicates the number of tokens (or ETH)
     * the Vault would take from the sender (if positive) or send to the recipient (if negative). The arguments it
     * receives are the same that an equivalent `batchSwap` call would receive.
     *
     * Unlike `batchSwap`, this function performs no checks on the sender or recipient field in the `funds` struct.
     * This makes it suitable to be called by off-chain applications via eth_call without needing to hold tokens,
     * approve them for the Vault, or even know a user's address.
     *
     * Note that this function is not 'view' (due to implementation details): the client code must explicitly execute
     * eth_call instead of eth_sendTransaction.
     */
    function queryBatchSwap(
        SwapKind kind,
        BatchSwapStep[] memory swaps,
        IAsset[] memory assets,
        FundManagement memory funds
    ) external returns (int256[] memory assetDeltas);

    // Flash Loans

    /**
     * @dev Performs a 'flash loan', sending tokens to `recipient`, executing the `receiveFlashLoan` hook on it,
     * and then reverting unless the tokens plus a proportional protocol fee have been returned.
     *
     * The `tokens` and `amounts` arrays must have the same length, and each entry in these indicates the loan amount
     * for each token contract. `tokens` must be sorted in ascending order.
     *
     * The 'userData' field is ignored by the Vault, and forwarded as-is to `recipient` as part of the
     * `receiveFlashLoan` call.
     *
     * Emits `FlashLoan` events.
     */
    function flashLoan(
        IFlashLoanRecipient recipient,
        IERC20[] memory tokens,
        uint256[] memory amounts,
        bytes memory userData
    ) external;

    /**
     * @dev Emitted for each individual flash loan performed by `flashLoan`.
     */
    event FlashLoan(IFlashLoanRecipient indexed recipient, IERC20 indexed token, uint256 amount, uint256 feeAmount);

    // Asset Management
    //
    // Each token registered for a Pool can be assigned an Asset Manager, which is able to freely withdraw the Pool's
    // tokens from the Vault, deposit them, or assign arbitrary values to its `managed` balance (see
    // `getPoolTokenInfo`). This makes them extremely powerful and dangerous. Even if an Asset Manager only directly
    // controls one of the tokens in a Pool, a malicious manager could set that token's balance to manipulate the
    // prices of the other tokens, and then drain the Pool with swaps. The risk of using Asset Managers is therefore
    // not constrained to the tokens they are managing, but extends to the entire Pool's holdings.
    //
    // However, a properly designed Asset Manager smart contract can be safely used for the Pool's benefit,
    // for example by lending unused tokens out for interest, or using them to participate in voting protocols.
    //
    // This concept is unrelated to the IAsset interface.

    /**
     * @dev Performs a set of Pool balance operations, which may be either withdrawals, deposits or updates.
     *
     * Pool Balance management features batching, which means a single contract call can be used to perform multiple
     * operations of different kinds, with different Pools and tokens, at once.
     *
     * For each operation, the caller must be registered as the Asset Manager for `token` in `poolId`.
     */
    function managePoolBalance(PoolBalanceOp[] memory ops) external;

    struct PoolBalanceOp {
        PoolBalanceOpKind kind;
        bytes32 poolId;
        IERC20 token;
        uint256 amount;
    }

    /**
     * Withdrawals decrease the Pool's cash, but increase its managed balance, leaving the total balance unchanged.
     *
     * Deposits increase the Pool's cash, but decrease its managed balance, leaving the total balance unchanged.
     *
     * Updates don't affect the Pool's cash balance, but because the managed balance changes, it does alter the total.
     * The external amount can be either increased or decreased by this call (i.e., reporting a gain or a loss).
     */
    enum PoolBalanceOpKind { WITHDRAW, DEPOSIT, UPDATE }

    /**
     * @dev Emitted when a Pool's token Asset Manager alters its balance via `managePoolBalance`.
     */
    event PoolBalanceManaged(
        bytes32 indexed poolId,
        address indexed assetManager,
        IERC20 indexed token,
        int256 cashDelta,
        int256 managedDelta
    );

    // Protocol Fees
    //
    // Some operations cause the Vault to collect tokens in the form of protocol fees, which can then be withdrawn by
    // permissioned accounts.
    //
    // There are two kinds of protocol fees:
    //
    //  - flash loan fees: charged on all flash loans, as a percentage of the amounts lent.
    //
    //  - swap fees: a percentage of the fees charged by Pools when performing swaps. For a number of reasons, including
    // swap gas costs and interface simplicity, protocol swap fees are not charged on each individual swap. Rather,
    // Pools are expected to keep track of how much they have charged in swap fees, and pay any outstanding debts to the
    // Vault when they are joined or exited. This prevents users from joining a Pool with unpaid debt, as well as
    // exiting a Pool in debt without first paying their share.

    /**
     * @dev Returns the current protocol fee module.
     */
    function getProtocolFeesCollector() external view returns (IProtocolFeesCollector);

    /**
     * @dev Safety mechanism to pause most Vault operations in the event of an emergency - typically detection of an
     * error in some part of the system.
     *
     * The Vault can only be paused during an initial time period, after which pausing is forever disabled.
     *
     * While the contract is paused, the following features are disabled:
     * - depositing and transferring internal balance
     * - transferring external balance (using the Vault's allowance)
     * - swaps
     * - joining Pools
     * - Asset Manager interactions
     *
     * Internal Balance can still be withdrawn, and Pools exited.
     */
    function setPaused(bool paused) external;

    /**
     * @dev Returns the Vault's WETH instance.
     */
    function WETH() external view returns (IWETH);
    // solhint-disable-previous-line func-name-mixedcase
}

File 2 of 47 : MetaStablePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-pool-utils/contracts/oracle/PoolPriceOracle.sol";
import "@balancer-labs/v2-pool-utils/contracts/interfaces/IRateProvider.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";

import "../StablePool.sol";
import "./OracleMiscData.sol";
import "./StableOracleMath.sol";

/**
 * @dev StablePool suitable for assets with proportional prices (i.e. with slow-changing exchange rates between them).
 * Requires an external feed of these exchange rates.
 *
 * It additionally features a price oracle.
 */
contract MetaStablePool is StablePool, StableOracleMath, PoolPriceOracle {
    using WordCodec for bytes32;
    using FixedPoint for uint256;
    using OracleMiscData for bytes32;

    IRateProvider private immutable _rateProvider0;
    IRateProvider private immutable _rateProvider1;

    // Price rate caches are used to avoid querying the price rate for a token every time we need to work with it.
    // Data is stored with the following structure:
    //
    // [   expires   | duration | price rate value ]
    // [   uint64    |  uint64  |      uint128     ]

    bytes32 private _priceRateCache0;
    bytes32 private _priceRateCache1;

    uint256 private constant _PRICE_RATE_CACHE_VALUE_OFFSET = 0;
    uint256 private constant _PRICE_RATE_CACHE_DURATION_OFFSET = 128;
    uint256 private constant _PRICE_RATE_CACHE_EXPIRES_OFFSET = 128 + 64;

    event OracleEnabledChanged(bool enabled);
    event PriceRateProviderSet(IERC20 indexed token, IRateProvider indexed provider, uint256 cacheDuration);
    event PriceRateCacheUpdated(IERC20 indexed token, uint256 rate);

    // The constructor arguments are received in a struct to work around stack-too-deep issues
    struct NewPoolParams {
        IVault vault;
        string name;
        string symbol;
        IERC20[] tokens;
        IRateProvider[] rateProviders;
        uint256[] priceRateCacheDuration;
        uint256 amplificationParameter;
        uint256 swapFeePercentage;
        uint256 pauseWindowDuration;
        uint256 bufferPeriodDuration;
        bool oracleEnabled;
        address owner;
    }

    constructor(NewPoolParams memory params)
        StablePool(
            params.vault,
            params.name,
            params.symbol,
            params.tokens,
            params.amplificationParameter,
            params.swapFeePercentage,
            params.pauseWindowDuration,
            params.bufferPeriodDuration,
            params.owner
        )
    {
        _require(params.tokens.length == 2, Errors.NOT_TWO_TOKENS);

        InputHelpers.ensureInputLengthMatch(
            params.tokens.length,
            params.rateProviders.length,
            params.priceRateCacheDuration.length
        );

        // Set providers and initialise cache. We can't use `_setToken0PriceRateCache` as it relies on immutable
        // variables, which cannot be read from during construction.

        IRateProvider rateProvider0 = params.rateProviders[0];
        _rateProvider0 = rateProvider0;
        if (rateProvider0 != IRateProvider(address(0))) {
            (bytes32 cache, uint256 rate) = _getNewPriceRateCache(rateProvider0, params.priceRateCacheDuration[0]);
            _priceRateCache0 = cache;
            emit PriceRateCacheUpdated(params.tokens[0], rate);
        }
        emit PriceRateProviderSet(params.tokens[0], rateProvider0, params.priceRateCacheDuration[0]);

        IRateProvider rateProvider1 = params.rateProviders[1];
        _rateProvider1 = rateProvider1;
        if (rateProvider1 != IRateProvider(address(0))) {
            (bytes32 cache, uint256 rate) = _getNewPriceRateCache(rateProvider1, params.priceRateCacheDuration[1]);
            _priceRateCache1 = cache;
            emit PriceRateCacheUpdated(params.tokens[1], rate);
        }
        emit PriceRateProviderSet(params.tokens[1], rateProvider1, params.priceRateCacheDuration[1]);

        _setOracleEnabled(params.oracleEnabled);
    }

    // Swap

    /**
     * Override to make sure sender is vault
     */
    function onSwap(
        SwapRequest memory request,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) public virtual override onlyVault(request.poolId) returns (uint256) {
        _cachePriceRatesIfNecessary();
        return super.onSwap(request, balances, indexIn, indexOut);
    }

    /**
     * Override to make sure sender is vault
     */
    function onSwap(
        SwapRequest memory request,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) public virtual override onlyVault(request.poolId) returns (uint256) {
        _cachePriceRatesIfNecessary();
        return super.onSwap(request, balanceTokenIn, balanceTokenOut);
    }

    /**
     * Update price oracle with the pre-swap balances
     */
    function _onSwapGivenIn(
        SwapRequest memory request,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) internal virtual override returns (uint256) {
        _updateOracle(request.lastChangeBlock, balances[0], balances[1]);
        return super._onSwapGivenIn(request, balances, indexIn, indexOut);
    }

    /**
     * Update price oracle with the pre-swap balances
     */
    function _onSwapGivenOut(
        SwapRequest memory request,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) internal virtual override returns (uint256) {
        _updateOracle(request.lastChangeBlock, balances[0], balances[1]);
        return super._onSwapGivenOut(request, balances, indexIn, indexOut);
    }

    // Join

    /**
     * @dev Update cached total supply and invariant using the results after the join that will be used for
     * future oracle updates.
     * Note this function does not perform any safety checks about joins, it relies on upper implementations for that.
     */
    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) {
        _cachePriceRatesIfNecessary();

        (amountsIn, dueProtocolFeeAmounts) = super.onJoinPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData
        );

        _cacheInvariantAndSupply();
    }

    /**
     * @dev Update price oracle with the pre-join balances
     */
    function _onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        _updateOracle(lastChangeBlock, balances[0], balances[1]);

        return
            super._onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );
    }

    // Exit

    /**
     * @dev Update cached total supply and invariant using the results after the exit that will be used for
     * future oracle updates.
     * Note this function does not perform any safety checks about exits, it relies on upper implementations for that.
     */
    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) {
        _cachePriceRatesIfNecessary();

        (amountsOut, dueProtocolFeeAmounts) = super.onExitPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData
        );

        // If the contract is paused, the oracle is not updated to avoid extra calculations and reduce potential errors.
        if (_isNotPaused()) {
            _cacheInvariantAndSupply();
        }
    }

    /**
     * @dev Update price oracle with the pre-exit balances
     */
    function _onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        // If the contract is paused, the oracle is not updated to avoid extra calculations and reduce potential errors.
        if (_isNotPaused()) {
            _updateOracle(lastChangeBlock, balances[0], balances[1]);
        }

        return
            super._onExitPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );
    }

    // Oracle

    function getOracleMiscData()
        external
        view
        returns (
            int256 logInvariant,
            int256 logTotalSupply,
            uint256 oracleSampleCreationTimestamp,
            uint256 oracleIndex,
            bool oracleEnabled
        )
    {
        bytes32 miscData = _getMiscData();
        logInvariant = miscData.logInvariant();
        logTotalSupply = miscData.logTotalSupply();
        oracleSampleCreationTimestamp = miscData.oracleSampleCreationTimestamp();
        oracleIndex = miscData.oracleIndex();
        oracleEnabled = miscData.oracleEnabled();
    }

    /**
     * @dev Balancer Governance can always enable the Oracle, even if it was originally not enabled. This allows for
     * Pools that unexpectedly drive much more volume and liquidity than expected to serve as Price Oracles.
     *
     * Note that the Oracle can only be enabled - it can never be disabled.
     */
    function enableOracle() external whenNotPaused authenticate {
        _setOracleEnabled(true);

        // Cache log invariant and supply only if the pool was initialized
        if (totalSupply() > 0) {
            _cacheInvariantAndSupply();
        }
    }

    function _setOracleEnabled(bool enabled) internal {
        _setMiscData(_getMiscData().setOracleEnabled(enabled));
        emit OracleEnabledChanged(enabled);
    }

    /**
     * @dev Updates the Price Oracle based on the Pool's current state (balances, BPT supply and invariant). Must be
     * called on *all* state-changing functions with the balances *before* the state change happens, and with
     * `lastChangeBlock` as the number of the block in which any of the balances last changed.
     */
    function _updateOracle(
        uint256 lastChangeBlock,
        uint256 balance0,
        uint256 balance1
    ) internal {
        bytes32 miscData = _getMiscData();
        (uint256 currentAmp, ) = _getAmplificationParameter();

        if (miscData.oracleEnabled() && block.number > lastChangeBlock) {
            (int256 logSpotPrice, int256 logBptPrice) = StableOracleMath._calcLogPrices(
                currentAmp,
                balance0,
                balance1,
                miscData.logTotalSupply()
            );

            uint256 oracleCurrentIndex = miscData.oracleIndex();
            uint256 oracleCurrentSampleInitialTimestamp = miscData.oracleSampleCreationTimestamp();
            uint256 oracleUpdatedIndex = _processPriceData(
                oracleCurrentSampleInitialTimestamp,
                oracleCurrentIndex,
                logSpotPrice,
                logBptPrice,
                miscData.logInvariant()
            );

            if (oracleCurrentIndex != oracleUpdatedIndex) {
                // solhint-disable not-rely-on-time
                miscData = miscData.setOracleIndex(oracleUpdatedIndex);
                miscData = miscData.setOracleSampleCreationTimestamp(block.timestamp);
                _setMiscData(miscData);
            }
        }
    }

    /**
     * @dev Stores the logarithm of the invariant and BPT total supply, to be later used in each oracle update. Because
     * it is stored in miscData, which is read in all operations (including swaps), this saves gas by not requiring to
     * compute or read these values when updating the oracle.
     *
     * This function must be called by all actions that update the invariant and BPT supply (joins and exits). Swaps
     * also alter the invariant due to collected swap fees, but this growth is considered negligible and not accounted
     * for.
     */
    function _cacheInvariantAndSupply() internal {
        bytes32 miscData = _getMiscData();
        if (miscData.oracleEnabled()) {
            miscData = miscData.setLogInvariant(LogCompression.toLowResLog(_lastInvariant));
            miscData = miscData.setLogTotalSupply(LogCompression.toLowResLog(totalSupply()));
            _setMiscData(miscData);
        }
    }

    function _getOracleIndex() internal view override returns (uint256) {
        return _getMiscData().oracleIndex();
    }

    // Scaling factors

    /**
     * @dev Overrides scaling factor getter to introduce the token's price rate
     * Note that it may update the price rate cache if necessary.
     */
    function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) {
        uint256 baseScalingFactor = super._scalingFactor(token);
        uint256 priceRate = _priceRate(token);
        // Given there is no generic direction for this rounding, it simply follows the same strategy as the BasePool.
        return baseScalingFactor.mulDown(priceRate);
    }

    /**
     * @dev Overrides scaling factor getter to introduce the tokens' price rate.
     * Note that it may update the price rate cache if necessary.
     */
    function _scalingFactors() internal view virtual override returns (uint256[] memory scalingFactors) {
        // There is no need to check the arrays length since both are based on `_getTotalTokens`
        // Given there is no generic direction for this rounding, it simply follows the same strategy as the BasePool.
        scalingFactors = super._scalingFactors();
        scalingFactors[0] = scalingFactors[0].mulDown(_priceRate(_token0));
        scalingFactors[1] = scalingFactors[1].mulDown(_priceRate(_token1));
    }

    // Price rates

    /**
     * @dev Returns the rate providers configured for each token (in the same order as registered).
     */
    function getRateProviders() external view returns (IRateProvider[] memory providers) {
        providers = new IRateProvider[](2);
        providers[0] = _getRateProvider0();
        providers[1] = _getRateProvider1();
    }

    /**
     * @dev Returns the cached value for token's rate
     */
    function getPriceRateCache(IERC20 token)
        external
        view
        returns (
            uint256 rate,
            uint256 duration,
            uint256 expires
        )
    {
        if (_isToken0(token)) return _getPriceRateCache(_getPriceRateCache0());
        if (_isToken1(token)) return _getPriceRateCache(_getPriceRateCache1());
        _revert(Errors.INVALID_TOKEN);
    }

    /**
     * @dev Sets a new duration for a token price rate cache. It reverts if there was no rate provider set initially.
     * Note this function also updates the current cached value.
     * @param duration Number of seconds until the current rate of token price is fetched again.
     */
    function setPriceRateCacheDuration(IERC20 token, uint256 duration) external authenticate {
        if (_isToken0WithRateProvider(token)) {
            _updateToken0PriceRateCache(duration);
            emit PriceRateProviderSet(token, _getRateProvider0(), duration);
        } else if (_isToken1WithRateProvider(token)) {
            _updateToken1PriceRateCache(duration);
            emit PriceRateProviderSet(token, _getRateProvider1(), duration);
        } else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    function updatePriceRateCache(IERC20 token) external {
        if (_isToken0WithRateProvider(token)) {
            _updateToken0PriceRateCache();
        } else if (_isToken1WithRateProvider(token)) {
            _updateToken1PriceRateCache();
        } else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    /**
     * @dev Returns the list of price rates for each token. All price rates are fixed-point values with 18 decimals.
     * In case there is no rate provider for a token it returns 1e18.
     */
    function _priceRate(IERC20 token) internal view virtual returns (uint256) {
        // Given that this function is only used by `onSwap` which can only be called by the vault in the case of a
        // Meta Stable Pool, we can be sure the vault will not forward a call with an invalid `token` param.
        if (_isToken0WithRateProvider(token)) {
            return _getPriceRateCacheValue(_getPriceRateCache0());
        } else if (_isToken1WithRateProvider(token)) {
            return _getPriceRateCacheValue(_getPriceRateCache1());
        } else {
            return FixedPoint.ONE;
        }
    }

    function _cachePriceRatesIfNecessary() internal {
        _cachePriceRate0IfNecessary();
        _cachePriceRate1IfNecessary();
    }

    function _cachePriceRate0IfNecessary() private {
        if (_getRateProvider0() != IRateProvider(address(0))) {
            (uint256 duration, uint256 expires) = _getPriceRateCacheTimestamps(_getPriceRateCache0());
            if (block.timestamp > expires) {
                _updateToken0PriceRateCache(duration);
            }
        }
    }

    function _cachePriceRate1IfNecessary() private {
        if (_getRateProvider1() != IRateProvider(address(0))) {
            (uint256 duration, uint256 expires) = _getPriceRateCacheTimestamps(_getPriceRateCache1());
            if (block.timestamp > expires) {
                _updateToken1PriceRateCache(duration);
            }
        }
    }

    /**
     * @dev Decodes a price rate cache into rate value, duration and expiration time
     */
    function _getPriceRateCache(bytes32 cache)
        private
        pure
        returns (
            uint256 rate,
            uint256 duration,
            uint256 expires
        )
    {
        rate = _getPriceRateCacheValue(cache);
        (duration, expires) = _getPriceRateCacheTimestamps(cache);
    }

    /**
     * @dev Decodes the rate value for a price rate cache
     */
    function _getPriceRateCacheValue(bytes32 cache) private pure returns (uint256) {
        return cache.decodeUint128(_PRICE_RATE_CACHE_VALUE_OFFSET);
    }

    /**
     * @dev Decodes the duration for a price rate cache
     */
    function _getPriceRateCacheDuration(bytes32 cache) private pure returns (uint256) {
        return cache.decodeUint64(_PRICE_RATE_CACHE_DURATION_OFFSET);
    }

    /**
     * @dev Decodes the duration and expiration timestamp for a price rate cache
     */
    function _getPriceRateCacheTimestamps(bytes32 cache) private pure returns (uint256 duration, uint256 expires) {
        duration = _getPriceRateCacheDuration(cache);
        expires = cache.decodeUint64(_PRICE_RATE_CACHE_EXPIRES_OFFSET);
    }

    function _updateToken0PriceRateCache() private {
        _updateToken0PriceRateCache(_getPriceRateCacheDuration(_getPriceRateCache0()));
    }

    function _updateToken0PriceRateCache(uint256 duration) private {
        (bytes32 cache, uint256 rate) = _getNewPriceRateCache(_getRateProvider0(), duration);
        _setToken0PriceRateCache(cache, rate);
    }

    function _updateToken1PriceRateCache() private {
        _updateToken1PriceRateCache(_getPriceRateCacheDuration(_getPriceRateCache1()));
    }

    function _updateToken1PriceRateCache(uint256 duration) private {
        (bytes32 cache, uint256 rate) = _getNewPriceRateCache(_getRateProvider1(), duration);
        _setToken1PriceRateCache(cache, rate);
    }

    function _setToken0PriceRateCache(bytes32 cache, uint256 rate) private {
        _priceRateCache0 = cache;
        emit PriceRateCacheUpdated(_token0, rate);
    }

    function _setToken1PriceRateCache(bytes32 cache, uint256 rate) private {
        _priceRateCache1 = cache;
        emit PriceRateCacheUpdated(_token1, rate);
    }

    /**
     * @dev Fetches the current price rate from a provider and builds a new price rate cache
     */
    function _getNewPriceRateCache(IRateProvider provider, uint256 duration)
        private
        view
        returns (bytes32 cache, uint256 rate)
    {
        rate = provider.getRate();
        _require(rate < 2**128, Errors.PRICE_RATE_OVERFLOW);

        cache =
            WordCodec.encodeUint(uint128(rate), _PRICE_RATE_CACHE_VALUE_OFFSET) |
            WordCodec.encodeUint(uint64(duration), _PRICE_RATE_CACHE_DURATION_OFFSET) |
            WordCodec.encodeUint(uint64(block.timestamp + duration), _PRICE_RATE_CACHE_EXPIRES_OFFSET);
    }

    function _isToken0WithRateProvider(IERC20 token) internal view returns (bool) {
        return _isToken0(token) && _getRateProvider0() != IRateProvider(address(0));
    }

    function _isToken1WithRateProvider(IERC20 token) internal view returns (bool) {
        return _isToken1(token) && _getRateProvider1() != IRateProvider(address(0));
    }

    function _getRateProvider0() internal view returns (IRateProvider) {
        return _rateProvider0;
    }

    function _getRateProvider1() internal view returns (IRateProvider) {
        return _rateProvider1;
    }

    function _getPriceRateCache0() internal view returns (bytes32) {
        return _priceRateCache0;
    }

    function _getPriceRateCache1() internal view returns (bytes32) {
        return _priceRateCache1;
    }
}

File 3 of 47 : IERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 standard as defined in the EIP.
 */
interface IERC20 {
    /**
     * @dev Returns the amount of tokens in existence.
     */
    function totalSupply() external view returns (uint256);

    /**
     * @dev Returns the amount of tokens owned by `account`.
     */
    function balanceOf(address account) external view returns (uint256);

    /**
     * @dev Moves `amount` tokens from the caller's account to `recipient`.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transfer(address recipient, uint256 amount) external returns (bool);

    /**
     * @dev Returns the remaining number of tokens that `spender` will be
     * allowed to spend on behalf of `owner` through {transferFrom}. This is
     * zero by default.
     *
     * This value changes when {approve} or {transferFrom} are called.
     */
    function allowance(address owner, address spender) external view returns (uint256);

    /**
     * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * IMPORTANT: Beware that changing an allowance with this method brings the risk
     * that someone may use both the old and the new allowance by unfortunate
     * transaction ordering. One possible solution to mitigate this race
     * condition is to first reduce the spender's allowance to 0 and set the
     * desired value afterwards:
     * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
     *
     * Emits an {Approval} event.
     */
    function approve(address spender, uint256 amount) external returns (bool);

    /**
     * @dev Moves `amount` tokens from `sender` to `recipient` using the
     * allowance mechanism. `amount` is then deducted from the caller's
     * allowance.
     *
     * Returns a boolean value indicating whether the operation succeeded.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) external returns (bool);

    /**
     * @dev Emitted when `value` tokens are moved from one account (`from`) to
     * another (`to`).
     *
     * Note that `value` may be zero.
     */
    event Transfer(address indexed from, address indexed to, uint256 value);

    /**
     * @dev Emitted when the allowance of a `spender` for an `owner` is set by
     * a call to {approve}. `value` is the new allowance.
     */
    event Approval(address indexed owner, address indexed spender, uint256 value);
}

File 4 of 47 : ISignaturesValidator.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the SignatureValidator helper, used to support meta-transactions.
 */
interface ISignaturesValidator {
    /**
     * @dev Returns the EIP712 domain separator.
     */
    function getDomainSeparator() external view returns (bytes32);

    /**
     * @dev Returns the next nonce used by an address to sign messages.
     */
    function getNextNonce(address user) external view returns (uint256);
}

File 5 of 47 : ITemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Interface for the TemporarilyPausable helper.
 */
interface ITemporarilyPausable {
    /**
     * @dev Emitted every time the pause state changes by `_setPaused`.
     */
    event PausedStateChanged(bool paused);

    /**
     * @dev Returns the current paused state.
     */
    function getPausedState()
        external
        view
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        );
}

File 6 of 47 : IWETH.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../openzeppelin/IERC20.sol";

/**
 * @dev Interface for WETH9.
 * See https://github.com/gnosis/canonical-weth/blob/0dd1ea3e295eef916d0c6223ec63141137d22d67/contracts/WETH9.sol
 */
interface IWETH is IERC20 {
    function deposit() external payable;

    function withdraw(uint256 amount) external;
}

File 7 of 47 : IAsset.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev This is an empty interface used to represent either ERC20-conforming token contracts or ETH (using the zero
 * address sentinel value). We're just relying on the fact that `interface` can be used to declare new address-like
 * types.
 *
 * This concept is unrelated to a Pool's Asset Managers.
 */
interface IAsset {
    // solhint-disable-previous-line no-empty-blocks
}

File 8 of 47 : IAuthorizer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthorizer {
    /**
     * @dev Returns true if `account` can perform the action described by `actionId` in the contract `where`.
     */
    function canPerform(
        bytes32 actionId,
        address account,
        address where
    ) external view returns (bool);
}

File 9 of 47 : IFlashLoanRecipient.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// Inspired by Aave Protocol's IFlashLoanReceiver.

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

interface IFlashLoanRecipient {
    /**
     * @dev When `flashLoan` is called on the Vault, it invokes the `receiveFlashLoan` hook on the recipient.
     *
     * At the time of the call, the Vault will have transferred `amounts` for `tokens` to the recipient. Before this
     * call returns, the recipient must have transferred `amounts` plus `feeAmounts` for each token back to the
     * Vault, or else the entire flash loan will revert.
     *
     * `userData` is the same value passed in the `IVault.flashLoan` call.
     */
    function receiveFlashLoan(
        IERC20[] memory tokens,
        uint256[] memory amounts,
        uint256[] memory feeAmounts,
        bytes memory userData
    ) external;
}

File 10 of 47 : IProtocolFeesCollector.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./IVault.sol";
import "./IAuthorizer.sol";

interface IProtocolFeesCollector {
    event SwapFeePercentageChanged(uint256 newSwapFeePercentage);
    event FlashLoanFeePercentageChanged(uint256 newFlashLoanFeePercentage);

    function withdrawCollectedFees(
        IERC20[] calldata tokens,
        uint256[] calldata amounts,
        address recipient
    ) external;

    function setSwapFeePercentage(uint256 newSwapFeePercentage) external;

    function setFlashLoanFeePercentage(uint256 newFlashLoanFeePercentage) external;

    function getSwapFeePercentage() external view returns (uint256);

    function getFlashLoanFeePercentage() external view returns (uint256);

    function getCollectedFeeAmounts(IERC20[] memory tokens) external view returns (uint256[] memory feeAmounts);

    function getAuthorizer() external view returns (IAuthorizer);

    function vault() external view returns (IVault);
}

File 11 of 47 : BalancerErrors.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

// solhint-disable

/**
 * @dev Reverts if `condition` is false, with a revert reason containing `errorCode`. Only codes up to 999 are
 * supported.
 */
function _require(bool condition, uint256 errorCode) pure {
    if (!condition) _revert(errorCode);
}

/**
 * @dev Reverts with a revert reason containing `errorCode`. Only codes up to 999 are supported.
 */
function _revert(uint256 errorCode) pure {
    // We're going to dynamically create a revert string based on the error code, with the following format:
    // 'BAL#{errorCode}'
    // where the code is left-padded with zeroes to three digits (so they range from 000 to 999).
    //
    // We don't have revert strings embedded in the contract to save bytecode size: it takes much less space to store a
    // number (8 to 16 bits) than the individual string characters.
    //
    // The dynamic string creation algorithm that follows could be implemented in Solidity, but assembly allows for a
    // much denser implementation, again saving bytecode size. Given this function unconditionally reverts, this is a
    // safe place to rely on it without worrying about how its usage might affect e.g. memory contents.
    assembly {
        // First, we need to compute the ASCII representation of the error code. We assume that it is in the 0-999
        // range, so we only need to convert three digits. To convert the digits to ASCII, we add 0x30, the value for
        // the '0' character.

        let units := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let tenths := add(mod(errorCode, 10), 0x30)

        errorCode := div(errorCode, 10)
        let hundreds := add(mod(errorCode, 10), 0x30)

        // With the individual characters, we can now construct the full string. The "BAL#" part is a known constant
        // (0x42414c23): we simply shift this by 24 (to provide space for the 3 bytes of the error code), and add the
        // characters to it, each shifted by a multiple of 8.
        // The revert reason is then shifted left by 200 bits (256 minus the length of the string, 7 characters * 8 bits
        // per character = 56) to locate it in the most significant part of the 256 slot (the beginning of a byte
        // array).

        let revertReason := shl(200, add(0x42414c23000000, add(add(units, shl(8, tenths)), shl(16, hundreds))))

        // We can now encode the reason in memory, which can be safely overwritten as we're about to revert. The encoded
        // message will have the following layout:
        // [ revert reason identifier ] [ string location offset ] [ string length ] [ string contents ]

        // The Solidity revert reason identifier is 0x08c739a0, the function selector of the Error(string) function. We
        // also write zeroes to the next 28 bytes of memory, but those are about to be overwritten.
        mstore(0x0, 0x08c379a000000000000000000000000000000000000000000000000000000000)
        // Next is the offset to the location of the string, which will be placed immediately after (20 bytes away).
        mstore(0x04, 0x0000000000000000000000000000000000000000000000000000000000000020)
        // The string length is fixed: 7 characters.
        mstore(0x24, 7)
        // Finally, the string itself is stored.
        mstore(0x44, revertReason)

        // Even if the string is only 7 bytes long, we need to return a full 32 byte slot containing it. The length of
        // the encoded message is therefore 4 + 32 + 32 + 32 = 100.
        revert(0, 100)
    }
}

library Errors {
    // Math
    uint256 internal constant ADD_OVERFLOW = 0;
    uint256 internal constant SUB_OVERFLOW = 1;
    uint256 internal constant SUB_UNDERFLOW = 2;
    uint256 internal constant MUL_OVERFLOW = 3;
    uint256 internal constant ZERO_DIVISION = 4;
    uint256 internal constant DIV_INTERNAL = 5;
    uint256 internal constant X_OUT_OF_BOUNDS = 6;
    uint256 internal constant Y_OUT_OF_BOUNDS = 7;
    uint256 internal constant PRODUCT_OUT_OF_BOUNDS = 8;
    uint256 internal constant INVALID_EXPONENT = 9;

    // Input
    uint256 internal constant OUT_OF_BOUNDS = 100;
    uint256 internal constant UNSORTED_ARRAY = 101;
    uint256 internal constant UNSORTED_TOKENS = 102;
    uint256 internal constant INPUT_LENGTH_MISMATCH = 103;
    uint256 internal constant ZERO_TOKEN = 104;

    // Shared pools
    uint256 internal constant MIN_TOKENS = 200;
    uint256 internal constant MAX_TOKENS = 201;
    uint256 internal constant MAX_SWAP_FEE_PERCENTAGE = 202;
    uint256 internal constant MIN_SWAP_FEE_PERCENTAGE = 203;
    uint256 internal constant MINIMUM_BPT = 204;
    uint256 internal constant CALLER_NOT_VAULT = 205;
    uint256 internal constant UNINITIALIZED = 206;
    uint256 internal constant BPT_IN_MAX_AMOUNT = 207;
    uint256 internal constant BPT_OUT_MIN_AMOUNT = 208;
    uint256 internal constant EXPIRED_PERMIT = 209;
    uint256 internal constant NOT_TWO_TOKENS = 210;

    // Pools
    uint256 internal constant MIN_AMP = 300;
    uint256 internal constant MAX_AMP = 301;
    uint256 internal constant MIN_WEIGHT = 302;
    uint256 internal constant MAX_STABLE_TOKENS = 303;
    uint256 internal constant MAX_IN_RATIO = 304;
    uint256 internal constant MAX_OUT_RATIO = 305;
    uint256 internal constant MIN_BPT_IN_FOR_TOKEN_OUT = 306;
    uint256 internal constant MAX_OUT_BPT_FOR_TOKEN_IN = 307;
    uint256 internal constant NORMALIZED_WEIGHT_INVARIANT = 308;
    uint256 internal constant INVALID_TOKEN = 309;
    uint256 internal constant UNHANDLED_JOIN_KIND = 310;
    uint256 internal constant ZERO_INVARIANT = 311;
    uint256 internal constant ORACLE_INVALID_SECONDS_QUERY = 312;
    uint256 internal constant ORACLE_NOT_INITIALIZED = 313;
    uint256 internal constant ORACLE_QUERY_TOO_OLD = 314;
    uint256 internal constant ORACLE_INVALID_INDEX = 315;
    uint256 internal constant ORACLE_BAD_SECS = 316;
    uint256 internal constant AMP_END_TIME_TOO_CLOSE = 317;
    uint256 internal constant AMP_ONGOING_UPDATE = 318;
    uint256 internal constant AMP_RATE_TOO_HIGH = 319;
    uint256 internal constant AMP_NO_ONGOING_UPDATE = 320;
    uint256 internal constant STABLE_INVARIANT_DIDNT_CONVERGE = 321;
    uint256 internal constant STABLE_GET_BALANCE_DIDNT_CONVERGE = 322;
    uint256 internal constant RELAYER_NOT_CONTRACT = 323;
    uint256 internal constant BASE_POOL_RELAYER_NOT_CALLED = 324;
    uint256 internal constant REBALANCING_RELAYER_REENTERED = 325;
    uint256 internal constant GRADUAL_UPDATE_TIME_TRAVEL = 326;
    uint256 internal constant SWAPS_DISABLED = 327;
    uint256 internal constant CALLER_IS_NOT_LBP_OWNER = 328;
    uint256 internal constant PRICE_RATE_OVERFLOW = 329;

    // Lib
    uint256 internal constant REENTRANCY = 400;
    uint256 internal constant SENDER_NOT_ALLOWED = 401;
    uint256 internal constant PAUSED = 402;
    uint256 internal constant PAUSE_WINDOW_EXPIRED = 403;
    uint256 internal constant MAX_PAUSE_WINDOW_DURATION = 404;
    uint256 internal constant MAX_BUFFER_PERIOD_DURATION = 405;
    uint256 internal constant INSUFFICIENT_BALANCE = 406;
    uint256 internal constant INSUFFICIENT_ALLOWANCE = 407;
    uint256 internal constant ERC20_TRANSFER_FROM_ZERO_ADDRESS = 408;
    uint256 internal constant ERC20_TRANSFER_TO_ZERO_ADDRESS = 409;
    uint256 internal constant ERC20_MINT_TO_ZERO_ADDRESS = 410;
    uint256 internal constant ERC20_BURN_FROM_ZERO_ADDRESS = 411;
    uint256 internal constant ERC20_APPROVE_FROM_ZERO_ADDRESS = 412;
    uint256 internal constant ERC20_APPROVE_TO_ZERO_ADDRESS = 413;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_ALLOWANCE = 414;
    uint256 internal constant ERC20_DECREASED_ALLOWANCE_BELOW_ZERO = 415;
    uint256 internal constant ERC20_TRANSFER_EXCEEDS_BALANCE = 416;
    uint256 internal constant ERC20_BURN_EXCEEDS_ALLOWANCE = 417;
    uint256 internal constant SAFE_ERC20_CALL_FAILED = 418;
    uint256 internal constant ADDRESS_INSUFFICIENT_BALANCE = 419;
    uint256 internal constant ADDRESS_CANNOT_SEND_VALUE = 420;
    uint256 internal constant SAFE_CAST_VALUE_CANT_FIT_INT256 = 421;
    uint256 internal constant GRANT_SENDER_NOT_ADMIN = 422;
    uint256 internal constant REVOKE_SENDER_NOT_ADMIN = 423;
    uint256 internal constant RENOUNCE_SENDER_NOT_ALLOWED = 424;
    uint256 internal constant BUFFER_PERIOD_EXPIRED = 425;
    uint256 internal constant CALLER_IS_NOT_OWNER = 426;
    uint256 internal constant NEW_OWNER_IS_ZERO = 427;
    uint256 internal constant CODE_DEPLOYMENT_FAILED = 428;
    uint256 internal constant CALL_TO_NON_CONTRACT = 429;
    uint256 internal constant LOW_LEVEL_CALL_FAILED = 430;

    // Vault
    uint256 internal constant INVALID_POOL_ID = 500;
    uint256 internal constant CALLER_NOT_POOL = 501;
    uint256 internal constant SENDER_NOT_ASSET_MANAGER = 502;
    uint256 internal constant USER_DOESNT_ALLOW_RELAYER = 503;
    uint256 internal constant INVALID_SIGNATURE = 504;
    uint256 internal constant EXIT_BELOW_MIN = 505;
    uint256 internal constant JOIN_ABOVE_MAX = 506;
    uint256 internal constant SWAP_LIMIT = 507;
    uint256 internal constant SWAP_DEADLINE = 508;
    uint256 internal constant CANNOT_SWAP_SAME_TOKEN = 509;
    uint256 internal constant UNKNOWN_AMOUNT_IN_FIRST_SWAP = 510;
    uint256 internal constant MALCONSTRUCTED_MULTIHOP_SWAP = 511;
    uint256 internal constant INTERNAL_BALANCE_OVERFLOW = 512;
    uint256 internal constant INSUFFICIENT_INTERNAL_BALANCE = 513;
    uint256 internal constant INVALID_ETH_INTERNAL_BALANCE = 514;
    uint256 internal constant INVALID_POST_LOAN_BALANCE = 515;
    uint256 internal constant INSUFFICIENT_ETH = 516;
    uint256 internal constant UNALLOCATED_ETH = 517;
    uint256 internal constant ETH_TRANSFER = 518;
    uint256 internal constant CANNOT_USE_ETH_SENTINEL = 519;
    uint256 internal constant TOKENS_MISMATCH = 520;
    uint256 internal constant TOKEN_NOT_REGISTERED = 521;
    uint256 internal constant TOKEN_ALREADY_REGISTERED = 522;
    uint256 internal constant TOKENS_ALREADY_SET = 523;
    uint256 internal constant TOKENS_LENGTH_MUST_BE_2 = 524;
    uint256 internal constant NONZERO_TOKEN_BALANCE = 525;
    uint256 internal constant BALANCE_TOTAL_OVERFLOW = 526;
    uint256 internal constant POOL_NO_TOKENS = 527;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_BALANCE = 528;

    // Fees
    uint256 internal constant SWAP_FEE_PERCENTAGE_TOO_HIGH = 600;
    uint256 internal constant FLASH_LOAN_FEE_PERCENTAGE_TOO_HIGH = 601;
    uint256 internal constant INSUFFICIENT_FLASH_LOAN_FEE_AMOUNT = 602;
}

File 12 of 47 : PoolPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol";

import "../interfaces/IPriceOracle.sol";
import "../interfaces/IPoolPriceOracle.sol";

import "./Buffer.sol";
import "./Samples.sol";
import "./QueryProcessor.sol";

/**
 * @dev This module allows Pools to access historical pricing information.
 *
 * It uses a 1024 long circular buffer to store past data, where the data within each sample is the result of
 * accumulating live data for no more than two minutes. Therefore, assuming the worst case scenario where new data is
 * updated in every single block, the oldest samples in the buffer (and therefore largest queryable period) will
 * be slightly over 34 hours old.
 *
 * Usage of this module requires the caller to keep track of two variables: the latest circular buffer index, and the
 * timestamp when the index last changed. Aditionally, access to the latest circular buffer index must be exposed by
 * implementing `_getOracleIndex`.
 *
 * This contract relies on the `QueryProcessor` linked library to reduce bytecode size.
 */
abstract contract PoolPriceOracle is IPoolPriceOracle, IPriceOracle {
    using Buffer for uint256;
    using Samples for bytes32;

    // Each sample in the buffer accumulates information for up to 2 minutes. This is simply to reduce the size of the
    // buffer: small time deviations will not have any significant effect.
    // solhint-disable not-rely-on-time
    uint256 private constant _MAX_SAMPLE_DURATION = 2 minutes;

    // We use a mapping to simulate an array: the buffer won't grow or shrink, and since we will always use valid
    // indexes using a mapping saves gas by skipping the bounds checks.
    mapping(uint256 => bytes32) internal _samples;

    // IPoolPriceOracle

    function getSample(uint256 index)
        external
        view
        override
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 timestamp
        )
    {
        _require(index < Buffer.SIZE, Errors.ORACLE_INVALID_INDEX);

        bytes32 sample = _getSample(index);
        return sample.unpack();
    }

    function getTotalSamples() external pure override returns (uint256) {
        return Buffer.SIZE;
    }

    // IPriceOracle

    function getLargestSafeQueryWindow() external pure override returns (uint256) {
        return 34 hours;
    }

    function getLatest(Variable variable) external view override returns (uint256) {
        return QueryProcessor.getInstantValue(_samples, variable, _getOracleIndex());
    }

    function getTimeWeightedAverage(OracleAverageQuery[] memory queries)
        external
        view
        override
        returns (uint256[] memory results)
    {
        results = new uint256[](queries.length);
        uint256 latestIndex = _getOracleIndex();

        for (uint256 i = 0; i < queries.length; ++i) {
            results[i] = QueryProcessor.getTimeWeightedAverage(_samples, queries[i], latestIndex);
        }
    }

    function getPastAccumulators(OracleAccumulatorQuery[] memory queries)
        external
        view
        override
        returns (int256[] memory results)
    {
        results = new int256[](queries.length);
        uint256 latestIndex = _getOracleIndex();

        OracleAccumulatorQuery memory query;
        for (uint256 i = 0; i < queries.length; ++i) {
            query = queries[i];
            results[i] = _getPastAccumulator(query.variable, latestIndex, query.ago);
        }
    }

    // Internal functions

    /**
     * @dev Processes new price and invariant data, updating the latest sample or creating a new one.
     *
     * Receives the new logarithms of values to store: `logPairPrice`, `logBptPrice` and `logInvariant`, as well the
     * index of the latest sample and the timestamp of its creation.
     *
     * Returns the index of the latest sample. If different from `latestIndex`, the caller should also store the
     * timestamp, and pass it on future calls to this function.
     */
    function _processPriceData(
        uint256 latestSampleCreationTimestamp,
        uint256 latestIndex,
        int256 logPairPrice,
        int256 logBptPrice,
        int256 logInvariant
    ) internal returns (uint256) {
        // Read latest sample, and compute the next one by updating it with the newly received data.
        bytes32 sample = _getSample(latestIndex).update(logPairPrice, logBptPrice, logInvariant, block.timestamp);

        // We create a new sample if more than _MAX_SAMPLE_DURATION seconds have elapsed since the creation of the
        // latest one. In other words, no sample accumulates data over a period larger than _MAX_SAMPLE_DURATION.
        bool newSample = block.timestamp - latestSampleCreationTimestamp >= _MAX_SAMPLE_DURATION;
        latestIndex = newSample ? latestIndex.next() : latestIndex;

        // Store the updated or new sample.
        _samples[latestIndex] = sample;

        return latestIndex;
    }

    function _getPastAccumulator(
        IPriceOracle.Variable variable,
        uint256 latestIndex,
        uint256 ago
    ) internal view returns (int256) {
        return QueryProcessor.getPastAccumulator(_samples, variable, latestIndex, ago);
    }

    function _findNearestSample(uint256 lookUpDate, uint256 offset) internal view returns (bytes32 prev, bytes32 next) {
        return QueryProcessor.findNearestSample(_samples, lookUpDate, offset);
    }

    /**
     * @dev Returns the sample that corresponds to a given `index`.
     *
     * Using this function instead of accessing storage directly results in denser bytecode (since the storage slot is
     * only computed here).
     */
    function _getSample(uint256 index) internal view returns (bytes32) {
        return _samples[index];
    }

    /**
     * @dev Virtual function to be implemented by derived contracts. Must return the current index of the oracle
     * circular buffer.
     */
    function _getOracleIndex() internal view virtual returns (uint256);
}

File 13 of 47 : IRateProvider.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IRateProvider {
    function getRate() external view returns (uint256);
}

File 14 of 47 : LogCompression.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../math/LogExpMath.sol";

/**
 * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
 * a single storage slot, saving gas by performing less storage accesses.
 *
 * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
 * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
 */
library LogCompression {
    int256 private constant _LOG_COMPRESSION_FACTOR = 1e14;
    int256 private constant _HALF_LOG_COMPRESSION_FACTOR = 0.5e14;

    /**
     * @dev Returns the natural logarithm of `value`, dropping most of the decimal places to arrive at a value that,
     * when passed to `fromLowResLog`, will have a maximum relative error of ~0.05% compared to `value`.
     *
     * Values returned from this function should not be mixed with other fixed-point values (as they have a different
     * number of digits), but can be added or subtracted. Use `fromLowResLog` to undo this process and return to an
     * 18 decimal places fixed point value.
     *
     * Because so much precision is lost, the logarithmic values can be stored using much fewer bits than the original
     * value required.
     */
    function toLowResLog(uint256 value) internal pure returns (int256) {
        int256 ln = LogExpMath.ln(int256(value));

        // Rounding division for signed numerator
        int256 lnWithError = (ln > 0 ? ln + _HALF_LOG_COMPRESSION_FACTOR : ln - _HALF_LOG_COMPRESSION_FACTOR);
        return lnWithError / _LOG_COMPRESSION_FACTOR;
    }

    /**
     * @dev Restores `value` from logarithmic space. `value` is expected to be the result of a call to `toLowResLog`,
     * any other function that returns 4 decimals fixed point logarithms, or the sum of such values.
     */
    function fromLowResLog(int256 value) internal pure returns (uint256) {
        return uint256(LogExpMath.exp(value * _LOG_COMPRESSION_FACTOR));
    }
}

File 15 of 47 : FixedPoint.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./LogExpMath.sol";
import "../helpers/BalancerErrors.sol";

/* solhint-disable private-vars-leading-underscore */

library FixedPoint {
    uint256 internal constant ONE = 1e18; // 18 decimal places
    uint256 internal constant MAX_POW_RELATIVE_ERROR = 10000; // 10^(-14)

    // Minimum base for the power function when the exponent is 'free' (larger than ONE).
    uint256 internal constant MIN_POW_BASE_FREE_EXPONENT = 0.7e18;

    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        // Fixed Point addition is the same as regular checked addition

        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    function mulDown(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        return product / ONE;
    }

    function mulUp(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 product = a * b;
        _require(a == 0 || product / a == b, Errors.MUL_OVERFLOW);

        if (product == 0) {
            return 0;
        } else {
            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((product - 1) / ONE) + 1;
        }
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            return aInflated / b;
        }
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            uint256 aInflated = a * ONE;
            _require(aInflated / a == ONE, Errors.DIV_INTERNAL); // mul overflow

            // The traditional divUp formula is:
            // divUp(x, y) := (x + y - 1) / y
            // To avoid intermediate overflow in the addition, we distribute the division and get:
            // divUp(x, y) := (x - 1) / y + 1
            // Note that this requires x != 0, which we already tested for.

            return ((aInflated - 1) / b) + 1;
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding down. The result is guaranteed to not be above
     * the true value (that is, the error function expected - actual is always positive).
     */
    function powDown(uint256 x, uint256 y) internal pure returns (uint256) {
        uint256 raw = LogExpMath.pow(x, y);
        uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

        if (raw < maxError) {
            return 0;
        } else {
            return sub(raw, maxError);
        }
    }

    /**
     * @dev Returns x^y, assuming both are fixed point numbers, rounding up. The result is guaranteed to not be below
     * the true value (that is, the error function expected - actual is always negative).
     */
    function powUp(uint256 x, uint256 y) internal pure returns (uint256) {
        uint256 raw = LogExpMath.pow(x, y);
        uint256 maxError = add(mulUp(raw, MAX_POW_RELATIVE_ERROR), 1);

        return add(raw, maxError);
    }

    /**
     * @dev Returns the complement of a value (1 - x), capped to 0 if x is larger than 1.
     *
     * Useful when computing the complement for values with some level of relative error, as it strips this error and
     * prevents intermediate negative values.
     */
    function complement(uint256 x) internal pure returns (uint256) {
        return (x < ONE) ? (ONE - x) : 0;
    }
}

File 16 of 47 : StablePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

import "@balancer-labs/v2-pool-utils/contracts/BaseGeneralPool.sol";
import "@balancer-labs/v2-pool-utils/contracts/BaseMinimalSwapInfoPool.sol";
import "@balancer-labs/v2-pool-utils/contracts/interfaces/IRateProvider.sol";

import "./StableMath.sol";
import "./StablePoolUserDataHelpers.sol";

contract StablePool is BaseGeneralPool, BaseMinimalSwapInfoPool, StableMath, IRateProvider {
    using WordCodec for bytes32;
    using FixedPoint for uint256;
    using StablePoolUserDataHelpers for bytes;

    // This contract uses timestamps to slowly update its Amplification parameter over time. These changes must occur
    // over a minimum time period much larger than the blocktime, making timestamp manipulation a non-issue.
    // solhint-disable not-rely-on-time

    // Amplification factor changes must happen over a minimum period of one day, and can at most divide or multiple the
    // current value by 2 every day.
    // WARNING: this only limits *a single* amplification change to have a maximum rate of change of twice the original
    // value daily. It is possible to perform multiple amplification changes in sequence to increase this value more
    // rapidly: for example, by doubling the value every day it can increase by a factor of 8 over three days (2^3).
    uint256 private constant _MIN_UPDATE_TIME = 1 days;
    uint256 private constant _MAX_AMP_UPDATE_DAILY_RATE = 2;

    bytes32 private _packedAmplificationData;

    event AmpUpdateStarted(uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime);
    event AmpUpdateStopped(uint256 currentValue);

    uint256 private immutable _totalTokens;

    IERC20 internal immutable _token0;
    IERC20 internal immutable _token1;
    IERC20 internal immutable _token2;
    IERC20 internal immutable _token3;
    IERC20 internal immutable _token4;

    // All token balances are normalized to behave as if the token had 18 decimals. We assume a token's decimals will
    // not change throughout its lifetime, and store the corresponding scaling factor for each at construction time.
    // These factors are always greater than or equal to one: tokens with more than 18 decimals are not supported.

    uint256 internal immutable _scalingFactor0;
    uint256 internal immutable _scalingFactor1;
    uint256 internal immutable _scalingFactor2;
    uint256 internal immutable _scalingFactor3;
    uint256 internal immutable _scalingFactor4;

    // To track how many tokens are owed to the Vault as protocol fees, we measure and store the value of the invariant
    // after every join and exit. All invariant growth that happens between join and exit events is due to swap fees.
    uint256 internal _lastInvariant;

    // Because the invariant depends on the amplification parameter, and this value may change over time, we should only
    // compare invariants that were computed using the same value. We therefore store it whenever we store
    // _lastInvariant.
    uint256 internal _lastInvariantAmp;

    enum JoinKind { INIT, EXACT_TOKENS_IN_FOR_BPT_OUT, TOKEN_IN_FOR_EXACT_BPT_OUT }
    enum ExitKind { EXACT_BPT_IN_FOR_ONE_TOKEN_OUT, EXACT_BPT_IN_FOR_TOKENS_OUT, BPT_IN_FOR_EXACT_TOKENS_OUT }

    constructor(
        IVault vault,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        uint256 amplificationParameter,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        BasePool(
            vault,
            // Because we're inheriting from both BaseGeneralPool and BaseMinimalSwapInfoPool we can choose any
            // specialization setting. Since this Pool never registers or deregisters any tokens after construction,
            // picking Two Token when the Pool only has two tokens is free gas savings.
            tokens.length == 2 ? IVault.PoolSpecialization.TWO_TOKEN : IVault.PoolSpecialization.GENERAL,
            name,
            symbol,
            tokens,
            new address[](tokens.length),
            swapFeePercentage,
            pauseWindowDuration,
            bufferPeriodDuration,
            owner
        )
    {
        _require(amplificationParameter >= _MIN_AMP, Errors.MIN_AMP);
        _require(amplificationParameter <= _MAX_AMP, Errors.MAX_AMP);

        uint256 totalTokens = tokens.length;
        _totalTokens = totalTokens;

        // Immutable variables cannot be initialized inside an if statement, so we must do conditional assignments
        _token0 = tokens[0];
        _token1 = tokens[1];
        _token2 = totalTokens > 2 ? tokens[2] : IERC20(0);
        _token3 = totalTokens > 3 ? tokens[3] : IERC20(0);
        _token4 = totalTokens > 4 ? tokens[4] : IERC20(0);

        _scalingFactor0 = _computeScalingFactor(tokens[0]);
        _scalingFactor1 = _computeScalingFactor(tokens[1]);
        _scalingFactor2 = totalTokens > 2 ? _computeScalingFactor(tokens[2]) : 0;
        _scalingFactor3 = totalTokens > 3 ? _computeScalingFactor(tokens[3]) : 0;
        _scalingFactor4 = totalTokens > 4 ? _computeScalingFactor(tokens[4]) : 0;

        uint256 initialAmp = Math.mul(amplificationParameter, _AMP_PRECISION);
        _setAmplificationData(initialAmp);
    }

    function getLastInvariant() external view returns (uint256 lastInvariant, uint256 lastInvariantAmp) {
        lastInvariant = _lastInvariant;
        lastInvariantAmp = _lastInvariantAmp;
    }

    // Base Pool handlers

    // Swap - General Pool specialization (from BaseGeneralPool)

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) internal virtual override whenNotPaused returns (uint256) {
        (uint256 currentAmp, ) = _getAmplificationParameter();
        uint256 amountOut = StableMath._calcOutGivenIn(currentAmp, balances, indexIn, indexOut, swapRequest.amount);
        return amountOut;
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) internal virtual override whenNotPaused returns (uint256) {
        (uint256 currentAmp, ) = _getAmplificationParameter();
        uint256 amountIn = StableMath._calcInGivenOut(currentAmp, balances, indexIn, indexOut, swapRequest.amount);
        return amountIn;
    }

    // Swap - Two Token Pool specialization (from BaseMinimalSwapInfoPool)

    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal virtual override returns (uint256) {
        _require(_getTotalTokens() == 2, Errors.NOT_TWO_TOKENS);

        (uint256[] memory balances, uint256 indexIn, uint256 indexOut) = _getSwapBalanceArrays(
            swapRequest,
            balanceTokenIn,
            balanceTokenOut
        );

        return _onSwapGivenIn(swapRequest, balances, indexIn, indexOut);
    }

    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal virtual override returns (uint256) {
        _require(_getTotalTokens() == 2, Errors.NOT_TWO_TOKENS);

        (uint256[] memory balances, uint256 indexIn, uint256 indexOut) = _getSwapBalanceArrays(
            swapRequest,
            balanceTokenIn,
            balanceTokenOut
        );
        return _onSwapGivenOut(swapRequest, balances, indexIn, indexOut);
    }

    function _getSwapBalanceArrays(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    )
        private
        view
        returns (
            uint256[] memory balances,
            uint256 indexIn,
            uint256 indexOut
        )
    {
        balances = new uint256[](2);

        if (_isToken0(swapRequest.tokenIn)) {
            indexIn = 0;
            indexOut = 1;

            balances[0] = balanceTokenIn;
            balances[1] = balanceTokenOut;
        } else {
            // _token0 == swapRequest.tokenOut
            indexOut = 0;
            indexIn = 1;

            balances[0] = balanceTokenOut;
            balances[1] = balanceTokenIn;
        }
    }

    // Initialize

    function _onInitializePool(
        bytes32,
        address,
        address,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual override whenNotPaused returns (uint256, uint256[] memory) {
        // It would be strange for the Pool to be paused before it is initialized, but for consistency we prevent
        // initialization in this case.

        StablePool.JoinKind kind = userData.joinKind();
        _require(kind == StablePool.JoinKind.INIT, Errors.UNINITIALIZED);

        uint256[] memory amountsIn = userData.initialAmountsIn();
        InputHelpers.ensureInputLengthMatch(amountsIn.length, _getTotalTokens());
        _upscaleArray(amountsIn, scalingFactors);

        (uint256 currentAmp, ) = _getAmplificationParameter();
        uint256 invariantAfterJoin = StableMath._calculateInvariant(currentAmp, amountsIn, true);

        // Set the initial BPT to the value of the invariant.
        uint256 bptAmountOut = invariantAfterJoin;

        _updateLastInvariant(invariantAfterJoin, currentAmp);

        return (bptAmountOut, amountsIn);
    }

    // Join

    function _onJoinPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        whenNotPaused
        returns (
            uint256,
            uint256[] memory,
            uint256[] memory
        )
    {
        // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous join
        // or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids spending gas to
        // calculate the fee amounts during each individual swap.
        uint256[] memory dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(balances, protocolSwapFeePercentage);

        // Update current balances by subtracting the protocol fee amounts
        _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        (uint256 bptAmountOut, uint256[] memory amountsIn) = _doJoin(balances, scalingFactors, userData);

        // Update the invariant with the balances the Pool will have after the join, in order to compute the
        // protocol swap fee amounts due in future joins and exits.
        _updateInvariantAfterJoin(balances, amountsIn);

        return (bptAmountOut, amountsIn, dueProtocolFeeAmounts);
    }

    function _doJoin(
        uint256[] memory balances,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        JoinKind kind = userData.joinKind();

        if (kind == JoinKind.EXACT_TOKENS_IN_FOR_BPT_OUT) {
            return _joinExactTokensInForBPTOut(balances, scalingFactors, userData);
        } else if (kind == JoinKind.TOKEN_IN_FOR_EXACT_BPT_OUT) {
            return _joinTokenInForExactBPTOut(balances, userData);
        } else {
            _revert(Errors.UNHANDLED_JOIN_KIND);
        }
    }

    function _joinExactTokensInForBPTOut(
        uint256[] memory balances,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        (uint256[] memory amountsIn, uint256 minBPTAmountOut) = userData.exactTokensInForBptOut();
        InputHelpers.ensureInputLengthMatch(_getTotalTokens(), amountsIn.length);

        _upscaleArray(amountsIn, scalingFactors);

        (uint256 currentAmp, ) = _getAmplificationParameter();
        uint256 bptAmountOut = StableMath._calcBptOutGivenExactTokensIn(
            currentAmp,
            balances,
            amountsIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        _require(bptAmountOut >= minBPTAmountOut, Errors.BPT_OUT_MIN_AMOUNT);

        return (bptAmountOut, amountsIn);
    }

    function _joinTokenInForExactBPTOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        (uint256 bptAmountOut, uint256 tokenIndex) = userData.tokenInForExactBptOut();
        // Note that there is no maximum amountIn parameter: this is handled by `IVault.joinPool`.

        _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);

        uint256[] memory amountsIn = new uint256[](_getTotalTokens());
        (uint256 currentAmp, ) = _getAmplificationParameter();
        amountsIn[tokenIndex] = StableMath._calcTokenInGivenExactBptOut(
            currentAmp,
            balances,
            tokenIndex,
            bptAmountOut,
            totalSupply(),
            getSwapFeePercentage()
        );

        return (bptAmountOut, amountsIn);
    }

    // Exit

    function _onExitPool(
        bytes32,
        address,
        address,
        uint256[] memory balances,
        uint256,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        override
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        )
    {
        // Exits are not completely disabled while the contract is paused: proportional exits (exact BPT in for tokens
        // out) remain functional.

        if (_isNotPaused()) {
            // Due protocol swap fee amounts are computed by measuring the growth of the invariant between the previous
            // join or exit event and now - the invariant's growth is due exclusively to swap fees. This avoids
            // spending gas calculating fee amounts during each individual swap
            dueProtocolFeeAmounts = _getDueProtocolFeeAmounts(balances, protocolSwapFeePercentage);

            // Update current balances by subtracting the protocol fee amounts
            _mutateAmounts(balances, dueProtocolFeeAmounts, FixedPoint.sub);
        } else {
            // If the contract is paused, swap protocol fee amounts are not charged to avoid extra calculations and
            // reduce the potential for errors.
            dueProtocolFeeAmounts = new uint256[](_getTotalTokens());
        }

        (bptAmountIn, amountsOut) = _doExit(balances, scalingFactors, userData);

        // Update the invariant with the balances the Pool will have after the exit, in order to compute the
        // protocol swap fee amounts due in future joins and exits.
        _updateInvariantAfterExit(balances, amountsOut);

        return (bptAmountIn, amountsOut, dueProtocolFeeAmounts);
    }

    function _doExit(
        uint256[] memory balances,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private view returns (uint256, uint256[] memory) {
        ExitKind kind = userData.exitKind();

        if (kind == ExitKind.EXACT_BPT_IN_FOR_ONE_TOKEN_OUT) {
            return _exitExactBPTInForTokenOut(balances, userData);
        } else if (kind == ExitKind.EXACT_BPT_IN_FOR_TOKENS_OUT) {
            return _exitExactBPTInForTokensOut(balances, userData);
        } else {
            // ExitKind.BPT_IN_FOR_EXACT_TOKENS_OUT
            return _exitBPTInForExactTokensOut(balances, scalingFactors, userData);
        }
    }

    function _exitExactBPTInForTokenOut(uint256[] memory balances, bytes memory userData)
        private
        view
        whenNotPaused
        returns (uint256, uint256[] memory)
    {
        // This exit function is disabled if the contract is paused.

        (uint256 bptAmountIn, uint256 tokenIndex) = userData.exactBptInForTokenOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        _require(tokenIndex < _getTotalTokens(), Errors.OUT_OF_BOUNDS);

        // We exit in a single token, so initialize amountsOut with zeros
        uint256[] memory amountsOut = new uint256[](_getTotalTokens());

        // And then assign the result to the selected token
        (uint256 currentAmp, ) = _getAmplificationParameter();
        amountsOut[tokenIndex] = StableMath._calcTokenOutGivenExactBptIn(
            currentAmp,
            balances,
            tokenIndex,
            bptAmountIn,
            totalSupply(),
            getSwapFeePercentage()
        );

        return (bptAmountIn, amountsOut);
    }

    function _exitExactBPTInForTokensOut(uint256[] memory balances, bytes memory userData)
        private
        view
        returns (uint256, uint256[] memory)
    {
        // This exit function is the only one that is not disabled if the contract is paused: it remains unrestricted
        // in an attempt to provide users with a mechanism to retrieve their tokens in case of an emergency.
        // This particular exit function is the only one that remains available because it is the simplest one, and
        // therefore the one with the lowest likelihood of errors.

        uint256 bptAmountIn = userData.exactBptInForTokensOut();
        // Note that there is no minimum amountOut parameter: this is handled by `IVault.exitPool`.

        uint256[] memory amountsOut = StableMath._calcTokensOutGivenExactBptIn(balances, bptAmountIn, totalSupply());
        return (bptAmountIn, amountsOut);
    }

    function _exitBPTInForExactTokensOut(
        uint256[] memory balances,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) private view whenNotPaused returns (uint256, uint256[] memory) {
        // This exit function is disabled if the contract is paused.

        (uint256[] memory amountsOut, uint256 maxBPTAmountIn) = userData.bptInForExactTokensOut();
        InputHelpers.ensureInputLengthMatch(amountsOut.length, _getTotalTokens());
        _upscaleArray(amountsOut, scalingFactors);

        (uint256 currentAmp, ) = _getAmplificationParameter();
        uint256 bptAmountIn = StableMath._calcBptInGivenExactTokensOut(
            currentAmp,
            balances,
            amountsOut,
            totalSupply(),
            getSwapFeePercentage()
        );
        _require(bptAmountIn <= maxBPTAmountIn, Errors.BPT_IN_MAX_AMOUNT);

        return (bptAmountIn, amountsOut);
    }

    // Helpers

    /**
     * @dev Stores the last measured invariant, and the amplification parameter used to compute it.
     */
    function _updateLastInvariant(uint256 invariant, uint256 amplificationParameter) private {
        _lastInvariant = invariant;
        _lastInvariantAmp = amplificationParameter;
    }

    /**
     * @dev Returns the amount of protocol fees to pay, given the value of the last stored invariant and the current
     * balances.
     */
    function _getDueProtocolFeeAmounts(uint256[] memory balances, uint256 protocolSwapFeePercentage)
        private
        view
        returns (uint256[] memory)
    {
        // Initialize with zeros
        uint256[] memory dueProtocolFeeAmounts = new uint256[](_getTotalTokens());

        // Early return if the protocol swap fee percentage is zero, saving gas.
        if (protocolSwapFeePercentage == 0) {
            return dueProtocolFeeAmounts;
        }

        // Instead of paying the protocol swap fee in all tokens proportionally, we will pay it in a single one. This
        // will reduce gas costs for single asset joins and exits, as at most only two Pool balances will change (the
        // token joined/exited, and the token in which fees will be paid).

        // The protocol fee is charged using the token with the highest balance in the pool.
        uint256 chosenTokenIndex = 0;
        uint256 maxBalance = balances[0];
        for (uint256 i = 1; i < _getTotalTokens(); ++i) {
            uint256 currentBalance = balances[i];
            if (currentBalance > maxBalance) {
                chosenTokenIndex = i;
                maxBalance = currentBalance;
            }
        }

        // Set the fee amount to pay in the selected token
        dueProtocolFeeAmounts[chosenTokenIndex] = StableMath._calcDueTokenProtocolSwapFeeAmount(
            _lastInvariantAmp,
            balances,
            _lastInvariant,
            chosenTokenIndex,
            protocolSwapFeePercentage
        );

        return dueProtocolFeeAmounts;
    }

    /**
     * @dev Computes and stores the value of the invariant after a join, which is required to compute due protocol fees
     * in the future.
     */
    function _updateInvariantAfterJoin(uint256[] memory balances, uint256[] memory amountsIn) private {
        _mutateAmounts(balances, amountsIn, FixedPoint.add);

        (uint256 currentAmp, ) = _getAmplificationParameter();
        // This invariant is used only to compute the final balance when calculating the protocol fees. These are
        // rounded down, so we round the invariant up.
        _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances, true), currentAmp);
    }

    /**
     * @dev Computes and stores the value of the invariant after an exit, which is required to compute due protocol fees
     * in the future.
     */
    function _updateInvariantAfterExit(uint256[] memory balances, uint256[] memory amountsOut) private {
        _mutateAmounts(balances, amountsOut, FixedPoint.sub);

        (uint256 currentAmp, ) = _getAmplificationParameter();
        // This invariant is used only to compute the final balance when calculating the protocol fees. These are
        // rounded down, so we round the invariant up.
        _updateLastInvariant(StableMath._calculateInvariant(currentAmp, balances, true), currentAmp);
    }

    /**
     * @dev Mutates `amounts` by applying `mutation` with each entry in `arguments`.
     *
     * Equivalent to `amounts = amounts.map(mutation)`.
     */
    function _mutateAmounts(
        uint256[] memory toMutate,
        uint256[] memory arguments,
        function(uint256, uint256) pure returns (uint256) mutation
    ) private view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            toMutate[i] = mutation(toMutate[i], arguments[i]);
        }
    }

    /**
     * @dev This function returns the appreciation of one BPT relative to the
     * underlying tokens. This starts at 1 when the pool is created and grows over time
     */
    function getRate() public view override returns (uint256) {
        (, uint256[] memory balances, ) = getVault().getPoolTokens(getPoolId());

        // When calculating the current BPT rate, we may not have paid the protocol fees, therefore
        // the invariant should be smaller than its current value. Then, we round down overall.
        (uint256 currentAmp, ) = _getAmplificationParameter();

        _upscaleArray(balances, _scalingFactors());

        uint256 invariant = StableMath._calculateInvariant(currentAmp, balances, false);
        return invariant.divDown(totalSupply());
    }

    // Amplification

    /**
     * @dev Begins changing the amplification parameter to `rawEndValue` over time. The value will change linearly until
     * `endTime` is reached, when it will be `rawEndValue`.
     *
     * NOTE: Internally, the amplification parameter is represented using higher precision. The values returned by
     * `getAmplificationParameter` have to be corrected to account for this when comparing to `rawEndValue`.
     */
    function startAmplificationParameterUpdate(uint256 rawEndValue, uint256 endTime) external authenticate {
        _require(rawEndValue >= _MIN_AMP, Errors.MIN_AMP);
        _require(rawEndValue <= _MAX_AMP, Errors.MAX_AMP);

        uint256 duration = Math.sub(endTime, block.timestamp);
        _require(duration >= _MIN_UPDATE_TIME, Errors.AMP_END_TIME_TOO_CLOSE);

        (uint256 currentValue, bool isUpdating) = _getAmplificationParameter();
        _require(!isUpdating, Errors.AMP_ONGOING_UPDATE);

        uint256 endValue = Math.mul(rawEndValue, _AMP_PRECISION);

        // daily rate = (endValue / currentValue) / duration * 1 day
        // We perform all multiplications first to not reduce precision, and round the division up as we want to avoid
        // large rates. Note that these are regular integer multiplications and divisions, not fixed point.
        uint256 dailyRate = endValue > currentValue
            ? Math.divUp(Math.mul(1 days, endValue), Math.mul(currentValue, duration))
            : Math.divUp(Math.mul(1 days, currentValue), Math.mul(endValue, duration));
        _require(dailyRate <= _MAX_AMP_UPDATE_DAILY_RATE, Errors.AMP_RATE_TOO_HIGH);

        _setAmplificationData(currentValue, endValue, block.timestamp, endTime);
    }

    /**
     * @dev Stops the amplification parameter change process, keeping the current value.
     */
    function stopAmplificationParameterUpdate() external authenticate {
        (uint256 currentValue, bool isUpdating) = _getAmplificationParameter();
        _require(isUpdating, Errors.AMP_NO_ONGOING_UPDATE);

        _setAmplificationData(currentValue);
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
        return
            (actionId == getActionId(StablePool.startAmplificationParameterUpdate.selector)) ||
            (actionId == getActionId(StablePool.stopAmplificationParameterUpdate.selector)) ||
            super._isOwnerOnlyAction(actionId);
    }

    function getAmplificationParameter()
        external
        view
        returns (
            uint256 value,
            bool isUpdating,
            uint256 precision
        )
    {
        (value, isUpdating) = _getAmplificationParameter();
        precision = _AMP_PRECISION;
    }

    function _getAmplificationParameter() internal view returns (uint256 value, bool isUpdating) {
        (uint256 startValue, uint256 endValue, uint256 startTime, uint256 endTime) = _getAmplificationData();

        // Note that block.timestamp >= startTime, since startTime is set to the current time when an update starts

        if (block.timestamp < endTime) {
            isUpdating = true;

            // We can skip checked arithmetic as:
            //  - block.timestamp is always larger or equal to startTime
            //  - endTime is alawys larger than startTime
            //  - the value delta is bounded by the largest amplification paramater, which never causes the
            //    multiplication to overflow.
            // This also means that the following computation will never revert nor yield invalid results.
            if (endValue > startValue) {
                value = startValue + ((endValue - startValue) * (block.timestamp - startTime)) / (endTime - startTime);
            } else {
                value = startValue - ((startValue - endValue) * (block.timestamp - startTime)) / (endTime - startTime);
            }
        } else {
            isUpdating = false;
            value = endValue;
        }
    }

    function _getMaxTokens() internal pure override returns (uint256) {
        return _MAX_STABLE_TOKENS;
    }

    function _getTotalTokens() internal view virtual override returns (uint256) {
        return _totalTokens;
    }

    function _scalingFactor(IERC20 token) internal view virtual override returns (uint256) {
        // prettier-ignore
        if (_isToken0(token)) { return _getScalingFactor0(); }
        else if (_isToken1(token)) { return _getScalingFactor1(); }
        else if (token == _token2) { return _getScalingFactor2(); }
        else if (token == _token3) { return _getScalingFactor3(); }
        else if (token == _token4) { return _getScalingFactor4(); }
        else {
            _revert(Errors.INVALID_TOKEN);
        }
    }

    function _scalingFactors() internal view virtual override returns (uint256[] memory) {
        uint256 totalTokens = _getTotalTokens();
        uint256[] memory scalingFactors = new uint256[](totalTokens);

        // prettier-ignore
        {
            if (totalTokens > 0) { scalingFactors[0] = _getScalingFactor0(); } else { return scalingFactors; }
            if (totalTokens > 1) { scalingFactors[1] = _getScalingFactor1(); } else { return scalingFactors; }
            if (totalTokens > 2) { scalingFactors[2] = _getScalingFactor2(); } else { return scalingFactors; }
            if (totalTokens > 3) { scalingFactors[3] = _getScalingFactor3(); } else { return scalingFactors; }
            if (totalTokens > 4) { scalingFactors[4] = _getScalingFactor4(); } else { return scalingFactors; }
        }

        return scalingFactors;
    }

    function _setAmplificationData(uint256 value) private {
        _setAmplificationData(value, value, block.timestamp, block.timestamp);

        emit AmpUpdateStopped(value);
    }

    function _setAmplificationData(
        uint256 startValue,
        uint256 endValue,
        uint256 startTime,
        uint256 endTime
    ) private {
        _packedAmplificationData =
            WordCodec.encodeUint(uint64(startValue), 0) |
            WordCodec.encodeUint(uint64(endValue), 64) |
            WordCodec.encodeUint(uint64(startTime), 64 * 2) |
            WordCodec.encodeUint(uint64(endTime), 64 * 3);

        emit AmpUpdateStarted(startValue, endValue, startTime, endTime);
    }

    function _getAmplificationData()
        private
        view
        returns (
            uint256 startValue,
            uint256 endValue,
            uint256 startTime,
            uint256 endTime
        )
    {
        startValue = _packedAmplificationData.decodeUint64(0);
        endValue = _packedAmplificationData.decodeUint64(64);
        startTime = _packedAmplificationData.decodeUint64(64 * 2);
        endTime = _packedAmplificationData.decodeUint64(64 * 3);
    }

    function _isToken0(IERC20 token) internal view returns (bool) {
        return token == _token0;
    }

    function _isToken1(IERC20 token) internal view returns (bool) {
        return token == _token1;
    }

    function _getScalingFactor0() internal view returns (uint256) {
        return _scalingFactor0;
    }

    function _getScalingFactor1() internal view returns (uint256) {
        return _scalingFactor1;
    }

    function _getScalingFactor2() internal view returns (uint256) {
        return _scalingFactor2;
    }

    function _getScalingFactor3() internal view returns (uint256) {
        return _scalingFactor3;
    }

    function _getScalingFactor4() internal view returns (uint256) {
        return _scalingFactor4;
    }
}

File 17 of 47 : OracleMiscData.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

/**
 * @dev This module provides an interface to store different pieces of information used by pools with a price oracle.
 *
 * These pieces of information are all kept together in a single storage slot to reduce the number of storage reads. In
 * particular, it stores reduced-precision versions of the total BPT supply and invariant, which lets us not access
 * nor compute these values when producing oracle updates during a swap.
 *
 * Data is stored with the following structure:
 *
 * [### not used ### | oracle enabled | oracle index | oracle sample initial timestamp | log supply | log invariant ]
 * [     uint170     |      bool      |    uint10    |              uint31             |    int22   |     int22     ]
 *
 * Note that we are not using the most-significant 170 bits.
 */
library OracleMiscData {
    using WordCodec for bytes32;
    using WordCodec for uint256;

    uint256 private constant _LOG_INVARIANT_OFFSET = 0;
    uint256 private constant _LOG_TOTAL_SUPPLY_OFFSET = 22;
    uint256 private constant _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET = 44;
    uint256 private constant _ORACLE_INDEX_OFFSET = 75;
    uint256 private constant _ORACLE_ENABLED_OFFSET = 85;

    /**
     * @dev Returns the cached logarithm of the invariant.
     */
    function logInvariant(bytes32 data) internal pure returns (int256) {
        return data.decodeInt22(_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns the cached logarithm of the total supply.
     */
    function logTotalSupply(bytes32 data) internal pure returns (int256) {
        return data.decodeInt22(_LOG_TOTAL_SUPPLY_OFFSET);
    }

    /**
     * @dev Returns the timestamp of the creation of the oracle's latest sample.
     */
    function oracleSampleCreationTimestamp(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint31(_ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Returns the index of the oracle's latest sample.
     */
    function oracleIndex(bytes32 data) internal pure returns (uint256) {
        return data.decodeUint10(_ORACLE_INDEX_OFFSET);
    }

    /**
     * @dev Returns true if the oracle is enabled.
     */
    function oracleEnabled(bytes32 data) internal pure returns (bool) {
        return data.decodeBool(_ORACLE_ENABLED_OFFSET);
    }

    /**
     * @dev Sets the logarithm of the invariant in `data`, returning the updated value.
     */
    function setLogInvariant(bytes32 data, int256 _logInvariant) internal pure returns (bytes32) {
        return data.insertInt22(_logInvariant, _LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Sets the logarithm of the total supply in `data`, returning the updated value.
     */
    function setLogTotalSupply(bytes32 data, int256 _logTotalSupply) internal pure returns (bytes32) {
        return data.insertInt22(_logTotalSupply, _LOG_TOTAL_SUPPLY_OFFSET);
    }

    /**
     * @dev Sets the timestamp of the creation of the oracle's latest sample in `data`, returning the updated value.
     */
    function setOracleSampleCreationTimestamp(bytes32 data, uint256 _initialTimestamp) internal pure returns (bytes32) {
        return data.insertUint31(_initialTimestamp, _ORACLE_SAMPLE_CREATION_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Sets the index of the  oracle's latest sample in `data`, returning the updated value.
     */
    function setOracleIndex(bytes32 data, uint256 _oracleIndex) internal pure returns (bytes32) {
        return data.insertUint10(_oracleIndex, _ORACLE_INDEX_OFFSET);
    }

    /**
     * @dev Enables or disables the oracle in `data`, returning the updated value.
     */
    function setOracleEnabled(bytes32 data, bool _oracleEnabled) internal pure returns (bytes32) {
        return data.insertBool(_oracleEnabled, _ORACLE_ENABLED_OFFSET);
    }
}

File 18 of 47 : StableOracleMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol";

import "../StableMath.sol";

contract StableOracleMath is StableMath {
    using FixedPoint for uint256;

    /**
     * @dev Calculates the spot price of token Y and BPT in token X.
     */
    function _calcLogPrices(
        uint256 amplificationParameter,
        uint256 balanceX,
        uint256 balanceY,
        int256 logBptTotalSupply
    ) internal pure returns (int256 logSpotPrice, int256 logBptPrice) {
        uint256 spotPrice = _calcSpotPrice(amplificationParameter, balanceX, balanceY);
        logBptPrice = _calcLogBptPrice(spotPrice, balanceX, balanceY, logBptTotalSupply);
        logSpotPrice = LogCompression.toLowResLog(spotPrice);
    }

    /**
     * @dev Calculates the spot price of token Y in token X.
     */
    function _calcSpotPrice(
        uint256 amplificationParameter,
        uint256 balanceX,
        uint256 balanceY
    ) internal pure returns (uint256) {
        /**************************************************************************************************************
        //                                                                                                           //
        //                             2.a.x.y + a.y^2 + b.y                                                         //
        // spot price Y/X = - dx/dy = -----------------------                                                        //
        //                             2.a.x.y + a.x^2 + b.x                                                         //
        //                                                                                                           //
        // n = 2                                                                                                     //
        // a = amp param * n                                                                                         //
        // b = D + a.(S - D)                                                                                         //
        // D = invariant                                                                                             //
        // S = sum of balances but x,y = 0 since x  and y are the only tokens                                        //
        **************************************************************************************************************/

        uint256 invariant = _calculateInvariant(amplificationParameter, _balances(balanceX, balanceY), true);

        uint256 a = (amplificationParameter * 2) / _AMP_PRECISION;
        uint256 b = Math.mul(invariant, a).sub(invariant);

        uint256 axy2 = Math.mul(a * 2, balanceX).mulDown(balanceY); // n = 2

        // dx = a.x.y.2 + a.y^2 - b.y
        uint256 derivativeX = axy2.add(Math.mul(a, balanceY).mulDown(balanceY)).sub(b.mulDown(balanceY));

        // dy = a.x.y.2 + a.x^2 - b.x
        uint256 derivativeY = axy2.add(Math.mul(a, balanceX).mulDown(balanceX)).sub(b.mulDown(balanceX));

        // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log
        // space. We use `divUp` as it prevents the result from being zero, which would make the logarithm revert. A
        // result of zero is therefore only possible with zero balances, which are prevented via other means.
        return derivativeX.divUp(derivativeY);
    }

    /**
     * @dev Calculates the price of BPT in token X. `logBptTotalSupply` should be the result of calling
     * `LogCompression.toLowResLog` with the current BPT supply, and `spotPrice` the price of token
     * Y in token X (obtainable via `_calcSpotPrice()`.
     *
     * The return value is a 4 decimal fixed-point number: use `LogCompression.fromLowResLog`
     * to recover the original value.
     */
    function _calcLogBptPrice(
        uint256 spotPrice,
        uint256 balanceX,
        uint256 balanceY,
        int256 logBptTotalSupply
    ) internal pure returns (int256) {
        /**************************************************************************************************************
        //                                                                                                           //
        //              balance X + (spot price Y/X * balance Y)                                                     //
        // BPT price = ------------------------------------------                                                    //
        //                          total supply                                                                     //
        //                                                                                                           //
        // ln(BPT price) = ln(balance X + (spot price Y/X * balance Y)) - ln(totalSupply)                            //
        **************************************************************************************************************/

        // The rounding direction is irrelevant as we're about to introduce a much larger error when converting to log
        // space. We use `mulUp` as it prevents the result from being zero, which would make the logarithm revert. A
        // result of zero is therefore only possible with zero balances, which are prevented via other means.
        uint256 totalBalanceX = balanceX.add(spotPrice.mulUp(balanceY));
        int256 logTotalBalanceX = LogCompression.toLowResLog(totalBalanceX);

        // Because we're subtracting two values in log space, this value has a larger error (+-0.0001 instead of
        // +-0.00005), which results in a final larger relative error of around 0.1%.
        return logTotalBalanceX - logBptTotalSupply;
    }

    function _balances(uint256 balanceX, uint256 balanceY) private pure returns (uint256[] memory balances) {
        balances = new uint256[](2);
        balances[0] = balanceX;
        balances[1] = balanceY;
    }
}

File 19 of 47 : IPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

/**
 * @dev Interface for querying historical data from a Pool that can be used as a Price Oracle.
 *
 * This lets third parties retrieve average prices of tokens held by a Pool over a given period of time, as well as the
 * price of the Pool share token (BPT) and invariant. Since the invariant is a sensible measure of Pool liquidity, it
 * can be used to compare two different price sources, and choose the most liquid one.
 *
 * Once the oracle is fully initialized, all queries are guaranteed to succeed as long as they require no data that
 * is not older than the largest safe query window.
 */
interface IPriceOracle {
    // The three values that can be queried:
    //
    // - PAIR_PRICE: the price of the tokens in the Pool, expressed as the price of the second token in units of the
    //   first token. For example, if token A is worth $2, and token B is worth $4, the pair price will be 2.0.
    //   Note that the price is computed *including* the tokens decimals. This means that the pair price of a Pool with
    //   DAI and USDC will be close to 1.0, despite DAI having 18 decimals and USDC 6.
    //
    // - BPT_PRICE: the price of the Pool share token (BPT), in units of the first token.
    //   Note that the price is computed *including* the tokens decimals. This means that the BPT price of a Pool with
    //   USDC in which BPT is worth $5 will be 5.0, despite the BPT having 18 decimals and USDC 6.
    //
    // - INVARIANT: the value of the Pool's invariant, which serves as a measure of its liquidity.
    enum Variable { PAIR_PRICE, BPT_PRICE, INVARIANT }

    /**
     * @dev Returns the time average weighted price corresponding to each of `queries`. Prices are represented as 18
     * decimal fixed point values.
     */
    function getTimeWeightedAverage(OracleAverageQuery[] memory queries)
        external
        view
        returns (uint256[] memory results);

    /**
     * @dev Returns latest sample of `variable`. Prices are represented as 18 decimal fixed point values.
     */
    function getLatest(Variable variable) external view returns (uint256);

    /**
     * @dev Information for a Time Weighted Average query.
     *
     * Each query computes the average over a window of duration `secs` seconds that ended `ago` seconds ago. For
     * example, the average over the past 30 minutes is computed by settings secs to 1800 and ago to 0. If secs is 1800
     * and ago is 1800 as well, the average between 60 and 30 minutes ago is computed instead.
     */
    struct OracleAverageQuery {
        Variable variable;
        uint256 secs;
        uint256 ago;
    }

    /**
     * @dev Returns largest time window that can be safely queried, where 'safely' means the Oracle is guaranteed to be
     * able to produce a result and not revert.
     *
     * If a query has a non-zero `ago` value, then `secs + ago` (the oldest point in time) must be smaller than this
     * value for 'safe' queries.
     */
    function getLargestSafeQueryWindow() external view returns (uint256);

    /**
     * @dev Returns the accumulators corresponding to each of `queries`.
     */
    function getPastAccumulators(OracleAccumulatorQuery[] memory queries)
        external
        view
        returns (int256[] memory results);

    /**
     * @dev Information for an Accumulator query.
     *
     * Each query estimates the accumulator at a time `ago` seconds ago.
     */
    struct OracleAccumulatorQuery {
        Variable variable;
        uint256 ago;
    }
}

File 20 of 47 : IPoolPriceOracle.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IPoolPriceOracle {
    /**
     * @dev Returns the raw data of the sample at `index`.
     */
    function getSample(uint256 index)
        external
        view
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 timestamp
        );

    /**
     * @dev Returns the total number of samples.
     */
    function getTotalSamples() external view returns (uint256);
}

File 21 of 47 : Buffer.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

library Buffer {
    // The buffer is a circular storage structure with 1024 slots.
    // solhint-disable-next-line private-vars-leading-underscore
    uint256 internal constant SIZE = 1024;

    /**
     * @dev Returns the index of the element before the one pointed by `index`.
     */
    function prev(uint256 index) internal pure returns (uint256) {
        return sub(index, 1);
    }

    /**
     * @dev Returns the index of the element after the one pointed by `index`.
     */
    function next(uint256 index) internal pure returns (uint256) {
        return add(index, 1);
    }

    /**
     * @dev Returns the index of an element `offset` slots after the one pointed by `index`.
     */
    function add(uint256 index, uint256 offset) internal pure returns (uint256) {
        return (index + offset) % SIZE;
    }

    /**
     * @dev Returns the index of an element `offset` slots before the one pointed by `index`.
     */
    function sub(uint256 index, uint256 offset) internal pure returns (uint256) {
        return (index + SIZE - offset) % SIZE;
    }
}

File 22 of 47 : Samples.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";

import "../interfaces/IPriceOracle.sol";

/**
 * @dev This library provides functions to help manipulating samples for Pool Price Oracles. It handles updates,
 * encoding, and decoding of samples.
 *
 * Each sample holds the timestamp of its last update, plus information about three pieces of data: the price pair, the
 * price of BPT (the associated Pool token), and the invariant.
 *
 * Prices and invariant are not stored directly: instead, we store their logarithm. These are known as the 'instant'
 * values: the exact value at that timestamp.
 *
 * Additionally, for each value we keep an accumulator with the sum of all past values, each weighted by the time
 * elapsed since the previous update. This lets us later subtract accumulators at different points in time and divide by
 * the time elapsed between them, arriving at the geometric mean of the values (also known as log-average).
 *
 * All samples are stored in a single 256 bit word with the following structure:
 *
 * [    log pair price     |        bpt price      |       invariant       |  timestamp ]
 * [ instant | accumulator | instant | accumulator | instant | accumulator |            ]
 * [  int22  |    int53    |  int22  |    int53    |  int22  |    int53    |    uint31  ]
 * MSB                                                                                LSB
 *
 * Assuming the timestamp doesn't overflow (which holds until the year 2038), the largest elapsed time is 2^31, which
 * means the largest possible accumulator value is 2^21 * 2^31, which can be represented using a signed 53 bit integer.
 */
library Samples {
    using WordCodec for int256;
    using WordCodec for uint256;
    using WordCodec for bytes32;

    uint256 internal constant _TIMESTAMP_OFFSET = 0;
    uint256 internal constant _ACC_LOG_INVARIANT_OFFSET = 31;
    uint256 internal constant _INST_LOG_INVARIANT_OFFSET = 84;
    uint256 internal constant _ACC_LOG_BPT_PRICE_OFFSET = 106;
    uint256 internal constant _INST_LOG_BPT_PRICE_OFFSET = 159;
    uint256 internal constant _ACC_LOG_PAIR_PRICE_OFFSET = 181;
    uint256 internal constant _INST_LOG_PAIR_PRICE_OFFSET = 234;

    /**
     * @dev Updates a sample, accumulating the new data based on the elapsed time since the previous update. Returns the
     * updated sample.
     *
     * IMPORTANT: This function does not perform any arithmetic checks. In particular, it assumes the caller will never
     * pass values that cannot be represented as 22 bit signed integers. Additionally, it also assumes
     * `currentTimestamp` is greater than `sample`'s timestamp.
     */
    function update(
        bytes32 sample,
        int256 instLogPairPrice,
        int256 instLogBptPrice,
        int256 instLogInvariant,
        uint256 currentTimestamp
    ) internal pure returns (bytes32) {
        // Because elapsed can be represented as a 31 bit unsigned integer, and the received values can be represented
        // as 22 bit signed integers, we don't need to perform checked arithmetic.

        int256 elapsed = int256(currentTimestamp - timestamp(sample));
        int256 accLogPairPrice = _accLogPairPrice(sample) + instLogPairPrice * elapsed;
        int256 accLogBptPrice = _accLogBptPrice(sample) + instLogBptPrice * elapsed;
        int256 accLogInvariant = _accLogInvariant(sample) + instLogInvariant * elapsed;

        return
            pack(
                instLogPairPrice,
                accLogPairPrice,
                instLogBptPrice,
                accLogBptPrice,
                instLogInvariant,
                accLogInvariant,
                currentTimestamp
            );
    }

    /**
     * @dev Returns the instant value stored in `sample` for `variable`.
     */
    function instant(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) {
        if (variable == IPriceOracle.Variable.PAIR_PRICE) {
            return _instLogPairPrice(sample);
        } else if (variable == IPriceOracle.Variable.BPT_PRICE) {
            return _instLogBptPrice(sample);
        } else {
            // variable == IPriceOracle.Variable.INVARIANT
            return _instLogInvariant(sample);
        }
    }

    /**
     * @dev Returns the accumulator value stored in `sample` for `variable`.
     */
    function accumulator(bytes32 sample, IPriceOracle.Variable variable) internal pure returns (int256) {
        if (variable == IPriceOracle.Variable.PAIR_PRICE) {
            return _accLogPairPrice(sample);
        } else if (variable == IPriceOracle.Variable.BPT_PRICE) {
            return _accLogBptPrice(sample);
        } else {
            // variable == IPriceOracle.Variable.INVARIANT
            return _accLogInvariant(sample);
        }
    }

    /**
     * @dev Returns `sample`'s timestamp.
     */
    function timestamp(bytes32 sample) internal pure returns (uint256) {
        return sample.decodeUint31(_TIMESTAMP_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the pair price.
     */
    function _instLogPairPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_PAIR_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the pair price.
     */
    function _accLogPairPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the BPT price.
     */
    function _instLogBptPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_BPT_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the BPT price.
     */
    function _accLogBptPrice(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_BPT_PRICE_OFFSET);
    }

    /**
     * @dev Returns `sample`'s instant value for the logarithm of the invariant.
     */
    function _instLogInvariant(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt22(_INST_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns `sample`'s accumulator of the logarithm of the invariant.
     */
    function _accLogInvariant(bytes32 sample) private pure returns (int256) {
        return sample.decodeInt53(_ACC_LOG_INVARIANT_OFFSET);
    }

    /**
     * @dev Returns a sample created by packing together its components.
     */
    function pack(
        int256 instLogPairPrice,
        int256 accLogPairPrice,
        int256 instLogBptPrice,
        int256 accLogBptPrice,
        int256 instLogInvariant,
        int256 accLogInvariant,
        uint256 _timestamp
    ) internal pure returns (bytes32) {
        return
            instLogPairPrice.encodeInt22(_INST_LOG_PAIR_PRICE_OFFSET) |
            accLogPairPrice.encodeInt53(_ACC_LOG_PAIR_PRICE_OFFSET) |
            instLogBptPrice.encodeInt22(_INST_LOG_BPT_PRICE_OFFSET) |
            accLogBptPrice.encodeInt53(_ACC_LOG_BPT_PRICE_OFFSET) |
            instLogInvariant.encodeInt22(_INST_LOG_INVARIANT_OFFSET) |
            accLogInvariant.encodeInt53(_ACC_LOG_INVARIANT_OFFSET) |
            _timestamp.encodeUint(_TIMESTAMP_OFFSET); // Using 31 bits
    }

    /**
     * @dev Unpacks a sample into its components.
     */
    function unpack(bytes32 sample)
        internal
        pure
        returns (
            int256 logPairPrice,
            int256 accLogPairPrice,
            int256 logBptPrice,
            int256 accLogBptPrice,
            int256 logInvariant,
            int256 accLogInvariant,
            uint256 _timestamp
        )
    {
        logPairPrice = _instLogPairPrice(sample);
        accLogPairPrice = _accLogPairPrice(sample);
        logBptPrice = _instLogBptPrice(sample);
        accLogBptPrice = _accLogBptPrice(sample);
        logInvariant = _instLogInvariant(sample);
        accLogInvariant = _accLogInvariant(sample);
        _timestamp = timestamp(sample);
    }
}

File 23 of 47 : QueryProcessor.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/BalancerErrors.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/LogCompression.sol";

import "../interfaces/IPriceOracle.sol";

import "./Buffer.sol";
import "./Samples.sol";

/**
 * @dev Auxiliary library for PoolPriceOracle, offloading most of the query code to reduce bytecode size by using this
 * as a linked library. The downside is an extra DELEGATECALL is added (2600 gas as of the Berlin hardfork), but the
 * bytecode size gains are so big (specially of the oracle contract does not use `LogCompression.fromLowResLog`) that
 * it is worth it.
 */
library QueryProcessor {
    using Buffer for uint256;
    using Samples for bytes32;
    using LogCompression for int256;

    /**
     * @dev Returns the value for `variable` at the indexed sample.
     */
    function getInstantValue(
        mapping(uint256 => bytes32) storage samples,
        IPriceOracle.Variable variable,
        uint256 index
    ) external view returns (uint256) {
        bytes32 sample = samples[index];
        _require(sample.timestamp() > 0, Errors.ORACLE_NOT_INITIALIZED);

        int256 rawInstantValue = sample.instant(variable);
        return LogCompression.fromLowResLog(rawInstantValue);
    }

    /**
     * @dev Returns the time average weighted price corresponding to `query`.
     */
    function getTimeWeightedAverage(
        mapping(uint256 => bytes32) storage samples,
        IPriceOracle.OracleAverageQuery memory query,
        uint256 latestIndex
    ) external view returns (uint256) {
        _require(query.secs != 0, Errors.ORACLE_BAD_SECS);

        int256 beginAccumulator = getPastAccumulator(samples, query.variable, latestIndex, query.ago + query.secs);
        int256 endAccumulator = getPastAccumulator(samples, query.variable, latestIndex, query.ago);
        return LogCompression.fromLowResLog((endAccumulator - beginAccumulator) / int256(query.secs));
    }

    /**
     * @dev Returns the value of the accumulator for `variable` `ago` seconds ago. `latestIndex` must be the index of
     * the latest sample in the buffer.
     *
     * Reverts under the following conditions:
     *  - if the buffer is empty.
     *  - if querying past information and the buffer has not been fully initialized.
     *  - if querying older information than available in the buffer. Note that a full buffer guarantees queries for the
     *    past 34 hours will not revert.
     *
     * If requesting information for a timestamp later than the latest one, it is extrapolated using the latest
     * available data.
     *
     * When no exact information is available for the requested past timestamp (as usually happens, since at most one
     * timestamp is stored every two minutes), it is estimated by performing linear interpolation using the closest
     * values. This process is guaranteed to complete performing at most 10 storage reads.
     */
    function getPastAccumulator(
        mapping(uint256 => bytes32) storage samples,
        IPriceOracle.Variable variable,
        uint256 latestIndex,
        uint256 ago
    ) public view returns (int256) {
        // solhint-disable not-rely-on-time
        // `ago` must not be before the epoch.
        _require(block.timestamp >= ago, Errors.ORACLE_INVALID_SECONDS_QUERY);
        uint256 lookUpTime = block.timestamp - ago;

        bytes32 latestSample = samples[latestIndex];
        uint256 latestTimestamp = latestSample.timestamp();

        // The latest sample only has a non-zero timestamp if no data was ever processed and stored in the buffer.
        _require(latestTimestamp > 0, Errors.ORACLE_NOT_INITIALIZED);

        if (latestTimestamp <= lookUpTime) {
            // The accumulator at times ahead of the latest one are computed by extrapolating the latest data. This is
            // equivalent to the instant value not changing between the last timestamp and the look up time.

            // We can use unchecked arithmetic since the accumulator can be represented in 53 bits, timestamps in 31
            // bits, and the instant value in 22 bits.
            uint256 elapsed = lookUpTime - latestTimestamp;
            return latestSample.accumulator(variable) + (latestSample.instant(variable) * int256(elapsed));
        } else {
            // The look up time is before the latest sample, but we need to make sure that it is not before the oldest
            // sample as well.

            // Since we use a circular buffer, the oldest sample is simply the next one.
            uint256 oldestIndex = latestIndex.next();
            {
                // Local scope used to prevent stack-too-deep errors.
                bytes32 oldestSample = samples[oldestIndex];
                uint256 oldestTimestamp = oldestSample.timestamp();

                // For simplicity's sake, we only perform past queries if the buffer has been fully initialized. This
                // means the oldest sample must have a non-zero timestamp.
                _require(oldestTimestamp > 0, Errors.ORACLE_NOT_INITIALIZED);
                // The only remaining condition to check is for the look up time to be between the oldest and latest
                // timestamps.
                _require(oldestTimestamp <= lookUpTime, Errors.ORACLE_QUERY_TOO_OLD);
            }

            // Perform binary search to find nearest samples to the desired timestamp.
            (bytes32 prev, bytes32 next) = findNearestSample(samples, lookUpTime, oldestIndex);

            // `next`'s timestamp is guaranteed to be larger than `prev`'s, so we can skip checked arithmetic.
            uint256 samplesTimeDiff = next.timestamp() - prev.timestamp();

            if (samplesTimeDiff > 0) {
                // We estimate the accumulator at the requested look up time by interpolating linearly between the
                // previous and next accumulators.

                // We can use unchecked arithmetic since the accumulators can be represented in 53 bits, and timestamps
                // in 31 bits.
                int256 samplesAccDiff = next.accumulator(variable) - prev.accumulator(variable);
                uint256 elapsed = lookUpTime - prev.timestamp();
                return prev.accumulator(variable) + ((samplesAccDiff * int256(elapsed)) / int256(samplesTimeDiff));
            } else {
                // Rarely, one of the samples will have the exact requested look up time, which is indicated by `prev`
                // and `next` being the same. In this case, we simply return the accumulator at that point in time.
                return prev.accumulator(variable);
            }
        }
    }

    /**
     * @dev Finds the two samples with timestamps before and after `lookUpDate`. If one of the samples matches exactly,
     * both `prev` and `next` will be it. `offset` is the index of the oldest sample in the buffer.
     *
     * Assumes `lookUpDate` is greater or equal than the timestamp of the oldest sample, and less or equal than the
     * timestamp of the latest sample.
     */
    function findNearestSample(
        mapping(uint256 => bytes32) storage samples,
        uint256 lookUpDate,
        uint256 offset
    ) public view returns (bytes32 prev, bytes32 next) {
        // We're going to perform a binary search in the circular buffer, which requires it to be sorted. To achieve
        // this, we offset all buffer accesses by `offset`, making the first element the oldest one.

        // Auxiliary variables in a typical binary search: we will look at some value `mid` between `low` and `high`,
        // periodically increasing `low` or decreasing `high` until we either find a match or determine the element is
        // not in the array.
        uint256 low = 0;
        uint256 high = Buffer.SIZE - 1;
        uint256 mid;

        // If the search fails and no sample has a timestamp of `lookUpDate` (as is the most common scenario), `sample`
        // will be either the sample with the largest timestamp smaller than `lookUpDate`, or the one with the smallest
        // timestamp larger than `lookUpDate`.
        bytes32 sample;
        uint256 sampleTimestamp;

        while (low <= high) {
            // Mid is the floor of the average.
            uint256 midWithoutOffset = (high + low) / 2;

            // Recall that the buffer is not actually sorted: we need to apply the offset to access it in a sorted way.
            mid = midWithoutOffset.add(offset);
            sample = samples[mid];
            sampleTimestamp = sample.timestamp();

            if (sampleTimestamp < lookUpDate) {
                // If the mid sample is bellow the look up date, then increase the low index to start from there.
                low = midWithoutOffset + 1;
            } else if (sampleTimestamp > lookUpDate) {
                // If the mid sample is above the look up date, then decrease the high index to start from there.

                // We can skip checked arithmetic: it is impossible for `high` to ever be 0, as a scenario where `low`
                // equals 0 and `high` equals 1 would result in `low` increasing to 1 in the previous `if` clause.
                high = midWithoutOffset - 1;
            } else {
                // sampleTimestamp == lookUpDate
                // If we have an exact match, return the sample as both `prev` and `next`.
                return (sample, sample);
            }
        }

        // In case we reach here, it means we didn't find exactly the sample we where looking for.
        return sampleTimestamp < lookUpDate ? (sample, samples[mid.next()]) : (samples[mid.prev()], sample);
    }
}

File 24 of 47 : WordCodec.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

/**
 * @dev Library for encoding and decoding values stored inside a 256 bit word. Typically used to pack multiple values in
 * a single storage slot, saving gas by performing less storage accesses.
 *
 * Each value is defined by its size and the least significant bit in the word, also known as offset. For example, two
 * 128 bit values may be encoded in a word by assigning one an offset of 0, and the other an offset of 128.
 */
library WordCodec {
    // Masks are values with the least significant N bits set. They can be used to extract an encoded value from a word,
    // or to insert a new one replacing the old.
    uint256 private constant _MASK_1 = 2**(1) - 1;
    uint256 private constant _MASK_5 = 2**(5) - 1;
    uint256 private constant _MASK_10 = 2**(10) - 1;
    uint256 private constant _MASK_16 = 2**(16) - 1;
    uint256 private constant _MASK_22 = 2**(22) - 1;
    uint256 private constant _MASK_31 = 2**(31) - 1;
    uint256 private constant _MASK_32 = 2**(32) - 1;
    uint256 private constant _MASK_53 = 2**(53) - 1;
    uint256 private constant _MASK_64 = 2**(64) - 1;
    uint256 private constant _MASK_128 = 2**(128) - 1;
    uint256 private constant _MASK_192 = 2**(192) - 1;

    // Largest positive values that can be represented as N bits signed integers.
    int256 private constant _MAX_INT_22 = 2**(21) - 1;
    int256 private constant _MAX_INT_53 = 2**(52) - 1;

    // In-place insertion

    /**
     * @dev Inserts a boolean value shifted by an offset into a 256 bit word, replacing the old value. Returns the new
     * word.
     */
    function insertBool(
        bytes32 word,
        bool value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_1 << offset));
        return clearedWord | bytes32(uint256(value ? 1 : 0) << offset);
    }

    // Unsigned

    /**
     * @dev Inserts a 5 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 5 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint5(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_5 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 10 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 10 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint10(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_10 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 16 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value.
     * Returns the new word.
     *
     * Assumes `value` only uses its least significant 16 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint16(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_16 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 31 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 31 bits.
     */
    function insertUint31(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_31 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 32 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 32 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint32(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_32 << offset));
        return clearedWord | bytes32(value << offset);
    }

    /**
     * @dev Inserts a 64 bit unsigned integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` only uses its least significant 64 bits, otherwise it may overwrite sibling bytes.
     */
    function insertUint64(
        bytes32 word,
        uint256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_64 << offset));
        return clearedWord | bytes32(value << offset);
    }

    // Signed

    /**
     * @dev Inserts a 22 bits signed integer shifted by an offset into a 256 bit word, replacing the old value. Returns
     * the new word.
     *
     * Assumes `value` can be represented using 22 bits.
     */
    function insertInt22(
        bytes32 word,
        int256 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_22 << offset));
        // Integer values need masking to remove the upper bits of negative values.
        return clearedWord | bytes32((uint256(value) & _MASK_22) << offset);
    }

    // Bytes

    /**
     * @dev Inserts 192 bit shifted by an offset into a 256 bit word, replacing the old value. Returns the new word.
     *
     * Assumes `value` can be represented using 192 bits.
     */
    function insertBits192(
        bytes32 word,
        bytes32 value,
        uint256 offset
    ) internal pure returns (bytes32) {
        bytes32 clearedWord = bytes32(uint256(word) & ~(_MASK_192 << offset));
        return clearedWord | bytes32((uint256(value) & _MASK_192) << offset);
    }

    // Encoding

    // Unsigned

    /**
     * @dev Encodes an unsigned integer shifted by an offset. This performs no size checks: it is up to the caller to
     * ensure that the values are bounded.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeUint(uint256 value, uint256 offset) internal pure returns (bytes32) {
        return bytes32(value << offset);
    }

    // Signed

    /**
     * @dev Encodes a 22 bits signed integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeInt22(int256 value, uint256 offset) internal pure returns (bytes32) {
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & _MASK_22) << offset);
    }

    /**
     * @dev Encodes a 53 bits signed integer shifted by an offset.
     *
     * The return value can be logically ORed with other encoded values to form a 256 bit word.
     */
    function encodeInt53(int256 value, uint256 offset) internal pure returns (bytes32) {
        // Integer values need masking to remove the upper bits of negative values.
        return bytes32((uint256(value) & _MASK_53) << offset);
    }

    // Decoding

    /**
     * @dev Decodes and returns a boolean shifted by an offset from a 256 bit word.
     */
    function decodeBool(bytes32 word, uint256 offset) internal pure returns (bool) {
        return (uint256(word >> offset) & _MASK_1) == 1;
    }

    // Unsigned

    /**
     * @dev Decodes and returns a 5 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint5(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_5;
    }

    /**
     * @dev Decodes and returns a 10 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint10(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_10;
    }

    /**
     * @dev Decodes and returns a 16 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint16(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_16;
    }

    /**
     * @dev Decodes and returns a 31 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint31(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_31;
    }

    /**
     * @dev Decodes and returns a 32 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint32(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_32;
    }

    /**
     * @dev Decodes and returns a 64 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint64(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_64;
    }

    /**
     * @dev Decodes and returns a 128 bit unsigned integer shifted by an offset from a 256 bit word.
     */
    function decodeUint128(bytes32 word, uint256 offset) internal pure returns (uint256) {
        return uint256(word >> offset) & _MASK_128;
    }

    // Signed

    /**
     * @dev Decodes and returns a 22 bits signed integer shifted by an offset from a 256 bit word.
     */
    function decodeInt22(bytes32 word, uint256 offset) internal pure returns (int256) {
        int256 value = int256(uint256(word >> offset) & _MASK_22);
        // In case the decoded value is greater than the max positive integer that can be represented with 22 bits,
        // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.
        return value > _MAX_INT_22 ? (value | int256(~_MASK_22)) : value;
    }

    /**
     * @dev Decodes and returns a 53 bits signed integer shifted by an offset from a 256 bit word.
     */
    function decodeInt53(bytes32 word, uint256 offset) internal pure returns (int256) {
        int256 value = int256(uint256(word >> offset) & _MASK_53);
        // In case the decoded value is greater than the max positive integer that can be represented with 53 bits,
        // we know it was originally a negative integer. Therefore, we mask it to restore the sign in the 256 bit
        // representation.

        return value > _MAX_INT_53 ? (value | int256(~_MASK_53)) : value;
    }
}

File 25 of 47 : LogExpMath.sol
// SPDX-License-Identifier: MIT
// Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
// documentation files (the “Software”), to deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following conditions:

// The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
// Software.

// THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
// WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
// COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
// OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/* solhint-disable */

/**
 * @dev Exponentiation and logarithm functions for 18 decimal fixed point numbers (both base and exponent/argument).
 *
 * Exponentiation and logarithm with arbitrary bases (x^y and log_x(y)) are implemented by conversion to natural
 * exponentiation and logarithm (where the base is Euler's number).
 *
 * @author Fernando Martinelli - @fernandomartinelli
 * @author Sergio Yuhjtman - @sergioyuhjtman
 * @author Daniel Fernandez - @dmf7z
 */
library LogExpMath {
    // All fixed point multiplications and divisions are inlined. This means we need to divide by ONE when multiplying
    // two numbers, and multiply by ONE when dividing them.

    // All arguments and return values are 18 decimal fixed point numbers.
    int256 constant ONE_18 = 1e18;

    // Internally, intermediate values are computed with higher precision as 20 decimal fixed point numbers, and in the
    // case of ln36, 36 decimals.
    int256 constant ONE_20 = 1e20;
    int256 constant ONE_36 = 1e36;

    // The domain of natural exponentiation is bound by the word size and number of decimals used.
    //
    // Because internally the result will be stored using 20 decimals, the largest possible result is
    // (2^255 - 1) / 10^20, which makes the largest exponent ln((2^255 - 1) / 10^20) = 130.700829182905140221.
    // The smallest possible result is 10^(-18), which makes largest negative argument
    // ln(10^(-18)) = -41.446531673892822312.
    // We use 130.0 and -41.0 to have some safety margin.
    int256 constant MAX_NATURAL_EXPONENT = 130e18;
    int256 constant MIN_NATURAL_EXPONENT = -41e18;

    // Bounds for ln_36's argument. Both ln(0.9) and ln(1.1) can be represented with 36 decimal places in a fixed point
    // 256 bit integer.
    int256 constant LN_36_LOWER_BOUND = ONE_18 - 1e17;
    int256 constant LN_36_UPPER_BOUND = ONE_18 + 1e17;

    uint256 constant MILD_EXPONENT_BOUND = 2**254 / uint256(ONE_20);

    // 18 decimal constants
    int256 constant x0 = 128000000000000000000; // 2ˆ7
    int256 constant a0 = 38877084059945950922200000000000000000000000000000000000; // eˆ(x0) (no decimals)
    int256 constant x1 = 64000000000000000000; // 2ˆ6
    int256 constant a1 = 6235149080811616882910000000; // eˆ(x1) (no decimals)

    // 20 decimal constants
    int256 constant x2 = 3200000000000000000000; // 2ˆ5
    int256 constant a2 = 7896296018268069516100000000000000; // eˆ(x2)
    int256 constant x3 = 1600000000000000000000; // 2ˆ4
    int256 constant a3 = 888611052050787263676000000; // eˆ(x3)
    int256 constant x4 = 800000000000000000000; // 2ˆ3
    int256 constant a4 = 298095798704172827474000; // eˆ(x4)
    int256 constant x5 = 400000000000000000000; // 2ˆ2
    int256 constant a5 = 5459815003314423907810; // eˆ(x5)
    int256 constant x6 = 200000000000000000000; // 2ˆ1
    int256 constant a6 = 738905609893065022723; // eˆ(x6)
    int256 constant x7 = 100000000000000000000; // 2ˆ0
    int256 constant a7 = 271828182845904523536; // eˆ(x7)
    int256 constant x8 = 50000000000000000000; // 2ˆ-1
    int256 constant a8 = 164872127070012814685; // eˆ(x8)
    int256 constant x9 = 25000000000000000000; // 2ˆ-2
    int256 constant a9 = 128402541668774148407; // eˆ(x9)
    int256 constant x10 = 12500000000000000000; // 2ˆ-3
    int256 constant a10 = 113314845306682631683; // eˆ(x10)
    int256 constant x11 = 6250000000000000000; // 2ˆ-4
    int256 constant a11 = 106449445891785942956; // eˆ(x11)

    /**
     * @dev Exponentiation (x^y) with unsigned 18 decimal fixed point base and exponent.
     *
     * Reverts if ln(x) * y is smaller than `MIN_NATURAL_EXPONENT`, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function pow(uint256 x, uint256 y) internal pure returns (uint256) {
        if (y == 0) {
            // We solve the 0^0 indetermination by making it equal one.
            return uint256(ONE_18);
        }

        if (x == 0) {
            return 0;
        }

        // Instead of computing x^y directly, we instead rely on the properties of logarithms and exponentiation to
        // arrive at that result. In particular, exp(ln(x)) = x, and ln(x^y) = y * ln(x). This means
        // x^y = exp(y * ln(x)).

        // The ln function takes a signed value, so we need to make sure x fits in the signed 256 bit range.
        _require(x < 2**255, Errors.X_OUT_OF_BOUNDS);
        int256 x_int256 = int256(x);

        // We will compute y * ln(x) in a single step. Depending on the value of x, we can either use ln or ln_36. In
        // both cases, we leave the division by ONE_18 (due to fixed point multiplication) to the end.

        // This prevents y * ln(x) from overflowing, and at the same time guarantees y fits in the signed 256 bit range.
        _require(y < MILD_EXPONENT_BOUND, Errors.Y_OUT_OF_BOUNDS);
        int256 y_int256 = int256(y);

        int256 logx_times_y;
        if (LN_36_LOWER_BOUND < x_int256 && x_int256 < LN_36_UPPER_BOUND) {
            int256 ln_36_x = _ln_36(x_int256);

            // ln_36_x has 36 decimal places, so multiplying by y_int256 isn't as straightforward, since we can't just
            // bring y_int256 to 36 decimal places, as it might overflow. Instead, we perform two 18 decimal
            // multiplications and add the results: one with the first 18 decimals of ln_36_x, and one with the
            // (downscaled) last 18 decimals.
            logx_times_y = ((ln_36_x / ONE_18) * y_int256 + ((ln_36_x % ONE_18) * y_int256) / ONE_18);
        } else {
            logx_times_y = _ln(x_int256) * y_int256;
        }
        logx_times_y /= ONE_18;

        // Finally, we compute exp(y * ln(x)) to arrive at x^y
        _require(
            MIN_NATURAL_EXPONENT <= logx_times_y && logx_times_y <= MAX_NATURAL_EXPONENT,
            Errors.PRODUCT_OUT_OF_BOUNDS
        );

        return uint256(exp(logx_times_y));
    }

    /**
     * @dev Natural exponentiation (e^x) with signed 18 decimal fixed point exponent.
     *
     * Reverts if `x` is smaller than MIN_NATURAL_EXPONENT, or larger than `MAX_NATURAL_EXPONENT`.
     */
    function exp(int256 x) internal pure returns (int256) {
        _require(x >= MIN_NATURAL_EXPONENT && x <= MAX_NATURAL_EXPONENT, Errors.INVALID_EXPONENT);

        if (x < 0) {
            // We only handle positive exponents: e^(-x) is computed as 1 / e^x. We can safely make x positive since it
            // fits in the signed 256 bit range (as it is larger than MIN_NATURAL_EXPONENT).
            // Fixed point division requires multiplying by ONE_18.
            return ((ONE_18 * ONE_18) / exp(-x));
        }

        // First, we use the fact that e^(x+y) = e^x * e^y to decompose x into a sum of powers of two, which we call x_n,
        // where x_n == 2^(7 - n), and e^x_n = a_n has been precomputed. We choose the first x_n, x0, to equal 2^7
        // because all larger powers are larger than MAX_NATURAL_EXPONENT, and therefore not present in the
        // decomposition.
        // At the end of this process we will have the product of all e^x_n = a_n that apply, and the remainder of this
        // decomposition, which will be lower than the smallest x_n.
        // exp(x) = k_0 * a_0 * k_1 * a_1 * ... + k_n * a_n * exp(remainder), where each k_n equals either 0 or 1.
        // We mutate x by subtracting x_n, making it the remainder of the decomposition.

        // The first two a_n (e^(2^7) and e^(2^6)) are too large if stored as 18 decimal numbers, and could cause
        // intermediate overflows. Instead we store them as plain integers, with 0 decimals.
        // Additionally, x0 + x1 is larger than MAX_NATURAL_EXPONENT, which means they will not both be present in the
        // decomposition.

        // For each x_n, we test if that term is present in the decomposition (if x is larger than it), and if so deduct
        // it and compute the accumulated product.

        int256 firstAN;
        if (x >= x0) {
            x -= x0;
            firstAN = a0;
        } else if (x >= x1) {
            x -= x1;
            firstAN = a1;
        } else {
            firstAN = 1; // One with no decimal places
        }

        // We now transform x into a 20 decimal fixed point number, to have enhanced precision when computing the
        // smaller terms.
        x *= 100;

        // `product` is the accumulated product of all a_n (except a0 and a1), which starts at 20 decimal fixed point
        // one. Recall that fixed point multiplication requires dividing by ONE_20.
        int256 product = ONE_20;

        if (x >= x2) {
            x -= x2;
            product = (product * a2) / ONE_20;
        }
        if (x >= x3) {
            x -= x3;
            product = (product * a3) / ONE_20;
        }
        if (x >= x4) {
            x -= x4;
            product = (product * a4) / ONE_20;
        }
        if (x >= x5) {
            x -= x5;
            product = (product * a5) / ONE_20;
        }
        if (x >= x6) {
            x -= x6;
            product = (product * a6) / ONE_20;
        }
        if (x >= x7) {
            x -= x7;
            product = (product * a7) / ONE_20;
        }
        if (x >= x8) {
            x -= x8;
            product = (product * a8) / ONE_20;
        }
        if (x >= x9) {
            x -= x9;
            product = (product * a9) / ONE_20;
        }

        // x10 and x11 are unnecessary here since we have high enough precision already.

        // Now we need to compute e^x, where x is small (in particular, it is smaller than x9). We use the Taylor series
        // expansion for e^x: 1 + x + (x^2 / 2!) + (x^3 / 3!) + ... + (x^n / n!).

        int256 seriesSum = ONE_20; // The initial one in the sum, with 20 decimal places.
        int256 term; // Each term in the sum, where the nth term is (x^n / n!).

        // The first term is simply x.
        term = x;
        seriesSum += term;

        // Each term (x^n / n!) equals the previous one times x, divided by n. Since x is a fixed point number,
        // multiplying by it requires dividing by ONE_20, but dividing by the non-fixed point n values does not.

        term = ((term * x) / ONE_20) / 2;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 3;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 4;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 5;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 6;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 7;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 8;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 9;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 10;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 11;
        seriesSum += term;

        term = ((term * x) / ONE_20) / 12;
        seriesSum += term;

        // 12 Taylor terms are sufficient for 18 decimal precision.

        // We now have the first a_n (with no decimals), and the product of all other a_n present, and the Taylor
        // approximation of the exponentiation of the remainder (both with 20 decimals). All that remains is to multiply
        // all three (one 20 decimal fixed point multiplication, dividing by ONE_20, and one integer multiplication),
        // and then drop two digits to return an 18 decimal value.

        return (((product * seriesSum) / ONE_20) * firstAN) / 100;
    }

    /**
     * @dev Logarithm (log(arg, base), with signed 18 decimal fixed point base and argument.
     */
    function log(int256 arg, int256 base) internal pure returns (int256) {
        // This performs a simple base change: log(arg, base) = ln(arg) / ln(base).

        // Both logBase and logArg are computed as 36 decimal fixed point numbers, either by using ln_36, or by
        // upscaling.

        int256 logBase;
        if (LN_36_LOWER_BOUND < base && base < LN_36_UPPER_BOUND) {
            logBase = _ln_36(base);
        } else {
            logBase = _ln(base) * ONE_18;
        }

        int256 logArg;
        if (LN_36_LOWER_BOUND < arg && arg < LN_36_UPPER_BOUND) {
            logArg = _ln_36(arg);
        } else {
            logArg = _ln(arg) * ONE_18;
        }

        // When dividing, we multiply by ONE_18 to arrive at a result with 18 decimal places
        return (logArg * ONE_18) / logBase;
    }

    /**
     * @dev Natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function ln(int256 a) internal pure returns (int256) {
        // The real natural logarithm is not defined for negative numbers or zero.
        _require(a > 0, Errors.OUT_OF_BOUNDS);
        if (LN_36_LOWER_BOUND < a && a < LN_36_UPPER_BOUND) {
            return _ln_36(a) / ONE_18;
        } else {
            return _ln(a);
        }
    }

    /**
     * @dev Internal natural logarithm (ln(a)) with signed 18 decimal fixed point argument.
     */
    function _ln(int256 a) private pure returns (int256) {
        if (a < ONE_18) {
            // Since ln(a^k) = k * ln(a), we can compute ln(a) as ln(a) = ln((1/a)^(-1)) = - ln((1/a)). If a is less
            // than one, 1/a will be greater than one, and this if statement will not be entered in the recursive call.
            // Fixed point division requires multiplying by ONE_18.
            return (-_ln((ONE_18 * ONE_18) / a));
        }

        // First, we use the fact that ln^(a * b) = ln(a) + ln(b) to decompose ln(a) into a sum of powers of two, which
        // we call x_n, where x_n == 2^(7 - n), which are the natural logarithm of precomputed quantities a_n (that is,
        // ln(a_n) = x_n). We choose the first x_n, x0, to equal 2^7 because the exponential of all larger powers cannot
        // be represented as 18 fixed point decimal numbers in 256 bits, and are therefore larger than a.
        // At the end of this process we will have the sum of all x_n = ln(a_n) that apply, and the remainder of this
        // decomposition, which will be lower than the smallest a_n.
        // ln(a) = k_0 * x_0 + k_1 * x_1 + ... + k_n * x_n + ln(remainder), where each k_n equals either 0 or 1.
        // We mutate a by subtracting a_n, making it the remainder of the decomposition.

        // For reasons related to how `exp` works, the first two a_n (e^(2^7) and e^(2^6)) are not stored as fixed point
        // numbers with 18 decimals, but instead as plain integers with 0 decimals, so we need to multiply them by
        // ONE_18 to convert them to fixed point.
        // For each a_n, we test if that term is present in the decomposition (if a is larger than it), and if so divide
        // by it and compute the accumulated sum.

        int256 sum = 0;
        if (a >= a0 * ONE_18) {
            a /= a0; // Integer, not fixed point division
            sum += x0;
        }

        if (a >= a1 * ONE_18) {
            a /= a1; // Integer, not fixed point division
            sum += x1;
        }

        // All other a_n and x_n are stored as 20 digit fixed point numbers, so we convert the sum and a to this format.
        sum *= 100;
        a *= 100;

        // Because further a_n are  20 digit fixed point numbers, we multiply by ONE_20 when dividing by them.

        if (a >= a2) {
            a = (a * ONE_20) / a2;
            sum += x2;
        }

        if (a >= a3) {
            a = (a * ONE_20) / a3;
            sum += x3;
        }

        if (a >= a4) {
            a = (a * ONE_20) / a4;
            sum += x4;
        }

        if (a >= a5) {
            a = (a * ONE_20) / a5;
            sum += x5;
        }

        if (a >= a6) {
            a = (a * ONE_20) / a6;
            sum += x6;
        }

        if (a >= a7) {
            a = (a * ONE_20) / a7;
            sum += x7;
        }

        if (a >= a8) {
            a = (a * ONE_20) / a8;
            sum += x8;
        }

        if (a >= a9) {
            a = (a * ONE_20) / a9;
            sum += x9;
        }

        if (a >= a10) {
            a = (a * ONE_20) / a10;
            sum += x10;
        }

        if (a >= a11) {
            a = (a * ONE_20) / a11;
            sum += x11;
        }

        // a is now a small number (smaller than a_11, which roughly equals 1.06). This means we can use a Taylor series
        // that converges rapidly for values of `a` close to one - the same one used in ln_36.
        // Let z = (a - 1) / (a + 1).
        // ln(a) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 20 digit fixed point division requires multiplying by ONE_20, and multiplication requires
        // division by ONE_20.
        int256 z = ((a - ONE_20) * ONE_20) / (a + ONE_20);
        int256 z_squared = (z * z) / ONE_20;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_20;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_20;
        seriesSum += num / 11;

        // 6 Taylor terms are sufficient for 36 decimal precision.

        // Finally, we multiply by 2 (non fixed point) to compute ln(remainder)
        seriesSum *= 2;

        // We now have the sum of all x_n present, and the Taylor approximation of the logarithm of the remainder (both
        // with 20 decimals). All that remains is to sum these two, and then drop two digits to return a 18 decimal
        // value.

        return (sum + seriesSum) / 100;
    }

    /**
     * @dev Intrnal high precision (36 decimal places) natural logarithm (ln(x)) with signed 18 decimal fixed point argument,
     * for x close to one.
     *
     * Should only be used if x is between LN_36_LOWER_BOUND and LN_36_UPPER_BOUND.
     */
    function _ln_36(int256 x) private pure returns (int256) {
        // Since ln(1) = 0, a value of x close to one will yield a very small result, which makes using 36 digits
        // worthwhile.

        // First, we transform x to a 36 digit fixed point value.
        x *= ONE_18;

        // We will use the following Taylor expansion, which converges very rapidly. Let z = (x - 1) / (x + 1).
        // ln(x) = 2 * (z + z^3 / 3 + z^5 / 5 + z^7 / 7 + ... + z^(2 * n + 1) / (2 * n + 1))

        // Recall that 36 digit fixed point division requires multiplying by ONE_36, and multiplication requires
        // division by ONE_36.
        int256 z = ((x - ONE_36) * ONE_36) / (x + ONE_36);
        int256 z_squared = (z * z) / ONE_36;

        // num is the numerator of the series: the z^(2 * n + 1) term
        int256 num = z;

        // seriesSum holds the accumulated sum of each term in the series, starting with the initial z
        int256 seriesSum = num;

        // In each step, the numerator is multiplied by z^2
        num = (num * z_squared) / ONE_36;
        seriesSum += num / 3;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 5;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 7;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 9;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 11;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 13;

        num = (num * z_squared) / ONE_36;
        seriesSum += num / 15;

        // 8 Taylor terms are sufficient for 36 decimal precision.

        // All that remains is multiplying by 2 (non fixed point).
        return seriesSum * 2;
    }
}

File 26 of 47 : InputHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "../openzeppelin/IERC20.sol";

import "./BalancerErrors.sol";

library InputHelpers {
    function ensureInputLengthMatch(uint256 a, uint256 b) internal pure {
        _require(a == b, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureInputLengthMatch(
        uint256 a,
        uint256 b,
        uint256 c
    ) internal pure {
        _require(a == b && b == c, Errors.INPUT_LENGTH_MISMATCH);
    }

    function ensureArrayIsSorted(IERC20[] memory array) internal pure {
        address[] memory addressArray;
        // solhint-disable-next-line no-inline-assembly
        assembly {
            addressArray := array
        }
        ensureArrayIsSorted(addressArray);
    }

    function ensureArrayIsSorted(address[] memory array) internal pure {
        if (array.length < 2) {
            return;
        }

        address previous = array[0];
        for (uint256 i = 1; i < array.length; ++i) {
            address current = array[i];
            _require(previous < current, Errors.UNSORTED_ARRAY);
            previous = current;
        }
    }
}

File 27 of 47 : BaseGeneralPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./BasePool.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IGeneralPool.sol";

/**
 * @dev Extension of `BasePool`, adding a handler for `IGeneralPool.onSwap`.
 *
 * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with
 * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the General
 * specialization setting.
 */
abstract contract BaseGeneralPool is IGeneralPool, BasePool {
    // Swap Hooks

    function onSwap(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) public virtual override returns (uint256) {
        _validateIndexes(indexIn, indexOut, _getTotalTokens());
        uint256[] memory scalingFactors = _scalingFactors();

        return
            swapRequest.kind == IVault.SwapKind.GIVEN_IN
                ? _swapGivenIn(swapRequest, balances, indexIn, indexOut, scalingFactors)
                : _swapGivenOut(swapRequest, balances, indexIn, indexOut, scalingFactors);
    }

    function _swapGivenIn(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut,
        uint256[] memory scalingFactors
    ) internal returns (uint256) {
        // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
        swapRequest.amount = _subtractSwapFeeAmount(swapRequest.amount);

        _upscaleArray(balances, scalingFactors);
        swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexIn]);

        uint256 amountOut = _onSwapGivenIn(swapRequest, balances, indexIn, indexOut);

        // amountOut tokens are exiting the Pool, so we round down.
        return _downscaleDown(amountOut, scalingFactors[indexOut]);
    }

    function _swapGivenOut(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut,
        uint256[] memory scalingFactors
    ) internal returns (uint256) {
        _upscaleArray(balances, scalingFactors);
        swapRequest.amount = _upscale(swapRequest.amount, scalingFactors[indexOut]);

        uint256 amountIn = _onSwapGivenOut(swapRequest, balances, indexIn, indexOut);

        // amountIn tokens are entering the Pool, so we round up.
        amountIn = _downscaleUp(amountIn, scalingFactors[indexIn]);

        // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
        return _addSwapFeeAmount(amountIn);
    }

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known.
     *
     * Returns the amount of tokens that will be taken from the Pool in return.
     *
     * All amounts inside `swapRequest` and `balances` are upscaled. The swap fee has already been deducted from
     * `swapRequest.amount`.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the
     * Vault.
     */
    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) internal virtual returns (uint256);

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known.
     *
     * Returns the amount of tokens that will be granted to the Pool in return.
     *
     * All amounts inside `swapRequest` and `balances` are upscaled.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee
     * and returning it to the Vault.
     */
    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) internal virtual returns (uint256);

    function _validateIndexes(
        uint256 indexIn,
        uint256 indexOut,
        uint256 limit
    ) private pure {
        _require(indexIn < limit && indexOut < limit, Errors.OUT_OF_BOUNDS);
    }
}

File 28 of 47 : BaseMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./BasePool.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IMinimalSwapInfoPool.sol";

/**
 * @dev Extension of `BasePool`, adding a handler for `IMinimalSwapInfoPool.onSwap`.
 *
 * Derived contracts must call `BasePool`'s constructor, and implement `_onSwapGivenIn` and `_onSwapGivenOut` along with
 * `BasePool`'s virtual functions. Inheriting from this contract lets derived contracts choose the Two Token or Minimal
 * Swap Info specialization settings.
 */
abstract contract BaseMinimalSwapInfoPool is IMinimalSwapInfoPool, BasePool {
    // Swap Hooks

    function onSwap(
        SwapRequest memory request,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) public virtual override returns (uint256) {
        uint256 scalingFactorTokenIn = _scalingFactor(request.tokenIn);
        uint256 scalingFactorTokenOut = _scalingFactor(request.tokenOut);

        if (request.kind == IVault.SwapKind.GIVEN_IN) {
            // Fees are subtracted before scaling, to reduce the complexity of the rounding direction analysis.
            request.amount = _subtractSwapFeeAmount(request.amount);

            // All token amounts are upscaled.
            balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
            balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
            request.amount = _upscale(request.amount, scalingFactorTokenIn);

            uint256 amountOut = _onSwapGivenIn(request, balanceTokenIn, balanceTokenOut);

            // amountOut tokens are exiting the Pool, so we round down.
            return _downscaleDown(amountOut, scalingFactorTokenOut);
        } else {
            // All token amounts are upscaled.
            balanceTokenIn = _upscale(balanceTokenIn, scalingFactorTokenIn);
            balanceTokenOut = _upscale(balanceTokenOut, scalingFactorTokenOut);
            request.amount = _upscale(request.amount, scalingFactorTokenOut);

            uint256 amountIn = _onSwapGivenOut(request, balanceTokenIn, balanceTokenOut);

            // amountIn tokens are entering the Pool, so we round up.
            amountIn = _downscaleUp(amountIn, scalingFactorTokenIn);

            // Fees are added after scaling happens, to reduce the complexity of the rounding direction analysis.
            return _addSwapFeeAmount(amountIn);
        }
    }

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens entering the Pool is known.
     *
     * Returns the amount of tokens that will be taken from the Pool in return.
     *
     * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled. The swap fee has already
     * been deducted from `swapRequest.amount`.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding down) before returning it to the
     * Vault.
     */
    function _onSwapGivenIn(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal virtual returns (uint256);

    /*
     * @dev Called when a swap with the Pool occurs, where the amount of tokens exiting the Pool is known.
     *
     * Returns the amount of tokens that will be granted to the Pool in return.
     *
     * All amounts inside `swapRequest`, `balanceTokenIn` and `balanceTokenOut` are upscaled.
     *
     * The return value is also considered upscaled, and will be downscaled (rounding up) before applying the swap fee
     * and returning it to the Vault.
     */
    function _onSwapGivenOut(
        SwapRequest memory swapRequest,
        uint256 balanceTokenIn,
        uint256 balanceTokenOut
    ) internal virtual returns (uint256);
}

File 29 of 47 : StableMath.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";

// This is a contract to emulate file-level functions. Convert to a library
// after the migration to solc v0.7.1.

// solhint-disable private-vars-leading-underscore
// solhint-disable var-name-mixedcase

contract StableMath {
    using FixedPoint for uint256;

    uint256 internal constant _MIN_AMP = 1;
    uint256 internal constant _MAX_AMP = 5000;
    uint256 internal constant _AMP_PRECISION = 1e3;

    uint256 internal constant _MAX_STABLE_TOKENS = 5;

    // Note on unchecked arithmetic:
    // This contract performs a large number of additions, subtractions, multiplications and divisions, often inside
    // loops. Since many of these operations are gas-sensitive (as they happen e.g. during a swap), it is important to
    // not make any unnecessary checks. We rely on a set of invariants to avoid having to use checked arithmetic (the
    // Math library), including:
    //  - the number of tokens is bounded by _MAX_STABLE_TOKENS
    //  - the amplification parameter is bounded by _MAX_AMP * _AMP_PRECISION, which fits in 23 bits
    //  - the token balances are bounded by 2^112 (guaranteed by the Vault) times 1e18 (the maximum scaling factor),
    //    which fits in 172 bits
    //
    // This means e.g. we can safely multiply a balance by the amplification parameter without worrying about overflow.

    // Computes the invariant given the current balances, using the Newton-Raphson approximation.
    // The amplification parameter equals: A n^(n-1)
    function _calculateInvariant(
        uint256 amplificationParameter,
        uint256[] memory balances,
        bool roundUp
    ) internal pure returns (uint256) {
        /**********************************************************************************************
        // invariant                                                                                 //
        // D = invariant                                                  D^(n+1)                    //
        // A = amplification coefficient      A  n^n S + D = A D n^n + -----------                   //
        // S = sum of balances                                             n^n P                     //
        // P = product of balances                                                                   //
        // n = number of tokens                                                                      //
        *********x************************************************************************************/

        // We support rounding up or down.

        uint256 sum = 0;
        uint256 numTokens = balances.length;
        for (uint256 i = 0; i < numTokens; i++) {
            sum = sum.add(balances[i]);
        }
        if (sum == 0) {
            return 0;
        }

        uint256 prevInvariant = 0;
        uint256 invariant = sum;
        uint256 ampTimesTotal = amplificationParameter * numTokens;

        for (uint256 i = 0; i < 255; i++) {
            uint256 P_D = balances[0] * numTokens;
            for (uint256 j = 1; j < numTokens; j++) {
                P_D = Math.div(Math.mul(Math.mul(P_D, balances[j]), numTokens), invariant, roundUp);
            }
            prevInvariant = invariant;
            invariant = Math.div(
                Math.mul(Math.mul(numTokens, invariant), invariant).add(
                    Math.div(Math.mul(Math.mul(ampTimesTotal, sum), P_D), _AMP_PRECISION, roundUp)
                ),
                Math.mul(numTokens + 1, invariant).add(
                    // No need to use checked arithmetic for the amp precision, the amp is guaranteed to be at least 1
                    Math.div(Math.mul(ampTimesTotal - _AMP_PRECISION, P_D), _AMP_PRECISION, !roundUp)
                ),
                roundUp
            );

            if (invariant > prevInvariant) {
                if (invariant - prevInvariant <= 1) {
                    return invariant;
                }
            } else if (prevInvariant - invariant <= 1) {
                return invariant;
            }
        }

        _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE);
    }

    // Computes how many tokens can be taken out of a pool if `tokenAmountIn` are sent, given the current balances.
    // The amplification parameter equals: A n^(n-1)
    function _calcOutGivenIn(
        uint256 amplificationParameter,
        uint256[] memory balances,
        uint256 tokenIndexIn,
        uint256 tokenIndexOut,
        uint256 tokenAmountIn
    ) internal pure returns (uint256) {
        /**************************************************************************************************************
        // outGivenIn token x for y - polynomial equation to solve                                                   //
        // ay = amount out to calculate                                                                              //
        // by = balance token out                                                                                    //
        // y = by - ay (finalBalanceOut)                                                                             //
        // D = invariant                                               D                     D^(n+1)                 //
        // A = amplification coefficient               y^2 + ( S - ----------  - D) * y -  ------------- = 0         //
        // n = number of tokens                                    (A * n^n)               A * n^2n * P              //
        // S = sum of final balances but y                                                                           //
        // P = product of final balances but y                                                                       //
        **************************************************************************************************************/

        // Amount out, so we round down overall.

        // Given that we need to have a greater final balance out, the invariant needs to be rounded up
        uint256 invariant = _calculateInvariant(amplificationParameter, balances, true);

        balances[tokenIndexIn] = balances[tokenIndexIn].add(tokenAmountIn);

        uint256 finalBalanceOut = _getTokenBalanceGivenInvariantAndAllOtherBalances(
            amplificationParameter,
            balances,
            invariant,
            tokenIndexOut
        );

        // No need to use checked arithmetic since `tokenAmountIn` was actually added to the same balance right before
        // calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array.
        balances[tokenIndexIn] = balances[tokenIndexIn] - tokenAmountIn;

        return balances[tokenIndexOut].sub(finalBalanceOut).sub(1);
    }

    // Computes how many tokens must be sent to a pool if `tokenAmountOut` are sent given the
    // current balances, using the Newton-Raphson approximation.
    // The amplification parameter equals: A n^(n-1)
    function _calcInGivenOut(
        uint256 amplificationParameter,
        uint256[] memory balances,
        uint256 tokenIndexIn,
        uint256 tokenIndexOut,
        uint256 tokenAmountOut
    ) internal pure returns (uint256) {
        /**************************************************************************************************************
        // inGivenOut token x for y - polynomial equation to solve                                                   //
        // ax = amount in to calculate                                                                               //
        // bx = balance token in                                                                                     //
        // x = bx + ax (finalBalanceIn)                                                                              //
        // D = invariant                                                D                     D^(n+1)                //
        // A = amplification coefficient               x^2 + ( S - ----------  - D) * x -  ------------- = 0         //
        // n = number of tokens                                     (A * n^n)               A * n^2n * P             //
        // S = sum of final balances but x                                                                           //
        // P = product of final balances but x                                                                       //
        **************************************************************************************************************/

        // Amount in, so we round up overall.

        // Given that we need to have a greater final balance in, the invariant needs to be rounded up
        uint256 invariant = _calculateInvariant(amplificationParameter, balances, true);

        balances[tokenIndexOut] = balances[tokenIndexOut].sub(tokenAmountOut);

        uint256 finalBalanceIn = _getTokenBalanceGivenInvariantAndAllOtherBalances(
            amplificationParameter,
            balances,
            invariant,
            tokenIndexIn
        );

        // No need to use checked arithmetic since `tokenAmountOut` was actually subtracted from the same balance right
        // before calling `_getTokenBalanceGivenInvariantAndAllOtherBalances` which doesn't alter the balances array.
        balances[tokenIndexOut] = balances[tokenIndexOut] + tokenAmountOut;

        return finalBalanceIn.sub(balances[tokenIndexIn]).add(1);
    }

    function _calcBptOutGivenExactTokensIn(
        uint256 amp,
        uint256[] memory balances,
        uint256[] memory amountsIn,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256) {
        // BPT out, so we round down overall.

        // First loop calculates the sum of all token balances, which will be used to calculate
        // the current weights of each token, relative to this sum
        uint256 sumBalances = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            sumBalances = sumBalances.add(balances[i]);
        }

        // Calculate the weighted balance ratio without considering fees
        uint256[] memory balanceRatiosWithFee = new uint256[](amountsIn.length);
        // The weighted sum of token balance ratios without fee
        uint256 invariantRatioWithFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            uint256 currentWeight = balances[i].divDown(sumBalances);
            balanceRatiosWithFee[i] = balances[i].add(amountsIn[i]).divDown(balances[i]);
            invariantRatioWithFees = invariantRatioWithFees.add(balanceRatiosWithFee[i].mulDown(currentWeight));
        }

        // Second loop calculates new amounts in, taking into account the fee on the percentage excess
        uint256[] memory newBalances = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            uint256 amountInWithoutFee;

            // Check if the balance ratio is greater than the ideal ratio to charge fees or not
            if (balanceRatiosWithFee[i] > invariantRatioWithFees) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithFees.sub(FixedPoint.ONE));
                uint256 taxableAmount = amountsIn[i].sub(nonTaxableAmount);
                // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50%
                amountInWithoutFee = nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage));
            } else {
                amountInWithoutFee = amountsIn[i];
            }

            newBalances[i] = balances[i].add(amountInWithoutFee);
        }

        // Get current and new invariants, taking swap fees into account
        uint256 currentInvariant = _calculateInvariant(amp, balances, true);
        uint256 newInvariant = _calculateInvariant(amp, newBalances, false);
        uint256 invariantRatio = newInvariant.divDown(currentInvariant);

        // If the invariant didn't increase for any reason, we simply don't mint BPT
        if (invariantRatio > FixedPoint.ONE) {
            return bptTotalSupply.mulDown(invariantRatio - FixedPoint.ONE);
        } else {
            return 0;
        }
    }

    function _calcTokenInGivenExactBptOut(
        uint256 amp,
        uint256[] memory balances,
        uint256 tokenIndex,
        uint256 bptAmountOut,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256) {
        // Token in, so we round up overall.

        // Get the current invariant
        uint256 currentInvariant = _calculateInvariant(amp, balances, true);

        // Calculate new invariant
        uint256 newInvariant = bptTotalSupply.add(bptAmountOut).divUp(bptTotalSupply).mulUp(currentInvariant);

        // Calculate amount in without fee.
        uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances(
            amp,
            balances,
            newInvariant,
            tokenIndex
        );
        uint256 amountInWithoutFee = newBalanceTokenIndex.sub(balances[tokenIndex]);

        // First calculate the sum of all token balances, which will be used to calculate
        // the current weight of each token
        uint256 sumBalances = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            sumBalances = sumBalances.add(balances[i]);
        }

        // We can now compute how much extra balance is being deposited and used in virtual swaps, and charge swap fees
        // accordingly.
        uint256 currentWeight = balances[tokenIndex].divDown(sumBalances);
        uint256 taxablePercentage = currentWeight.complement();
        uint256 taxableAmount = amountInWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountInWithoutFee.sub(taxableAmount);

        // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50%
        return nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage));
    }

    /*
    Flow of calculations:
    amountsTokenOut -> amountsOutProportional ->
    amountOutPercentageExcess -> amountOutBeforeFee -> newInvariant -> amountBPTIn
    */
    function _calcBptInGivenExactTokensOut(
        uint256 amp,
        uint256[] memory balances,
        uint256[] memory amountsOut,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256) {
        // BPT in, so we round up overall.

        // First loop calculates the sum of all token balances, which will be used to calculate
        // the current weights of each token relative to this sum
        uint256 sumBalances = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            sumBalances = sumBalances.add(balances[i]);
        }

        // Calculate the weighted balance ratio without considering fees
        uint256[] memory balanceRatiosWithoutFee = new uint256[](amountsOut.length);
        uint256 invariantRatioWithoutFees = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            uint256 currentWeight = balances[i].divUp(sumBalances);
            balanceRatiosWithoutFee[i] = balances[i].sub(amountsOut[i]).divUp(balances[i]);
            invariantRatioWithoutFees = invariantRatioWithoutFees.add(balanceRatiosWithoutFee[i].mulUp(currentWeight));
        }

        // Second loop calculates new amounts in, taking into account the fee on the percentage excess
        uint256[] memory newBalances = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it to
            // 'token out'. This results in slightly larger price impact.

            uint256 amountOutWithFee;
            if (invariantRatioWithoutFees > balanceRatiosWithoutFee[i]) {
                uint256 nonTaxableAmount = balances[i].mulDown(invariantRatioWithoutFees.complement());
                uint256 taxableAmount = amountsOut[i].sub(nonTaxableAmount);
                // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50%
                amountOutWithFee = nonTaxableAmount.add(taxableAmount.divUp(FixedPoint.ONE - swapFeePercentage));
            } else {
                amountOutWithFee = amountsOut[i];
            }

            newBalances[i] = balances[i].sub(amountOutWithFee);
        }

        // Get current and new invariants, taking into account swap fees
        uint256 currentInvariant = _calculateInvariant(amp, balances, true);
        uint256 newInvariant = _calculateInvariant(amp, newBalances, false);
        uint256 invariantRatio = newInvariant.divDown(currentInvariant);

        // return amountBPTIn
        return bptTotalSupply.mulUp(invariantRatio.complement());
    }

    function _calcTokenOutGivenExactBptIn(
        uint256 amp,
        uint256[] memory balances,
        uint256 tokenIndex,
        uint256 bptAmountIn,
        uint256 bptTotalSupply,
        uint256 swapFeePercentage
    ) internal pure returns (uint256) {
        // Token out, so we round down overall.

        // Get the current and new invariants. Since we need a bigger new invariant, we round the current one up.
        uint256 currentInvariant = _calculateInvariant(amp, balances, true);
        uint256 newInvariant = bptTotalSupply.sub(bptAmountIn).divUp(bptTotalSupply).mulUp(currentInvariant);

        // Calculate amount out without fee
        uint256 newBalanceTokenIndex = _getTokenBalanceGivenInvariantAndAllOtherBalances(
            amp,
            balances,
            newInvariant,
            tokenIndex
        );
        uint256 amountOutWithoutFee = balances[tokenIndex].sub(newBalanceTokenIndex);

        // First calculate the sum of all token balances, which will be used to calculate
        // the current weight of each token
        uint256 sumBalances = 0;
        for (uint256 i = 0; i < balances.length; i++) {
            sumBalances = sumBalances.add(balances[i]);
        }

        // We can now compute how much excess balance is being withdrawn as a result of the virtual swaps, which result
        // in swap fees.
        uint256 currentWeight = balances[tokenIndex].divDown(sumBalances);
        uint256 taxablePercentage = currentWeight.complement();

        // Swap fees are typically charged on 'token in', but there is no 'token in' here, so we apply it
        // to 'token out'. This results in slightly larger price impact. Fees are rounded up.
        uint256 taxableAmount = amountOutWithoutFee.mulUp(taxablePercentage);
        uint256 nonTaxableAmount = amountOutWithoutFee.sub(taxableAmount);

        // No need to use checked arithmetic for the swap fee, it is guaranteed to be lower than 50%
        return nonTaxableAmount.add(taxableAmount.mulDown(FixedPoint.ONE - swapFeePercentage));
    }

    function _calcTokensOutGivenExactBptIn(
        uint256[] memory balances,
        uint256 bptAmountIn,
        uint256 bptTotalSupply
    ) internal pure returns (uint256[] memory) {
        /**********************************************************************************************
        // exactBPTInForTokensOut                                                                    //
        // (per token)                                                                               //
        // aO = tokenAmountOut             /        bptIn         \                                  //
        // b = tokenBalance      a0 = b * | ---------------------  |                                 //
        // bptIn = bptAmountIn             \     bptTotalSupply    /                                 //
        // bpt = bptTotalSupply                                                                      //
        **********************************************************************************************/

        // Since we're computing an amount out, we round down overall. This means rounding down on both the
        // multiplication and division.

        uint256 bptRatio = bptAmountIn.divDown(bptTotalSupply);

        uint256[] memory amountsOut = new uint256[](balances.length);
        for (uint256 i = 0; i < balances.length; i++) {
            amountsOut[i] = balances[i].mulDown(bptRatio);
        }

        return amountsOut;
    }

    // The amplification parameter equals: A n^(n-1)
    function _calcDueTokenProtocolSwapFeeAmount(
        uint256 amplificationParameter,
        uint256[] memory balances,
        uint256 lastInvariant,
        uint256 tokenIndex,
        uint256 protocolSwapFeePercentage
    ) internal pure returns (uint256) {
        /**************************************************************************************************************
        // oneTokenSwapFee - polynomial equation to solve                                                            //
        // af = fee amount to calculate in one token                                                                 //
        // bf = balance of fee token                                                                                 //
        // f = bf - af (finalBalanceFeeToken)                                                                        //
        // D = old invariant                                            D                     D^(n+1)                //
        // A = amplification coefficient               f^2 + ( S - ----------  - D) * f -  ------------- = 0         //
        // n = number of tokens                                    (A * n^n)               A * n^2n * P              //
        // S = sum of final balances but f                                                                           //
        // P = product of final balances but f                                                                       //
        **************************************************************************************************************/

        // Protocol swap fee amount, so we round down overall.

        uint256 finalBalanceFeeToken = _getTokenBalanceGivenInvariantAndAllOtherBalances(
            amplificationParameter,
            balances,
            lastInvariant,
            tokenIndex
        );

        if (balances[tokenIndex] <= finalBalanceFeeToken) {
            // This shouldn't happen outside of rounding errors, but have this safeguard nonetheless to prevent the Pool
            // from entering a locked state in which joins and exits revert while computing accumulated swap fees.
            return 0;
        }

        // Result is rounded down
        uint256 accumulatedTokenSwapFees = balances[tokenIndex] - finalBalanceFeeToken;
        return accumulatedTokenSwapFees.mulDown(protocolSwapFeePercentage).divDown(FixedPoint.ONE);
    }

    // Private functions

    // This function calculates the balance of a given token (tokenIndex)
    // given all the other balances and the invariant
    function _getTokenBalanceGivenInvariantAndAllOtherBalances(
        uint256 amplificationParameter,
        uint256[] memory balances,
        uint256 invariant,
        uint256 tokenIndex
    ) internal pure returns (uint256) {
        // Rounds result up overall

        uint256 ampTimesTotal = amplificationParameter * balances.length;
        uint256 sum = balances[0];
        uint256 P_D = balances[0] * balances.length;
        for (uint256 j = 1; j < balances.length; j++) {
            P_D = Math.divDown(Math.mul(Math.mul(P_D, balances[j]), balances.length), invariant);
            sum = sum.add(balances[j]);
        }
        // No need to use safe math, based on the loop above `sum` is greater than or equal to `balances[tokenIndex]`
        sum = sum - balances[tokenIndex];

        uint256 inv2 = Math.mul(invariant, invariant);
        // We remove the balance fromm c by multiplying it
        uint256 c = Math.mul(
            Math.mul(Math.divUp(inv2, Math.mul(ampTimesTotal, P_D)), _AMP_PRECISION),
            balances[tokenIndex]
        );
        uint256 b = sum.add(Math.mul(Math.divDown(invariant, ampTimesTotal), _AMP_PRECISION));

        // We iterate to find the balance
        uint256 prevTokenBalance = 0;
        // We multiply the first iteration outside the loop with the invariant to set the value of the
        // initial approximation.
        uint256 tokenBalance = Math.divUp(inv2.add(c), invariant.add(b));

        for (uint256 i = 0; i < 255; i++) {
            prevTokenBalance = tokenBalance;

            tokenBalance = Math.divUp(
                Math.mul(tokenBalance, tokenBalance).add(c),
                Math.mul(tokenBalance, 2).add(b).sub(invariant)
            );

            if (tokenBalance > prevTokenBalance) {
                if (tokenBalance - prevTokenBalance <= 1) {
                    return tokenBalance;
                }
            } else if (prevTokenBalance - tokenBalance <= 1) {
                return tokenBalance;
            }
        }

        _revert(Errors.STABLE_GET_BALANCE_DIDNT_CONVERGE);
    }
}

File 30 of 47 : StablePoolUserDataHelpers.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./StablePool.sol";

library StablePoolUserDataHelpers {
    function joinKind(bytes memory self) internal pure returns (StablePool.JoinKind) {
        return abi.decode(self, (StablePool.JoinKind));
    }

    function exitKind(bytes memory self) internal pure returns (StablePool.ExitKind) {
        return abi.decode(self, (StablePool.ExitKind));
    }

    // Joins

    function initialAmountsIn(bytes memory self) internal pure returns (uint256[] memory amountsIn) {
        (, amountsIn) = abi.decode(self, (StablePool.JoinKind, uint256[]));
    }

    function exactTokensInForBptOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsIn, uint256 minBPTAmountOut)
    {
        (, amountsIn, minBPTAmountOut) = abi.decode(self, (StablePool.JoinKind, uint256[], uint256));
    }

    function tokenInForExactBptOut(bytes memory self) internal pure returns (uint256 bptAmountOut, uint256 tokenIndex) {
        (, bptAmountOut, tokenIndex) = abi.decode(self, (StablePool.JoinKind, uint256, uint256));
    }

    // Exits

    function exactBptInForTokenOut(bytes memory self) internal pure returns (uint256 bptAmountIn, uint256 tokenIndex) {
        (, bptAmountIn, tokenIndex) = abi.decode(self, (StablePool.ExitKind, uint256, uint256));
    }

    function exactBptInForTokensOut(bytes memory self) internal pure returns (uint256 bptAmountIn) {
        (, bptAmountIn) = abi.decode(self, (StablePool.ExitKind, uint256));
    }

    function bptInForExactTokensOut(bytes memory self)
        internal
        pure
        returns (uint256[] memory amountsOut, uint256 maxBPTAmountIn)
    {
        (, amountsOut, maxBPTAmountIn) = abi.decode(self, (StablePool.ExitKind, uint256[], uint256));
    }
}

File 31 of 47 : BasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/math/Math.sol";
import "@balancer-labs/v2-solidity-utils/contracts/math/FixedPoint.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/InputHelpers.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/TemporarilyPausable.sol";
import "@balancer-labs/v2-solidity-utils/contracts/helpers/WordCodec.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";

import "@balancer-labs/v2-vault/contracts/interfaces/IVault.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IBasePool.sol";

import "@balancer-labs/v2-asset-manager-utils/contracts/IAssetManager.sol";

import "./BalancerPoolToken.sol";
import "./BasePoolAuthorization.sol";

// solhint-disable max-states-count

/**
 * @dev Reference implementation for the base layer of a Pool contract that manages a single Pool with optional
 * Asset Managers, an admin-controlled swap fee percentage, and an emergency pause mechanism.
 *
 * Note that neither swap fees nor the pause mechanism are used by this contract. They are passed through so that
 * derived contracts can use them via the `_addSwapFeeAmount` and `_subtractSwapFeeAmount` functions, and the
 * `whenNotPaused` modifier.
 *
 * No admin permissions are checked here: instead, this contract delegates that to the Vault's own Authorizer.
 *
 * Because this contract doesn't implement the swap hooks, derived contracts should generally inherit from
 * BaseGeneralPool or BaseMinimalSwapInfoPool. Otherwise, subclasses must inherit from the corresponding interfaces
 * and implement the swap callbacks themselves.
 */
abstract contract BasePool is IBasePool, BasePoolAuthorization, BalancerPoolToken, TemporarilyPausable {
    using WordCodec for bytes32;
    using FixedPoint for uint256;

    uint256 private constant _MIN_TOKENS = 2;

    // 1e18 corresponds to 1.0, or a 100% fee
    uint256 private constant _MIN_SWAP_FEE_PERCENTAGE = 1e12; // 0.0001%
    uint256 private constant _MAX_SWAP_FEE_PERCENTAGE = 1e17; // 10%

    uint256 private constant _MINIMUM_BPT = 1e6;

    // Storage slot that can be used to store unrelated pieces of information. In particular, by default is used
    // to store only the swap fee percentage of a pool. But it can be extended to store some more pieces of information.
    // The swap fee percentage is stored in the most-significant 64 bits, therefore the remaining 192 bits can be
    // used to store any other piece of information.
    bytes32 private _miscData;
    uint256 private constant _SWAP_FEE_PERCENTAGE_OFFSET = 192;

    IVault private immutable _vault;
    bytes32 private immutable _poolId;

    event SwapFeePercentageChanged(uint256 swapFeePercentage);

    constructor(
        IVault vault,
        IVault.PoolSpecialization specialization,
        string memory name,
        string memory symbol,
        IERC20[] memory tokens,
        address[] memory assetManagers,
        uint256 swapFeePercentage,
        uint256 pauseWindowDuration,
        uint256 bufferPeriodDuration,
        address owner
    )
        // Base Pools are expected to be deployed using factories. By using the factory address as the action
        // disambiguator, we make all Pools deployed by the same factory share action identifiers. This allows for
        // simpler management of permissions (such as being able to manage granting the 'set fee percentage' action in
        // any Pool created by the same factory), while still making action identifiers unique among different factories
        // if the selectors match, preventing accidental errors.
        Authentication(bytes32(uint256(msg.sender)))
        BalancerPoolToken(name, symbol)
        BasePoolAuthorization(owner)
        TemporarilyPausable(pauseWindowDuration, bufferPeriodDuration)
    {
        _require(tokens.length >= _MIN_TOKENS, Errors.MIN_TOKENS);
        _require(tokens.length <= _getMaxTokens(), Errors.MAX_TOKENS);

        // The Vault only requires the token list to be ordered for the Two Token Pools specialization. However,
        // to make the developer experience consistent, we are requiring this condition for all the native pools.
        // Also, since these Pools will register tokens only once, we can ensure the Pool tokens will follow the same
        // order. We rely on this property to make Pools simpler to write, as it lets us assume that the
        // order of token-specific parameters (such as token weights) will not change.
        InputHelpers.ensureArrayIsSorted(tokens);

        _setSwapFeePercentage(swapFeePercentage);

        bytes32 poolId = vault.registerPool(specialization);

        vault.registerTokens(poolId, tokens, assetManagers);

        // Set immutable state variables - these cannot be read from during construction
        _vault = vault;
        _poolId = poolId;
    }

    // Getters / Setters

    function getVault() public view returns (IVault) {
        return _vault;
    }

    function getPoolId() public view override returns (bytes32) {
        return _poolId;
    }

    function _getTotalTokens() internal view virtual returns (uint256);

    function _getMaxTokens() internal pure virtual returns (uint256);

    function getSwapFeePercentage() public view returns (uint256) {
        return _miscData.decodeUint64(_SWAP_FEE_PERCENTAGE_OFFSET);
    }

    function setSwapFeePercentage(uint256 swapFeePercentage) external virtual authenticate whenNotPaused {
        _setSwapFeePercentage(swapFeePercentage);
    }

    function _setSwapFeePercentage(uint256 swapFeePercentage) private {
        _require(swapFeePercentage >= _MIN_SWAP_FEE_PERCENTAGE, Errors.MIN_SWAP_FEE_PERCENTAGE);
        _require(swapFeePercentage <= _MAX_SWAP_FEE_PERCENTAGE, Errors.MAX_SWAP_FEE_PERCENTAGE);

        _miscData = _miscData.insertUint64(swapFeePercentage, _SWAP_FEE_PERCENTAGE_OFFSET);
        emit SwapFeePercentageChanged(swapFeePercentage);
    }

    function setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig)
        public
        virtual
        authenticate
        whenNotPaused
    {
        _setAssetManagerPoolConfig(token, poolConfig);
    }

    function _setAssetManagerPoolConfig(IERC20 token, bytes memory poolConfig) private {
        bytes32 poolId = getPoolId();
        (, , , address assetManager) = getVault().getPoolTokenInfo(poolId, token);

        IAssetManager(assetManager).setConfig(poolId, poolConfig);
    }

    function setPaused(bool paused) external authenticate {
        _setPaused(paused);
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual override returns (bool) {
        return
            (actionId == getActionId(this.setSwapFeePercentage.selector)) ||
            (actionId == getActionId(this.setAssetManagerPoolConfig.selector));
    }

    function _getMiscData() internal view returns (bytes32) {
        return _miscData;
    }

    /**
     * Inserts data into the least-significant 192 bits of the misc data storage slot.
     * Note that the remaining 64 bits are used for the swap fee percentage and cannot be overloaded.
     */
    function _setMiscData(bytes32 newData) internal {
        _miscData = _miscData.insertBits192(newData, 0);
    }

    // Join / Exit Hooks

    modifier onlyVault(bytes32 poolId) {
        _require(msg.sender == address(getVault()), Errors.CALLER_NOT_VAULT);
        _require(poolId == getPoolId(), Errors.INVALID_POOL_ID);
        _;
    }

    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory scalingFactors = _scalingFactors();

        if (totalSupply() == 0) {
            (uint256 bptAmountOut, uint256[] memory amountsIn) = _onInitializePool(
                poolId,
                sender,
                recipient,
                scalingFactors,
                userData
            );

            // On initialization, we lock _MINIMUM_BPT by minting it for the zero address. This BPT acts as a minimum
            // as it will never be burned, which reduces potential issues with rounding, and also prevents the Pool from
            // ever being fully drained.
            _require(bptAmountOut >= _MINIMUM_BPT, Errors.MINIMUM_BPT);
            _mintPoolTokens(address(0), _MINIMUM_BPT);
            _mintPoolTokens(recipient, bptAmountOut - _MINIMUM_BPT);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);

            return (amountsIn, new uint256[](_getTotalTokens()));
        } else {
            _upscaleArray(balances, scalingFactors);
            (uint256 bptAmountOut, uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts) = _onJoinPool(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );

            // Note we no longer use `balances` after calling `_onJoinPool`, which may mutate it.

            _mintPoolTokens(recipient, bptAmountOut);

            // amountsIn are amounts entering the Pool, so we round up.
            _downscaleUpArray(amountsIn, scalingFactors);
            // dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
            _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);

            return (amountsIn, dueProtocolFeeAmounts);
        }
    }

    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) public virtual override onlyVault(poolId) returns (uint256[] memory, uint256[] memory) {
        uint256[] memory scalingFactors = _scalingFactors();
        _upscaleArray(balances, scalingFactors);

        (uint256 bptAmountIn, uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts) = _onExitPool(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            scalingFactors,
            userData
        );

        // Note we no longer use `balances` after calling `_onExitPool`, which may mutate it.

        _burnPoolTokens(sender, bptAmountIn);

        // Both amountsOut and dueProtocolFeeAmounts are amounts exiting the Pool, so we round down.
        _downscaleDownArray(amountsOut, scalingFactors);
        _downscaleDownArray(dueProtocolFeeAmounts, scalingFactors);

        return (amountsOut, dueProtocolFeeAmounts);
    }

    // Query functions

    /**
     * @dev Returns the amount of BPT that would be granted to `recipient` if the `onJoinPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `sender` would have to supply.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryJoin(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptOut, uint256[] memory amountsIn) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onJoinPool,
            _downscaleUpArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptOut, amountsIn);
    }

    /**
     * @dev Returns the amount of BPT that would be burned from `sender` if the `onExitPool` hook were called by the
     * Vault with the same arguments, along with the number of tokens `recipient` would receive.
     *
     * This function is not meant to be called directly, but rather from a helper contract that fetches current Vault
     * data, such as the protocol swap fee percentage and Pool balances.
     *
     * Like `IVault.queryBatchSwap`, this function is not view due to internal implementation details: the caller must
     * explicitly use eth_call instead of eth_sendTransaction.
     */
    function queryExit(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256 bptIn, uint256[] memory amountsOut) {
        InputHelpers.ensureInputLengthMatch(balances.length, _getTotalTokens());

        _queryAction(
            poolId,
            sender,
            recipient,
            balances,
            lastChangeBlock,
            protocolSwapFeePercentage,
            userData,
            _onExitPool,
            _downscaleDownArray
        );

        // The `return` opcode is executed directly inside `_queryAction`, so execution never reaches this statement,
        // and we don't need to return anything here - it just silences compiler warnings.
        return (bptIn, amountsOut);
    }

    // Internal hooks to be overridden by derived contracts - all token amounts (except BPT) in these interfaces are
    // upscaled.

    /**
     * @dev Called when the Pool is joined for the first time; that is, when the BPT total supply is zero.
     *
     * Returns the amount of BPT to mint, and the token amounts the Pool will receive in return.
     *
     * Minted BPT will be sent to `recipient`, except for _MINIMUM_BPT, which will be deducted from this amount and sent
     * to the zero address instead. This will cause that BPT to remain forever locked there, preventing total BTP from
     * ever dropping below that value, and ensuring `_onInitializePool` can only be called once in the entire Pool's
     * lifetime.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     */
    function _onInitializePool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory scalingFactors,
        bytes memory userData
    ) internal virtual returns (uint256 bptAmountOut, uint256[] memory amountsIn);

    /**
     * @dev Called whenever the Pool is joined after the first initialization join (see `_onInitializePool`).
     *
     * Returns the amount of BPT to mint, the token amounts that the Pool will receive in return, and the number of
     * tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * Minted BPT will be sent to `recipient`.
     *
     * The tokens granted to the Pool will be transferred from `sender`. These amounts are considered upscaled and will
     * be downscaled (rounding up) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onJoinPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        returns (
            uint256 bptAmountOut,
            uint256[] memory amountsIn,
            uint256[] memory dueProtocolFeeAmounts
        );

    /**
     * @dev Called whenever the Pool is exited.
     *
     * Returns the amount of BPT to burn, the token amounts for each Pool token that the Pool will grant in return, and
     * the number of tokens to pay in protocol swap fees.
     *
     * Implementations of this function might choose to mutate the `balances` array to save gas (e.g. when
     * performing intermediate calculations, such as subtraction of due protocol fees). This can be done safely.
     *
     * BPT will be burnt from `sender`.
     *
     * The Pool will grant tokens to `recipient`. These amounts are considered upscaled and will be downscaled
     * (rounding down) before being returned to the Vault.
     *
     * Due protocol swap fees will be taken from the Pool's balance in the Vault (see `IBasePool.onExitPool`). These
     * amounts are considered upscaled and will be downscaled (rounding down) before being returned to the Vault.
     */
    function _onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        uint256[] memory scalingFactors,
        bytes memory userData
    )
        internal
        virtual
        returns (
            uint256 bptAmountIn,
            uint256[] memory amountsOut,
            uint256[] memory dueProtocolFeeAmounts
        );

    // Internal functions

    /**
     * @dev Adds swap fee amount to `amount`, returning a higher value.
     */
    function _addSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount + fee amount, so we round up (favoring a higher fee amount).
        return amount.divUp(FixedPoint.ONE.sub(getSwapFeePercentage()));
    }

    /**
     * @dev Subtracts swap fee amount from `amount`, returning a lower value.
     */
    function _subtractSwapFeeAmount(uint256 amount) internal view returns (uint256) {
        // This returns amount - fee amount, so we round up (favoring a higher fee amount).
        uint256 feeAmount = amount.mulUp(getSwapFeePercentage());
        return amount.sub(feeAmount);
    }

    // Scaling

    /**
     * @dev Returns a scaling factor that, when multiplied to a token amount for `token`, normalizes its balance as if
     * it had 18 decimals.
     */
    function _computeScalingFactor(IERC20 token) internal view returns (uint256) {
        // Tokens that don't implement the `decimals` method are not supported.
        uint256 tokenDecimals = ERC20(address(token)).decimals();

        // Tokens with more than 18 decimals are not supported.
        uint256 decimalsDifference = Math.sub(18, tokenDecimals);
        return FixedPoint.ONE * 10**decimalsDifference;
    }

    /**
     * @dev Returns the scaling factor for one of the Pool's tokens. Reverts if `token` is not a token registered by the
     * Pool.
     *
     * All scaling factors are fixed-point values with 18 decimals, to allow for this function to be overridden by
     * derived contracts that need to apply further scaling, making these factors potentially non-integer.
     *
     * The largest 'base' scaling factor (i.e. in tokens with less than 18 decimals) is 10**18, which in fixed-point is
     * 10**36. This value can be multiplied with a 112 bit Vault balance with no overflow by a factor of ~1e7, making
     * even relatively 'large' factors safe to use.
     *
     * The 1e7 figure is the result of 2**256 / (1e18 * 1e18 * 2**112).
     */
    function _scalingFactor(IERC20 token) internal view virtual returns (uint256);

    /**
     * @dev Same as `_scalingFactor()`, except for all registered tokens (in the same order as registered). The Vault
     * will always pass balances in this order when calling any of the Pool hooks.
     */
    function _scalingFactors() internal view virtual returns (uint256[] memory);

    function getScalingFactors() external view returns (uint256[] memory) {
        return _scalingFactors();
    }

    /**
     * @dev Applies `scalingFactor` to `amount`, resulting in a larger or equal value depending on whether it needed
     * scaling or not.
     */
    function _upscale(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        // Upscale rounding wouldn't necessarily always go in the same direction: in a swap for example the balance of
        // token in should be rounded up, and that of token out rounded down. This is the only place where we round in
        // the same direction for all amounts, as the impact of this rounding is expected to be minimal (and there's no
        // rounding error unless `_scalingFactor()` is overriden).
        return FixedPoint.mulDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_upscale`, but for an entire array. This function does not return anything, but instead *mutates*
     * the `amounts` array.
     */
    function _upscaleArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.mulDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded down.
     */
    function _downscaleDown(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divDown(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleDown`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleDownArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.divDown(amounts[i], scalingFactors[i]);
        }
    }

    /**
     * @dev Reverses the `scalingFactor` applied to `amount`, resulting in a smaller or equal value depending on
     * whether it needed scaling or not. The result is rounded up.
     */
    function _downscaleUp(uint256 amount, uint256 scalingFactor) internal pure returns (uint256) {
        return FixedPoint.divUp(amount, scalingFactor);
    }

    /**
     * @dev Same as `_downscaleUp`, but for an entire array. This function does not return anything, but instead
     * *mutates* the `amounts` array.
     */
    function _downscaleUpArray(uint256[] memory amounts, uint256[] memory scalingFactors) internal view {
        for (uint256 i = 0; i < _getTotalTokens(); ++i) {
            amounts[i] = FixedPoint.divUp(amounts[i], scalingFactors[i]);
        }
    }

    function _getAuthorizer() internal view override returns (IAuthorizer) {
        // Access control management is delegated to the Vault's Authorizer. This lets Balancer Governance manage which
        // accounts can call permissioned functions: for example, to perform emergency pauses.
        // If the owner is delegated, then *all* permissioned functions, including `setSwapFeePercentage`, will be under
        // Governance control.
        return getVault().getAuthorizer();
    }

    function _queryAction(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData,
        function(bytes32, address, address, uint256[] memory, uint256, uint256, uint256[] memory, bytes memory)
            internal
            returns (uint256, uint256[] memory, uint256[] memory) _action,
        function(uint256[] memory, uint256[] memory) internal view _downscaleArray
    ) private {
        // This uses the same technique used by the Vault in queryBatchSwap. Refer to that function for a detailed
        // explanation.

        if (msg.sender != address(this)) {
            // We perform an external call to ourselves, forwarding the same calldata. In this call, the else clause of
            // the preceding if statement will be executed instead.

            // solhint-disable-next-line avoid-low-level-calls
            (bool success, ) = address(this).call(msg.data);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // This call should always revert to decode the bpt and token amounts from the revert reason
                switch success
                    case 0 {
                        // Note we are manually writing the memory slot 0. We can safely overwrite whatever is
                        // stored there as we take full control of the execution and then immediately return.

                        // We copy the first 4 bytes to check if it matches with the expected signature, otherwise
                        // there was another revert reason and we should forward it.
                        returndatacopy(0, 0, 0x04)
                        let error := and(mload(0), 0xffffffff00000000000000000000000000000000000000000000000000000000)

                        // If the first 4 bytes don't match with the expected signature, we forward the revert reason.
                        if eq(eq(error, 0x43adbafb00000000000000000000000000000000000000000000000000000000), 0) {
                            returndatacopy(0, 0, returndatasize())
                            revert(0, returndatasize())
                        }

                        // The returndata contains the signature, followed by the raw memory representation of the
                        // `bptAmount` and `tokenAmounts` (array: length + data). We need to return an ABI-encoded
                        // representation of these.
                        // An ABI-encoded response will include one additional field to indicate the starting offset of
                        // the `tokenAmounts` array. The `bptAmount` will be laid out in the first word of the
                        // returndata.
                        //
                        // In returndata:
                        // [ signature ][ bptAmount ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  4 bytes  ][  32 bytes ][       32 bytes      ][ (32 * length) bytes ]
                        //
                        // We now need to return (ABI-encoded values):
                        // [ bptAmount ][ tokeAmounts offset ][ tokenAmounts length ][ tokenAmounts values ]
                        // [  32 bytes ][       32 bytes     ][       32 bytes      ][ (32 * length) bytes ]

                        // We copy 32 bytes for the `bptAmount` from returndata into memory.
                        // Note that we skip the first 4 bytes for the error signature
                        returndatacopy(0, 0x04, 32)

                        // The offsets are 32-bytes long, so the array of `tokenAmounts` will start after
                        // the initial 64 bytes.
                        mstore(0x20, 64)

                        // We now copy the raw memory array for the `tokenAmounts` from returndata into memory.
                        // Since bpt amount and offset take up 64 bytes, we start copying at address 0x40. We also
                        // skip the first 36 bytes from returndata, which correspond to the signature plus bpt amount.
                        returndatacopy(0x40, 0x24, sub(returndatasize(), 36))

                        // We finally return the ABI-encoded uint256 and the array, which has a total length equal to
                        // the size of returndata, plus the 32 bytes of the offset but without the 4 bytes of the
                        // error signature.
                        return(0, add(returndatasize(), 28))
                    }
                    default {
                        // This call should always revert, but we fail nonetheless if that didn't happen
                        invalid()
                    }
            }
        } else {
            uint256[] memory scalingFactors = _scalingFactors();
            _upscaleArray(balances, scalingFactors);

            (uint256 bptAmount, uint256[] memory tokenAmounts, ) = _action(
                poolId,
                sender,
                recipient,
                balances,
                lastChangeBlock,
                protocolSwapFeePercentage,
                scalingFactors,
                userData
            );

            _downscaleArray(tokenAmounts, scalingFactors);

            // solhint-disable-next-line no-inline-assembly
            assembly {
                // We will return a raw representation of `bptAmount` and `tokenAmounts` in memory, which is composed of
                // a 32-byte uint256, followed by a 32-byte for the array length, and finally the 32-byte uint256 values
                // Because revert expects a size in bytes, we multiply the array length (stored at `tokenAmounts`) by 32
                let size := mul(mload(tokenAmounts), 32)

                // We store the `bptAmount` in the previous slot to the `tokenAmounts` array. We can make sure there
                // will be at least one available slot due to how the memory scratch space works.
                // We can safely overwrite whatever is stored in this slot as we will revert immediately after that.
                let start := sub(tokenAmounts, 0x20)
                mstore(start, bptAmount)

                // We send one extra value for the error signature "QueryError(uint256,uint256[])" which is 0x43adbafb
                // We use the previous slot to `bptAmount`.
                mstore(sub(start, 0x20), 0x0000000000000000000000000000000000000000000000000000000043adbafb)
                start := sub(start, 0x04)

                // When copying from `tokenAmounts` into returndata, we copy the additional 68 bytes to also return
                // the `bptAmount`, the array 's length, and the error signature.
                revert(start, add(size, 68))
            }
        }
    }
}

File 32 of 47 : IGeneralPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IBasePool.sol";

/**
 * @dev IPools with the General specialization setting should implement this interface.
 *
 * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool.
 * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will
 * grant to the pool in a 'given out' swap.
 *
 * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state
 * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is
 * indeed the Vault.
 */
interface IGeneralPool is IBasePool {
    function onSwap(
        SwapRequest memory swapRequest,
        uint256[] memory balances,
        uint256 indexIn,
        uint256 indexOut
    ) external returns (uint256 amount);
}

File 33 of 47 : Math.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow checks.
 * Adapted from OpenZeppelin's SafeMath library
 */
library Math {
    /**
     * @dev Returns the addition of two unsigned integers of 256 bits, reverting on overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the addition of two signed integers, reverting on overflow.
     */
    function add(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a + b;
        _require((b >= 0 && c >= a) || (b < 0 && c < a), Errors.ADD_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers of 256 bits, reverting on overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b <= a, Errors.SUB_OVERFLOW);
        uint256 c = a - b;
        return c;
    }

    /**
     * @dev Returns the subtraction of two signed integers, reverting on overflow.
     */
    function sub(int256 a, int256 b) internal pure returns (int256) {
        int256 c = a - b;
        _require((b >= 0 && c <= a) || (b < 0 && c > a), Errors.SUB_OVERFLOW);
        return c;
    }

    /**
     * @dev Returns the largest of two numbers of 256 bits.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a >= b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers of 256 bits.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    function mul(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a * b;
        _require(a == 0 || c / a == b, Errors.MUL_OVERFLOW);
        return c;
    }

    function div(
        uint256 a,
        uint256 b,
        bool roundUp
    ) internal pure returns (uint256) {
        return roundUp ? divUp(a, b) : divDown(a, b);
    }

    function divDown(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);
        return a / b;
    }

    function divUp(uint256 a, uint256 b) internal pure returns (uint256) {
        _require(b != 0, Errors.ZERO_DIVISION);

        if (a == 0) {
            return 0;
        } else {
            return 1 + (a - 1) / b;
        }
    }
}

File 34 of 47 : TemporarilyPausable.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";
import "./ITemporarilyPausable.sol";

/**
 * @dev Allows for a contract to be paused during an initial period after deployment, disabling functionality. Can be
 * used as an emergency switch in case a security vulnerability or threat is identified.
 *
 * The contract can only be paused during the Pause Window, a period that starts at deployment. It can also be
 * unpaused and repaused any number of times during this period. This is intended to serve as a safety measure: it lets
 * system managers react quickly to potentially dangerous situations, knowing that this action is reversible if careful
 * analysis later determines there was a false alarm.
 *
 * If the contract is paused when the Pause Window finishes, it will remain in the paused state through an additional
 * Buffer Period, after which it will be automatically unpaused forever. This is to ensure there is always enough time
 * to react to an emergency, even if the threat is discovered shortly before the Pause Window expires.
 *
 * Note that since the contract can only be paused within the Pause Window, unpausing during the Buffer Period is
 * irreversible.
 */
abstract contract TemporarilyPausable is ITemporarilyPausable {
    // The Pause Window and Buffer Period are timestamp-based: they should not be relied upon for sub-minute accuracy.
    // solhint-disable not-rely-on-time

    uint256 private constant _MAX_PAUSE_WINDOW_DURATION = 90 days;
    uint256 private constant _MAX_BUFFER_PERIOD_DURATION = 30 days;

    uint256 private immutable _pauseWindowEndTime;
    uint256 private immutable _bufferPeriodEndTime;

    bool private _paused;

    constructor(uint256 pauseWindowDuration, uint256 bufferPeriodDuration) {
        _require(pauseWindowDuration <= _MAX_PAUSE_WINDOW_DURATION, Errors.MAX_PAUSE_WINDOW_DURATION);
        _require(bufferPeriodDuration <= _MAX_BUFFER_PERIOD_DURATION, Errors.MAX_BUFFER_PERIOD_DURATION);

        uint256 pauseWindowEndTime = block.timestamp + pauseWindowDuration;

        _pauseWindowEndTime = pauseWindowEndTime;
        _bufferPeriodEndTime = pauseWindowEndTime + bufferPeriodDuration;
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    modifier whenNotPaused() {
        _ensureNotPaused();
        _;
    }

    /**
     * @dev Returns the current contract pause status, as well as the end times of the Pause Window and Buffer
     * Period.
     */
    function getPausedState()
        external
        view
        override
        returns (
            bool paused,
            uint256 pauseWindowEndTime,
            uint256 bufferPeriodEndTime
        )
    {
        paused = !_isNotPaused();
        pauseWindowEndTime = _getPauseWindowEndTime();
        bufferPeriodEndTime = _getBufferPeriodEndTime();
    }

    /**
     * @dev Sets the pause state to `paused`. The contract can only be paused until the end of the Pause Window, and
     * unpaused until the end of the Buffer Period.
     *
     * Once the Buffer Period expires, this function reverts unconditionally.
     */
    function _setPaused(bool paused) internal {
        if (paused) {
            _require(block.timestamp < _getPauseWindowEndTime(), Errors.PAUSE_WINDOW_EXPIRED);
        } else {
            _require(block.timestamp < _getBufferPeriodEndTime(), Errors.BUFFER_PERIOD_EXPIRED);
        }

        _paused = paused;
        emit PausedStateChanged(paused);
    }

    /**
     * @dev Reverts if the contract is paused.
     */
    function _ensureNotPaused() internal view {
        _require(_isNotPaused(), Errors.PAUSED);
    }

    /**
     * @dev Returns true if the contract is unpaused.
     *
     * Once the Buffer Period expires, the gas cost of calling this function is reduced dramatically, as storage is no
     * longer accessed.
     */
    function _isNotPaused() internal view returns (bool) {
        // After the Buffer Period, the (inexpensive) timestamp check short-circuits the storage access.
        return block.timestamp > _getBufferPeriodEndTime() || !_paused;
    }

    // These getters lead to reduced bytecode size by inlining the immutable variables in a single place.

    function _getPauseWindowEndTime() private view returns (uint256) {
        return _pauseWindowEndTime;
    }

    function _getBufferPeriodEndTime() private view returns (uint256) {
        return _bufferPeriodEndTime;
    }
}

File 35 of 47 : ERC20.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

import "./IERC20.sol";
import "./SafeMath.sol";

/**
 * @dev Implementation of the {IERC20} interface.
 *
 * This implementation is agnostic to the way tokens are created. This means
 * that a supply mechanism has to be added in a derived contract using {_mint}.
 * For a generic mechanism see {ERC20PresetMinterPauser}.
 *
 * TIP: For a detailed writeup see our guide
 * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How
 * to implement supply mechanisms].
 *
 * We have followed general OpenZeppelin guidelines: functions revert instead
 * of returning `false` on failure. This behavior is nonetheless conventional
 * and does not conflict with the expectations of ERC20 applications.
 *
 * Additionally, an {Approval} event is emitted on calls to {transferFrom}.
 * This allows applications to reconstruct the allowance for all accounts just
 * by listening to said events. Other implementations of the EIP may not emit
 * these events, as it isn't required by the specification.
 *
 * Finally, the non-standard {decreaseAllowance} and {increaseAllowance}
 * functions have been added to mitigate the well-known issues around setting
 * allowances. See {IERC20-approve}.
 */
contract ERC20 is IERC20 {
    using SafeMath for uint256;

    mapping(address => uint256) private _balances;

    mapping(address => mapping(address => uint256)) private _allowances;

    uint256 private _totalSupply;

    string private _name;
    string private _symbol;
    uint8 private _decimals;

    /**
     * @dev Sets the values for {name} and {symbol}, initializes {decimals} with
     * a default value of 18.
     *
     * To select a different value for {decimals}, use {_setupDecimals}.
     *
     * All three of these values are immutable: they can only be set once during
     * construction.
     */
    constructor(string memory name_, string memory symbol_) {
        _name = name_;
        _symbol = symbol_;
        _decimals = 18;
    }

    /**
     * @dev Returns the name of the token.
     */
    function name() public view returns (string memory) {
        return _name;
    }

    /**
     * @dev Returns the symbol of the token, usually a shorter version of the
     * name.
     */
    function symbol() public view returns (string memory) {
        return _symbol;
    }

    /**
     * @dev Returns the number of decimals used to get its user representation.
     * For example, if `decimals` equals `2`, a balance of `505` tokens should
     * be displayed to a user as `5,05` (`505 / 10 ** 2`).
     *
     * Tokens usually opt for a value of 18, imitating the relationship between
     * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is
     * called.
     *
     * NOTE: This information is only used for _display_ purposes: it in
     * no way affects any of the arithmetic of the contract, including
     * {IERC20-balanceOf} and {IERC20-transfer}.
     */
    function decimals() public view returns (uint8) {
        return _decimals;
    }

    /**
     * @dev See {IERC20-totalSupply}.
     */
    function totalSupply() public view override returns (uint256) {
        return _totalSupply;
    }

    /**
     * @dev See {IERC20-balanceOf}.
     */
    function balanceOf(address account) public view override returns (uint256) {
        return _balances[account];
    }

    /**
     * @dev See {IERC20-transfer}.
     *
     * Requirements:
     *
     * - `recipient` cannot be the zero address.
     * - the caller must have a balance of at least `amount`.
     */
    function transfer(address recipient, uint256 amount) public virtual override returns (bool) {
        _transfer(msg.sender, recipient, amount);
        return true;
    }

    /**
     * @dev See {IERC20-allowance}.
     */
    function allowance(address owner, address spender) public view virtual override returns (uint256) {
        return _allowances[owner][spender];
    }

    /**
     * @dev See {IERC20-approve}.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function approve(address spender, uint256 amount) public virtual override returns (bool) {
        _approve(msg.sender, spender, amount);
        return true;
    }

    /**
     * @dev See {IERC20-transferFrom}.
     *
     * Emits an {Approval} event indicating the updated allowance. This is not
     * required by the EIP. See the note at the beginning of {ERC20}.
     *
     * Requirements:
     *
     * - `sender` and `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     * - the caller must have allowance for ``sender``'s tokens of at least
     * `amount`.
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public virtual override returns (bool) {
        _transfer(sender, recipient, amount);
        _approve(
            sender,
            msg.sender,
            _allowances[sender][msg.sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE)
        );
        return true;
    }

    /**
     * @dev Atomically increases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     */
    function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) {
        _approve(msg.sender, spender, _allowances[msg.sender][spender].add(addedValue));
        return true;
    }

    /**
     * @dev Atomically decreases the allowance granted to `spender` by the caller.
     *
     * This is an alternative to {approve} that can be used as a mitigation for
     * problems described in {IERC20-approve}.
     *
     * Emits an {Approval} event indicating the updated allowance.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `spender` must have allowance for the caller of at least
     * `subtractedValue`.
     */
    function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) {
        _approve(
            msg.sender,
            spender,
            _allowances[msg.sender][spender].sub(subtractedValue, Errors.ERC20_DECREASED_ALLOWANCE_BELOW_ZERO)
        );
        return true;
    }

    /**
     * @dev Moves tokens `amount` from `sender` to `recipient`.
     *
     * This is internal function is equivalent to {transfer}, and can be used to
     * e.g. implement automatic token fees, slashing mechanisms, etc.
     *
     * Emits a {Transfer} event.
     *
     * Requirements:
     *
     * - `sender` cannot be the zero address.
     * - `recipient` cannot be the zero address.
     * - `sender` must have a balance of at least `amount`.
     */
    function _transfer(
        address sender,
        address recipient,
        uint256 amount
    ) internal virtual {
        _require(sender != address(0), Errors.ERC20_TRANSFER_FROM_ZERO_ADDRESS);
        _require(recipient != address(0), Errors.ERC20_TRANSFER_TO_ZERO_ADDRESS);

        _beforeTokenTransfer(sender, recipient, amount);

        _balances[sender] = _balances[sender].sub(amount, Errors.ERC20_TRANSFER_EXCEEDS_BALANCE);
        _balances[recipient] = _balances[recipient].add(amount);
        emit Transfer(sender, recipient, amount);
    }

    /** @dev Creates `amount` tokens and assigns them to `account`, increasing
     * the total supply.
     *
     * Emits a {Transfer} event with `from` set to the zero address.
     *
     * Requirements:
     *
     * - `to` cannot be the zero address.
     */
    function _mint(address account, uint256 amount) internal virtual {
        _beforeTokenTransfer(address(0), account, amount);

        _totalSupply = _totalSupply.add(amount);
        _balances[account] = _balances[account].add(amount);
        emit Transfer(address(0), account, amount);
    }

    /**
     * @dev Destroys `amount` tokens from `account`, reducing the
     * total supply.
     *
     * Emits a {Transfer} event with `to` set to the zero address.
     *
     * Requirements:
     *
     * - `account` cannot be the zero address.
     * - `account` must have at least `amount` tokens.
     */
    function _burn(address account, uint256 amount) internal virtual {
        _require(account != address(0), Errors.ERC20_BURN_FROM_ZERO_ADDRESS);

        _beforeTokenTransfer(account, address(0), amount);

        _balances[account] = _balances[account].sub(amount, Errors.ERC20_BURN_EXCEEDS_ALLOWANCE);
        _totalSupply = _totalSupply.sub(amount);
        emit Transfer(account, address(0), amount);
    }

    /**
     * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
     *
     * This internal function is equivalent to `approve`, and can be used to
     * e.g. set automatic allowances for certain subsystems, etc.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `owner` cannot be the zero address.
     * - `spender` cannot be the zero address.
     */
    function _approve(
        address owner,
        address spender,
        uint256 amount
    ) internal virtual {
        _allowances[owner][spender] = amount;
        emit Approval(owner, spender, amount);
    }

    /**
     * @dev Sets {decimals} to a value other than the default one of 18.
     *
     * WARNING: This function should only be called from the constructor. Most
     * applications that interact with token contracts will not expect
     * {decimals} to ever change, and may work incorrectly if it does.
     */
    function _setupDecimals(uint8 decimals_) internal {
        _decimals = decimals_;
    }

    /**
     * @dev Hook that is called before any transfer of tokens. This includes
     * minting and burning.
     *
     * Calling conditions:
     *
     * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
     * will be to transferred to `to`.
     * - when `from` is zero, `amount` tokens will be minted for `to`.
     * - when `to` is zero, `amount` of ``from``'s tokens will be burned.
     * - `from` and `to` are never both zero.
     *
     * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
     */
    function _beforeTokenTransfer(
        address from,
        address to,
        uint256 amount
    ) internal virtual {}
}

File 36 of 47 : IBasePool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IVault.sol";
import "./IPoolSwapStructs.sol";

/**
 * @dev Interface for adding and removing liquidity that all Pool contracts should implement. Note that this is not
 * the complete Pool contract interface, as it is missing the swap hooks. Pool contracts should also inherit from
 * either IGeneralPool or IMinimalSwapInfoPool
 */
interface IBasePool is IPoolSwapStructs {
    /**
     * @dev Called by the Vault when a user calls `IVault.joinPool` to add liquidity to this Pool. Returns how many of
     * each registered token the user should provide, as well as the amount of protocol fees the Pool owes to the Vault.
     * The Vault will then take tokens from `sender` and add them to the Pool's balances, as well as collect
     * the reported amount in protocol fees, which the pool should calculate based on `protocolSwapFeePercentage`.
     *
     * Protocol fees are reported and charged on join events so that the Pool is free of debt whenever new users join.
     *
     * `sender` is the account performing the join (from which tokens will be withdrawn), and `recipient` is the account
     * designated to receive any benefits (typically pool shares). `balances` contains the total balances
     * for each token the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * join (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as minting pool shares.
     */
    function onJoinPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsIn, uint256[] memory dueProtocolFeeAmounts);

    /**
     * @dev Called by the Vault when a user calls `IVault.exitPool` to remove liquidity from this Pool. Returns how many
     * tokens the Vault should deduct from the Pool's balances, as well as the amount of protocol fees the Pool owes
     * to the Vault. The Vault will then take tokens from the Pool's balances and send them to `recipient`,
     * as well as collect the reported amount in protocol fees, which the Pool should calculate based on
     * `protocolSwapFeePercentage`.
     *
     * Protocol fees are charged on exit events to guarantee that users exiting the Pool have paid their share.
     *
     * `sender` is the account performing the exit (typically the pool shareholder), and `recipient` is the account
     * to which the Vault will send the proceeds. `balances` contains the total token balances for each token
     * the Pool registered in the Vault, in the same order that `IVault.getPoolTokens` would return.
     *
     * `lastChangeBlock` is the last block in which *any* of the Pool's registered tokens last changed its total
     * balance.
     *
     * `userData` contains any pool-specific instructions needed to perform the calculations, such as the type of
     * exit (e.g., proportional given an amount of pool shares, single-asset, multi-asset, etc.)
     *
     * Contracts implementing this function should check that the caller is indeed the Vault before performing any
     * state-changing operations, such as burning pool shares.
     */
    function onExitPool(
        bytes32 poolId,
        address sender,
        address recipient,
        uint256[] memory balances,
        uint256 lastChangeBlock,
        uint256 protocolSwapFeePercentage,
        bytes memory userData
    ) external returns (uint256[] memory amountsOut, uint256[] memory dueProtocolFeeAmounts);

    function getPoolId() external view returns (bytes32);
}

File 37 of 47 : IAssetManager.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

interface IAssetManager {
    /**
     * @notice Emitted when asset manager is rebalanced
     */
    event Rebalance(bytes32 poolId);

    /**
     * @notice Sets the config
     */
    function setConfig(bytes32 poolId, bytes calldata config) external;

    /**
     * Note: No function to read the asset manager config is included in IAssetManager
     * as the signature is expected to vary between asset manager implementations
     */

    /**
     * @notice Returns the asset manager's token
     */
    function getToken() external view returns (IERC20);

    /**
     * @return the current assets under management of this asset manager
     */
    function getAUM(bytes32 poolId) external view returns (uint256);

    /**
     * @return poolCash - The up-to-date cash balance of the pool
     * @return poolManaged - The up-to-date managed balance of the pool
     */
    function getPoolBalances(bytes32 poolId) external view returns (uint256 poolCash, uint256 poolManaged);

    /**
     * @return The difference in tokens between the target investment
     * and the currently invested amount (i.e. the amount that can be invested)
     */
    function maxInvestableBalance(bytes32 poolId) external view returns (int256);

    /**
     * @notice Updates the Vault on the value of the pool's investment returns
     */
    function updateBalanceOfPool(bytes32 poolId) external;

    /**
     * @notice Determines whether the pool should rebalance given the provided balances
     */
    function shouldRebalance(uint256 cash, uint256 managed) external view returns (bool);

    /**
     * @notice Rebalances funds between the pool and the asset manager to maintain target investment percentage.
     * @param poolId - the poolId of the pool to be rebalanced
     * @param force - a boolean representing whether a rebalance should be forced even when the pool is near balance
     */
    function rebalance(bytes32 poolId, bool force) external;

    /**
     * @notice allows an authorized rebalancer to remove capital to facilitate large withdrawals
     * @param poolId - the poolId of the pool to withdraw funds back to
     * @param amount - the amount of tokens to withdraw back to the pool
     */
    function capitalOut(bytes32 poolId, uint256 amount) external;
}

File 38 of 47 : BalancerPoolToken.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20.sol";
import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/ERC20Permit.sol";

/**
 * @title Highly opinionated token implementation
 * @author Balancer Labs
 * @dev
 * - Includes functions to increase and decrease allowance as a workaround
 *   for the well-known issue with `approve`:
 *   https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
 * - Allows for 'infinite allowance', where an allowance of 0xff..ff is not
 *   decreased by calls to transferFrom
 * - Lets a token holder use `transferFrom` to send their own tokens,
 *   without first setting allowance
 * - Emits 'Approval' events whenever allowance is changed by `transferFrom`
 */
contract BalancerPoolToken is ERC20, ERC20Permit {
    constructor(string memory tokenName, string memory tokenSymbol)
        ERC20(tokenName, tokenSymbol)
        ERC20Permit(tokenName)
    {
        // solhint-disable-previous-line no-empty-blocks
    }

    // Overrides

    /**
     * @dev Override to allow for 'infinite allowance' and let the token owner use `transferFrom` with no self-allowance
     */
    function transferFrom(
        address sender,
        address recipient,
        uint256 amount
    ) public override returns (bool) {
        uint256 currentAllowance = allowance(sender, msg.sender);
        _require(msg.sender == sender || currentAllowance >= amount, Errors.ERC20_TRANSFER_EXCEEDS_ALLOWANCE);

        _transfer(sender, recipient, amount);

        if (msg.sender != sender && currentAllowance != uint256(-1)) {
            // Because of the previous require, we know that if msg.sender != sender then currentAllowance >= amount
            _approve(sender, msg.sender, currentAllowance - amount);
        }

        return true;
    }

    /**
     * @dev Override to allow decreasing allowance by more than the current amount (setting it to zero)
     */
    function decreaseAllowance(address spender, uint256 amount) public override returns (bool) {
        uint256 currentAllowance = allowance(msg.sender, spender);

        if (amount >= currentAllowance) {
            _approve(msg.sender, spender, 0);
        } else {
            // No risk of underflow due to if condition
            _approve(msg.sender, spender, currentAllowance - amount);
        }

        return true;
    }

    // Internal functions

    function _mintPoolTokens(address recipient, uint256 amount) internal {
        _mint(recipient, amount);
    }

    function _burnPoolTokens(address sender, uint256 amount) internal {
        _burn(sender, amount);
    }
}

File 39 of 47 : BasePoolAuthorization.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "@balancer-labs/v2-solidity-utils/contracts/helpers/Authentication.sol";
import "@balancer-labs/v2-vault/contracts/interfaces/IAuthorizer.sol";

import "./BasePool.sol";

/**
 * @dev Base authorization layer implementation for Pools.
 *
 * The owner account can call some of the permissioned functions - access control of the rest is delegated to the
 * Authorizer. Note that this owner is immutable: more sophisticated permission schemes, such as multiple ownership,
 * granular roles, etc., could be built on top of this by making the owner a smart contract.
 *
 * Access control of all other permissioned functions is delegated to an Authorizer. It is also possible to delegate
 * control of *all* permissioned functions to the Authorizer by setting the owner address to `_DELEGATE_OWNER`.
 */
abstract contract BasePoolAuthorization is Authentication {
    address private immutable _owner;

    address private constant _DELEGATE_OWNER = 0xBA1BA1ba1BA1bA1bA1Ba1BA1ba1BA1bA1ba1ba1B;

    constructor(address owner) {
        _owner = owner;
    }

    function getOwner() public view returns (address) {
        return _owner;
    }

    function getAuthorizer() external view returns (IAuthorizer) {
        return _getAuthorizer();
    }

    function _canPerform(bytes32 actionId, address account) internal view override returns (bool) {
        if ((getOwner() != _DELEGATE_OWNER) && _isOwnerOnlyAction(actionId)) {
            // Only the owner can perform "owner only" actions, unless the owner is delegated.
            return msg.sender == getOwner();
        } else {
            // Non-owner actions are always processed via the Authorizer, as "owner only" ones are when delegated.
            return _getAuthorizer().canPerform(actionId, account, address(this));
        }
    }

    function _isOwnerOnlyAction(bytes32 actionId) internal view virtual returns (bool);

    function _getAuthorizer() internal view virtual returns (IAuthorizer);
}

File 40 of 47 : SafeMath.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "../helpers/BalancerErrors.sol";

/**
 * @dev Wrappers over Solidity's arithmetic operations with added overflow
 * checks.
 *
 * Arithmetic operations in Solidity wrap on overflow. This can easily result
 * in bugs, because programmers usually assume that an overflow raises an
 * error, which is the standard behavior in high level programming languages.
 * `SafeMath` restores this intuition by reverting the transaction when an
 * operation overflows.
 *
 * Using this library instead of the unchecked operations eliminates an entire
 * class of bugs, so it's recommended to use it always.
 */
library SafeMath {
    /**
     * @dev Returns the addition of two unsigned integers, reverting on
     * overflow.
     *
     * Counterpart to Solidity's `+` operator.
     *
     * Requirements:
     *
     * - Addition cannot overflow.
     */
    function add(uint256 a, uint256 b) internal pure returns (uint256) {
        uint256 c = a + b;
        _require(c >= a, Errors.ADD_OVERFLOW);

        return c;
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b) internal pure returns (uint256) {
        return sub(a, b, Errors.SUB_OVERFLOW);
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, reverting with custom message on
     * overflow (when the result is negative).
     *
     * Counterpart to Solidity's `-` operator.
     *
     * Requirements:
     *
     * - Subtraction cannot overflow.
     */
    function sub(uint256 a, uint256 b, uint256 errorCode) internal pure returns (uint256) {
        _require(b <= a, errorCode);
        uint256 c = a - b;

        return c;
    }
}

File 41 of 47 : IPoolSwapStructs.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "@balancer-labs/v2-solidity-utils/contracts/openzeppelin/IERC20.sol";

import "./IVault.sol";

interface IPoolSwapStructs {
    // This is not really an interface - it just defines common structs used by other interfaces: IGeneralPool and
    // IMinimalSwapInfoPool.
    //
    // This data structure represents a request for a token swap, where `kind` indicates the swap type ('given in' or
    // 'given out') which indicates whether or not the amount sent by the pool is known.
    //
    // The pool receives `tokenIn` and sends `tokenOut`. `amount` is the number of `tokenIn` tokens the pool will take
    // in, or the number of `tokenOut` tokens the Pool will send out, depending on the given swap `kind`.
    //
    // All other fields are not strictly necessary for most swaps, but are provided to support advanced scenarios in
    // some Pools.
    //
    // `poolId` is the ID of the Pool involved in the swap - this is useful for Pool contracts that implement more than
    // one Pool.
    //
    // The meaning of `lastChangeBlock` depends on the Pool specialization:
    //  - Two Token or Minimal Swap Info: the last block in which either `tokenIn` or `tokenOut` changed its total
    //    balance.
    //  - General: the last block in which *any* of the Pool's registered tokens changed its total balance.
    //
    // `from` is the origin address for the funds the Pool receives, and `to` is the destination address
    // where the Pool sends the outgoing tokens.
    //
    // `userData` is extra data provided by the caller - typically a signature from a trusted party.
    struct SwapRequest {
        IVault.SwapKind kind;
        IERC20 tokenIn;
        IERC20 tokenOut;
        uint256 amount;
        // Misc data
        bytes32 poolId;
        uint256 lastChangeBlock;
        address from;
        address to;
        bytes userData;
    }
}

File 42 of 47 : ERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

import "./ERC20.sol";
import "./IERC20Permit.sol";
import "./EIP712.sol";

/**
 * @dev Implementation of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 *
 * _Available since v3.4._
 */
abstract contract ERC20Permit is ERC20, IERC20Permit, EIP712 {
    mapping(address => uint256) private _nonces;

    // solhint-disable-next-line var-name-mixedcase
    bytes32 private immutable _PERMIT_TYPEHASH =
        keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");

    /**
     * @dev Initializes the {EIP712} domain separator using the `name` parameter, and setting `version` to `"1"`.
     *
     * It's a good idea to use the same `name` that is defined as the ERC20 token name.
     */
    constructor(string memory name) EIP712(name, "1") {}

    /**
     * @dev See {IERC20Permit-permit}.
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual override {
        // solhint-disable-next-line not-rely-on-time
        _require(block.timestamp <= deadline, Errors.EXPIRED_PERMIT);

        uint256 nonce = _nonces[owner];
        bytes32 structHash = keccak256(abi.encode(_PERMIT_TYPEHASH, owner, spender, value, nonce, deadline));

        bytes32 hash = _hashTypedDataV4(structHash);

        address signer = ecrecover(hash, v, r, s);
        _require((signer != address(0)) && (signer == owner), Errors.INVALID_SIGNATURE);

        _nonces[owner] = nonce + 1;
        _approve(owner, spender, value);
    }

    /**
     * @dev See {IERC20Permit-nonces}.
     */
    function nonces(address owner) public view override returns (uint256) {
        return _nonces[owner];
    }

    /**
     * @dev See {IERC20Permit-DOMAIN_SEPARATOR}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view override returns (bytes32) {
        return _domainSeparatorV4();
    }
}

File 43 of 47 : IERC20Permit.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
 * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
 *
 * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
 * presenting a message signed by the account. By not relying on `{IERC20-approve}`, the token holder account doesn't
 * need to send a transaction, and thus is not required to hold Ether at all.
 */
interface IERC20Permit {
    /**
     * @dev Sets `value` as the allowance of `spender` over `owner`'s tokens,
     * given `owner`'s signed approval.
     *
     * IMPORTANT: The same issues {IERC20-approve} has related to transaction
     * ordering also apply here.
     *
     * Emits an {Approval} event.
     *
     * Requirements:
     *
     * - `spender` cannot be the zero address.
     * - `deadline` must be a timestamp in the future.
     * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
     * over the EIP712-formatted function arguments.
     * - the signature must use ``owner``'s current nonce (see {nonces}).
     *
     * For more information on the signature format, see the
     * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
     * section].
     */
    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) external;

    /**
     * @dev Returns the current nonce for `owner`. This value must be
     * included whenever a signature is generated for {permit}.
     *
     * Every successful call to {permit} increases ``owner``'s nonce by one. This
     * prevents a signature from being used multiple times.
     */
    function nonces(address owner) external view returns (uint256);

    /**
     * @dev Returns the domain separator used in the encoding of the signature for `permit`, as defined by {EIP712}.
     */
    // solhint-disable-next-line func-name-mixedcase
    function DOMAIN_SEPARATOR() external view returns (bytes32);
}

File 44 of 47 : EIP712.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.7.0;

/**
 * @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
 *
 * The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
 * thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
 * they need in their contracts using a combination of `abi.encode` and `keccak256`.
 *
 * This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
 * scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
 * ({_hashTypedDataV4}).
 *
 * The implementation of the domain separator was designed to be as efficient as possible while still properly updating
 * the chain id to protect against replay attacks on an eventual fork of the chain.
 *
 * NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
 * https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
 *
 * _Available since v3.4._
 */
abstract contract EIP712 {
    /* solhint-disable var-name-mixedcase */
    bytes32 private immutable _HASHED_NAME;
    bytes32 private immutable _HASHED_VERSION;
    bytes32 private immutable _TYPE_HASH;

    /* solhint-enable var-name-mixedcase */

    /**
     * @dev Initializes the domain separator and parameter caches.
     *
     * The meaning of `name` and `version` is specified in
     * https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
     *
     * - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
     * - `version`: the current major version of the signing domain.
     *
     * NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
     * contract upgrade].
     */
    constructor(string memory name, string memory version) {
        _HASHED_NAME = keccak256(bytes(name));
        _HASHED_VERSION = keccak256(bytes(version));
        _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
    }

    /**
     * @dev Returns the domain separator for the current chain.
     */
    function _domainSeparatorV4() internal view virtual returns (bytes32) {
        return keccak256(abi.encode(_TYPE_HASH, _HASHED_NAME, _HASHED_VERSION, _getChainId(), address(this)));
    }

    /**
     * @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
     * function returns the hash of the fully encoded EIP712 message for this domain.
     *
     * This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
     *
     * ```solidity
     * bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
     *     keccak256("Mail(address to,string contents)"),
     *     mailTo,
     *     keccak256(bytes(mailContents))
     * )));
     * address signer = ECDSA.recover(digest, signature);
     * ```
     */
    function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
        return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
    }

    function _getChainId() private view returns (uint256 chainId) {
        // Silence state mutability warning without generating bytecode.
        // See https://github.com/ethereum/solidity/issues/10090#issuecomment-741789128 and
        // https://github.com/ethereum/solidity/issues/2691
        this;

        // solhint-disable-next-line no-inline-assembly
        assembly {
            chainId := chainid()
        }
    }
}

File 45 of 47 : Authentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

import "./BalancerErrors.sol";
import "./IAuthentication.sol";

/**
 * @dev Building block for performing access control on external functions.
 *
 * This contract is used via the `authenticate` modifier (or the `_authenticateCaller` function), which can be applied
 * to external functions to only make them callable by authorized accounts.
 *
 * Derived contracts must implement the `_canPerform` function, which holds the actual access control logic.
 */
abstract contract Authentication is IAuthentication {
    bytes32 private immutable _actionIdDisambiguator;

    /**
     * @dev The main purpose of the `actionIdDisambiguator` is to prevent accidental function selector collisions in
     * multi contract systems.
     *
     * There are two main uses for it:
     *  - if the contract is a singleton, any unique identifier can be used to make the associated action identifiers
     *    unique. The contract's own address is a good option.
     *  - if the contract belongs to a family that shares action identifiers for the same functions, an identifier
     *    shared by the entire family (and no other contract) should be used instead.
     */
    constructor(bytes32 actionIdDisambiguator) {
        _actionIdDisambiguator = actionIdDisambiguator;
    }

    /**
     * @dev Reverts unless the caller is allowed to call this function. Should only be applied to external functions.
     */
    modifier authenticate() {
        _authenticateCaller();
        _;
    }

    /**
     * @dev Reverts unless the caller is allowed to call the entry point function.
     */
    function _authenticateCaller() internal view {
        bytes32 actionId = getActionId(msg.sig);
        _require(_canPerform(actionId, msg.sender), Errors.SENDER_NOT_ALLOWED);
    }

    function getActionId(bytes4 selector) public view override returns (bytes32) {
        // Each external function is dynamically assigned an action identifier as the hash of the disambiguator and the
        // function selector. Disambiguation is necessary to avoid potential collisions in the function selectors of
        // multiple contracts.
        return keccak256(abi.encodePacked(_actionIdDisambiguator, selector));
    }

    function _canPerform(bytes32 actionId, address user) internal view virtual returns (bool);
}

File 46 of 47 : IAuthentication.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;

interface IAuthentication {
    /**
     * @dev Returns the action identifier associated with the external function described by `selector`.
     */
    function getActionId(bytes4 selector) external view returns (bytes32);
}

File 47 of 47 : IMinimalSwapInfoPool.sol
// SPDX-License-Identifier: GPL-3.0-or-later
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.

pragma solidity ^0.7.0;
pragma experimental ABIEncoderV2;

import "./IBasePool.sol";

/**
 * @dev Pool contracts with the MinimalSwapInfo or TwoToken specialization settings should implement this interface.
 *
 * This is called by the Vault when a user calls `IVault.swap` or `IVault.batchSwap` to swap with this Pool.
 * Returns the number of tokens the Pool will grant to the user in a 'given in' swap, or that the user will grant
 * to the pool in a 'given out' swap.
 *
 * This can often be implemented by a `view` function, since many pricing algorithms don't need to track state
 * changes in swaps. However, contracts implementing this in non-view functions should check that the caller is
 * indeed the Vault.
 */
interface IMinimalSwapInfoPool is IBasePool {
    function onSwap(
        SwapRequest memory swapRequest,
        uint256 currentBalanceTokenIn,
        uint256 currentBalanceTokenOut
    ) external returns (uint256 amount);
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {
    "@balancer-labs/v2-pool-utils/contracts/oracle/QueryProcessor.sol": {
      "QueryProcessor": "0xd7fad3bd59d6477cbe1be7f646f7f1ba25b230f8"
    }
  }
}

Contract Security Audit

Contract ABI

[{"inputs":[{"components":[{"internalType":"contract IVault","name":"vault","type":"address"},{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"contract IERC20[]","name":"tokens","type":"address[]"},{"internalType":"contract IRateProvider[]","name":"rateProviders","type":"address[]"},{"internalType":"uint256[]","name":"priceRateCacheDuration","type":"uint256[]"},{"internalType":"uint256","name":"amplificationParameter","type":"uint256"},{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"},{"internalType":"uint256","name":"pauseWindowDuration","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodDuration","type":"uint256"},{"internalType":"bool","name":"oracleEnabled","type":"bool"},{"internalType":"address","name":"owner","type":"address"}],"internalType":"struct MetaStablePool.NewPoolParams","name":"params","type":"tuple"}],"stateMutability":"nonpayable","type":"constructor"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"startValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endValue","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"startTime","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"AmpUpdateStarted","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"currentValue","type":"uint256"}],"name":"AmpUpdateStopped","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"enabled","type":"bool"}],"name":"OracleEnabledChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bool","name":"paused","type":"bool"}],"name":"PausedStateChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":false,"internalType":"uint256","name":"rate","type":"uint256"}],"name":"PriceRateCacheUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"contract IERC20","name":"token","type":"address"},{"indexed":true,"internalType":"contract IRateProvider","name":"provider","type":"address"},{"indexed":false,"internalType":"uint256","name":"cacheDuration","type":"uint256"}],"name":"PriceRateProviderSet","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"SwapFeePercentageChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"enableOracle","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes4","name":"selector","type":"bytes4"}],"name":"getActionId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAmplificationParameter","outputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"bool","name":"isUpdating","type":"bool"},{"internalType":"uint256","name":"precision","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getAuthorizer","outputs":[{"internalType":"contract IAuthorizer","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getLargestSafeQueryWindow","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getLastInvariant","outputs":[{"internalType":"uint256","name":"lastInvariant","type":"uint256"},{"internalType":"uint256","name":"lastInvariantAmp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"enum IPriceOracle.Variable","name":"variable","type":"uint8"}],"name":"getLatest","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOracleMiscData","outputs":[{"internalType":"int256","name":"logInvariant","type":"int256"},{"internalType":"int256","name":"logTotalSupply","type":"int256"},{"internalType":"uint256","name":"oracleSampleCreationTimestamp","type":"uint256"},{"internalType":"uint256","name":"oracleIndex","type":"uint256"},{"internalType":"bool","name":"oracleEnabled","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getOwner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum IPriceOracle.Variable","name":"variable","type":"uint8"},{"internalType":"uint256","name":"ago","type":"uint256"}],"internalType":"struct IPriceOracle.OracleAccumulatorQuery[]","name":"queries","type":"tuple[]"}],"name":"getPastAccumulators","outputs":[{"internalType":"int256[]","name":"results","type":"int256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPausedState","outputs":[{"internalType":"bool","name":"paused","type":"bool"},{"internalType":"uint256","name":"pauseWindowEndTime","type":"uint256"},{"internalType":"uint256","name":"bufferPeriodEndTime","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getPoolId","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"getPriceRateCache","outputs":[{"internalType":"uint256","name":"rate","type":"uint256"},{"internalType":"uint256","name":"duration","type":"uint256"},{"internalType":"uint256","name":"expires","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getRateProviders","outputs":[{"internalType":"contract IRateProvider[]","name":"providers","type":"address[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getSample","outputs":[{"internalType":"int256","name":"logPairPrice","type":"int256"},{"internalType":"int256","name":"accLogPairPrice","type":"int256"},{"internalType":"int256","name":"logBptPrice","type":"int256"},{"internalType":"int256","name":"accLogBptPrice","type":"int256"},{"internalType":"int256","name":"logInvariant","type":"int256"},{"internalType":"int256","name":"accLogInvariant","type":"int256"},{"internalType":"uint256","name":"timestamp","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getScalingFactors","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getSwapFeePercentage","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"components":[{"internalType":"enum IPriceOracle.Variable","name":"variable","type":"uint8"},{"internalType":"uint256","name":"secs","type":"uint256"},{"internalType":"uint256","name":"ago","type":"uint256"}],"internalType":"struct IPriceOracle.OracleAverageQuery[]","name":"queries","type":"tuple[]"}],"name":"getTimeWeightedAverage","outputs":[{"internalType":"uint256[]","name":"results","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTotalSamples","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"pure","type":"function"},{"inputs":[],"name":"getVault","outputs":[{"internalType":"contract IVault","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onExitPool","outputs":[{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"},{"internalType":"uint256[]","name":"dueProtocolFeeAmounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"onJoinPool","outputs":[{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"},{"internalType":"uint256[]","name":"dueProtocolFeeAmounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"request","type":"tuple"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"indexIn","type":"uint256"},{"internalType":"uint256","name":"indexOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"components":[{"internalType":"enum IVault.SwapKind","name":"kind","type":"uint8"},{"internalType":"contract IERC20","name":"tokenIn","type":"address"},{"internalType":"contract IERC20","name":"tokenOut","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes","name":"userData","type":"bytes"}],"internalType":"struct IPoolSwapStructs.SwapRequest","name":"request","type":"tuple"},{"internalType":"uint256","name":"balanceTokenIn","type":"uint256"},{"internalType":"uint256","name":"balanceTokenOut","type":"uint256"}],"name":"onSwap","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryExit","outputs":[{"internalType":"uint256","name":"bptIn","type":"uint256"},{"internalType":"uint256[]","name":"amountsOut","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"poolId","type":"bytes32"},{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256[]","name":"balances","type":"uint256[]"},{"internalType":"uint256","name":"lastChangeBlock","type":"uint256"},{"internalType":"uint256","name":"protocolSwapFeePercentage","type":"uint256"},{"internalType":"bytes","name":"userData","type":"bytes"}],"name":"queryJoin","outputs":[{"internalType":"uint256","name":"bptOut","type":"uint256"},{"internalType":"uint256[]","name":"amountsIn","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"bytes","name":"poolConfig","type":"bytes"}],"name":"setAssetManagerPoolConfig","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"paused","type":"bool"}],"name":"setPaused","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"},{"internalType":"uint256","name":"duration","type":"uint256"}],"name":"setPriceRateCacheDuration","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"swapFeePercentage","type":"uint256"}],"name":"setSwapFeePercentage","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"rawEndValue","type":"uint256"},{"internalType":"uint256","name":"endTime","type":"uint256"}],"name":"startAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"stopAmplificationParameterUpdate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract IERC20","name":"token","type":"address"}],"name":"updatePriceRateCache","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6103606040527f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9610120523480156200003757600080fd5b50604051620074d0380380620074d08339810160408190526200005a91620010a1565b805160208201516040830151606084015160c085015160e0860151610100870151610120880151610160890151855189906002146200009b5760006200009e565b60025b8989898a516001600160401b0381118015620000b957600080fd5b50604051908082528060200260200182016040528015620000e4578160200160208202803683370190505b506040805180820190915260018152603160f81b602080830191909152336080526001600160601b031960608a901b1660a05285518c928c928c928c92859285928c928c92849283929183918691620001439160039185019062000de9565b5080516200015990600490602084019062000de9565b50506005805460ff1916601217905550815160209283012060c052805191012060e05250507f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f6101005250620001b86276a70083111561019462000833565b620001cc62278d0082111561019562000833565b4290910161014081905201610160528551620001ee906002111560c862000833565b62000208620001fc62000848565b8751111560c962000833565b6200021e866200084d60201b620013d91760201c565b620002298462000859565b6040516309b2760f60e01b81526000906001600160a01b038c16906309b2760f906200025a908d90600401620012e7565b602060405180830381600087803b1580156200027557600080fd5b505af11580156200028a573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190620002b0919062001088565b604051633354e3e960e11b81529091506001600160a01b038c16906366a9c7d290620002e59084908b908b906004016200124b565b600060405180830381600087803b1580156200030057600080fd5b505af115801562000315573d6000803e3d6000fd5b5050505060609a909a1b6001600160601b031916610180525050506101a0969096525062000352945050506001881015915061012c905062000833565b6200036561138886111561012d62000833565b85516101c0819052865187906000906200037b57fe5b60200260200101516001600160a01b03166101e0816001600160a01b031660601b8152505086600181518110620003ae57fe5b60200260200101516001600160a01b0316610200816001600160a01b031660601b8152505060028111620003e4576000620003fb565b86600281518110620003f257fe5b60200260200101515b60601b6001600160601b03191661022052600381116200041d57600062000434565b866003815181106200042b57fe5b60200260200101515b60601b6001600160601b0319166102405260048111620004565760006200046d565b866004815181106200046457fe5b60200260200101515b6001600160a01b0316610260816001600160a01b031660601b81525050620004b0876000815181106200049c57fe5b6020026020010151620008e560201b60201c565b610280528651620004c990889060019081106200049c57fe5b6102a05260028111620004de576000620004f0565b620004f0876002815181106200049c57fe5b6102c052600381116200050557600062000517565b62000517876003815181106200049c57fe5b6102e052600481116200052c5760006200053e565b6200053e876004815181106200049c57fe5b6103008181525050600062000561876103e86200099160201b620013e31760201c565b90506200056e81620009c2565b50505050505050505050506200059481606001515160021460d26200083360201b60201c565b620005bb8160600151518260800151518360a001515162000a0160201b620014071760201c565b60008160800151600081518110620005cf57fe5b60209081029190910101516001600160601b0319606082901b166103205290506001600160a01b0381161562000686576000806200062d838560a001516000815181106200061957fe5b602002602001015162000a2160201b60201c565b9150915081600d8190555083606001516000815181106200064a57fe5b60200260200101516001600160a01b031660008051602062007490833981519152826040516200067b9190620012fc565b60405180910390a250505b806001600160a01b03168260600151600081518110620006a257fe5b60200260200101516001600160a01b0316600080516020620074b08339815191528460a00151600081518110620006d557fe5b6020026020010151604051620006ec9190620012fc565b60405180910390a3600082608001516001815181106200070857fe5b60209081029190910101516001600160601b0319606082901b166103405290506001600160a01b03811615620007ab5760008062000752838660a001516001815181106200061957fe5b9150915081600e8190555084606001516001815181106200076f57fe5b60200260200101516001600160a01b03166000805160206200749083398151915282604051620007a09190620012fc565b60405180910390a250505b806001600160a01b03168360600151600181518110620007c757fe5b60200260200101516001600160a01b0316600080516020620074b08339815191528560a00151600181518110620007fa57fe5b6020026020010151604051620008119190620012fc565b60405180910390a36101408301516200082a9062000b1f565b50505062001389565b816200084457620008448162000b7d565b5050565b600590565b80620008448162000bd0565b6200086e64e8d4a5100082101560cb62000833565b6200088667016345785d8a000082111560ca62000833565b620008a58160c060085462000c5a60201b62001424179092919060201c565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90620008da908390620012fc565b60405180910390a150565b600080826001600160a01b031663313ce5676040518163ffffffff1660e01b815260040160206040518083038186803b1580156200092257600080fd5b505afa15801562000937573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906200095d91906200121d565b60ff16905060006200097c60128362000c6f60201b620014391760201c565b600a0a670de0b6b3a764000002949350505050565b6000828202620009b9841580620009b1575083858381620009ae57fe5b04145b600362000833565b90505b92915050565b620009d08180428062000c87565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a023381604051620008da9190620012fc565b62000a1c828414801562000a1457508183145b606762000833565b505050565b600080836001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b15801562000a5e57600080fd5b505afa15801562000a73573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019062000a99919062001088565b905062000aaf600160801b821061014962000833565b62000ad28342016001600160401b031660c062000d5760201b6200144f1760201c565b62000af3846001600160401b0316608062000d5760201b6200144f1760201c565b62000b14836001600160801b0316600062000d5760201b6200144f1760201c565b171791509250929050565b62000b4c62000b468262000b3262000d5b565b62000d6160201b620014531790919060201c565b62000d80565b7f3e350b41e86a8e10f804ade6d35340d620be35569cc75ac943e8bb14ab80ead181604051620008da919062001240565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b60028151101562000be15762000c57565b60008160008151811062000bf157fe5b602002602001015190506000600190505b825181101562000a1c57600083828151811062000c1b57fe5b6020026020010151905062000c4c816001600160a01b0316846001600160a01b03161060656200083360201b60201c565b915060010162000c02565b50565b6001600160401b03811b1992909216911b1790565b600062000c8183831115600162000833565b50900390565b62000ca8816001600160401b031660c062000d5760201b6200144f1760201c565b62000cc9836001600160401b0316608062000d5760201b6200144f1760201c565b62000cea856001600160401b0316604062000d5760201b6200144f1760201c565b62000d0b876001600160401b0316600062000d5760201b6200144f1760201c565b1717176009556040517f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf29062000d4990869086908690869062001305565b60405180910390a150505050565b1b90565b60085490565b6000620009b98260558562000da560201b6200145d179092919060201c565b62000d9f81600060085462000dce60201b62001484179092919060201c565b60085550565b60006001821b198416828462000dbd57600062000dc0565b60015b60ff16901b17949350505050565b6001600160c01b03828116821b90821b198416179392505050565b828054600181600116156101000203166002900490600052602060002090601f016020900481019282601f1062000e2c57805160ff191683800117855562000e5c565b8280016001018555821562000e5c579182015b8281111562000e5c57825182559160200191906001019062000e3f565b5062000e6a92915062000e6e565b5090565b5b8082111562000e6a576000815560010162000e6f565b8051620009bc8162001373565b600082601f83011262000ea3578081fd5b815162000eba62000eb48262001347565b62001320565b81815291506020808301908481018184028601820187101562000edc57600080fd5b60005b8481101562000f0857815162000ef58162001373565b8452928201929082019060010162000edf565b505050505092915050565b600082601f83011262000f24578081fd5b815162000f3562000eb48262001347565b81815291506020808301908481018184028601820187101562000f5757600080fd5b60005b8481101562000f0857815162000f708162001373565b8452928201929082019060010162000f5a565b600082601f83011262000f94578081fd5b815162000fa562000eb48262001347565b81815291506020808301908481018184028601820187101562000fc757600080fd5b60005b8481101562000f085781518452928201929082019060010162000fca565b80518015158114620009bc57600080fd5b600082601f8301126200100a578081fd5b81516001600160401b0381111562001020578182fd5b602062001036601f8301601f1916820162001320565b925081835284818386010111156200104d57600080fd5b60005b828110156200106d57848101820151848201830152810162001050565b828111156200107f5760008284860101525b50505092915050565b6000602082840312156200109a578081fd5b5051919050565b600060208284031215620010b3578081fd5b81516001600160401b0380821115620010ca578283fd5b8184019150610180808387031215620010e1578384fd5b620010ec8162001320565b9050620010fa868462000e85565b81526020830151828111156200110e578485fd5b6200111c8782860162000ff9565b60208301525060408301518281111562001134578485fd5b620011428782860162000ff9565b6040830152506060830151828111156200115a578485fd5b620011688782860162000e92565b60608301525060808301518281111562001180578485fd5b6200118e8782860162000f13565b60808301525060a083015182811115620011a6578485fd5b620011b48782860162000f83565b60a08301525060c0838101519082015260e08084015190820152610100808401519082015261012080840151908201526101409150620011f78683850162000fe8565b8282015261016091506200120e8683850162000e85565b91810191909152949350505050565b6000602082840312156200122f578081fd5b815160ff81168114620009b9578182fd5b901515815260200190565b60006060820185835260206060818501528186518084526080860191508288019350845b81811015620012975762001284855162001367565b835293830193918301916001016200126f565b505084810360408601528551808252908201925081860190845b81811015620012d957620012c6835162001367565b85529383019391830191600101620012b1565b509298975050505050505050565b6020810160038310620012f657fe5b91905290565b90815260200190565b93845260208401929092526040830152606082015260800190565b6040518181016001600160401b03811182821017156200133f57600080fd5b604052919050565b60006001600160401b038211156200135d578081fd5b5060209081020190565b6001600160a01b031690565b6001600160a01b038116811462000c5757600080fd5b60805160a05160601c60c05160e051610100516101205161014051610160516101805160601c6101a0516101c0516101e05160601c6102005160601c6102205160601c6102405160601c6102605160601c610280516102a0516102c0516102e051610300516103205160601c6103405160601c615fe4620014ac600039806117d85250806117b452508061348e52508061346a5250806134465250806134225250806133fe5250806139e75250806139a552508061396352508061171f528061262e52806132495250806116b752806125d352806131dd525080611cf5525080610b59525080610f2052508061166f52508061164b525080611240525080611ad1525080611b13525080611af2525080610efc525080610e865250615fe46000f3fe608060405234801561001057600080fd5b50600436106102a05760003560e01c80636daccffa11610167578063a457c2d7116100ce578063b867ee5a11610087578063b867ee5a146105d1578063d505accf146105f3578063d5c096c414610606578063dd62ed3e14610619578063eb0f24d61461062c578063ffd088eb14610634576102a0565b8063a457c2d714610575578063a9059cbb14610588578063aaabadc51461059b578063b10be739146105a3578063b48b5b40146105b6578063b7710251146105be576102a0565b8063893d20e811610120578063893d20e8146105145780638d928af81461052957806395d89b41146105315780639b02cdde146105395780639d2c110c1461054f578063a0daaed014610562576102a0565b80636daccffa1461049057806370a08231146104a757806374f3b009146104ba5780637ecebe00146104db578063851c1bb3146104ee57806387ec681714610501576102a0565b80632f1a0bc91161020b57806350dd6ed9116101c457806350dd6ed91461040657806355c67628146104195780636028bfd41461042157806360d1507c14610442578063679aefce146104685780636b84323914610470576102a0565b80632f1a0bc9146103a8578063313ce567146103bb5780633644e515146103d057806338e9922e146103d857806338fff2d0146103eb57806339509351146103f3576102a0565b80631dccd8301161025d5780631dccd830146103375780631dd746ea146103575780631ed4eddc1461035f578063238a2d591461037857806323b872dd1461038d578063292c914a146103a0576102a0565b806301ec954a146102a557806306fdde03146102ce578063095ea7b3146102e357806316c38b3c1461030357806318160ddd146103185780631c0de05114610320575b600080fd5b6102b86102b33660046159fd565b61063c565b6040516102c59190615ced565b60405180910390f35b6102d661069c565b6040516102c59190615ea0565b6102f66102f13660046154e7565b610733565b6040516102c59190615cca565b610316610311366004615755565b61074a565b005b6102b861075e565b610328610764565b6040516102c593929190615cd5565b61034a61034536600461569b565b61078d565b6040516102c59190615c92565b61034a6108b0565b6103676108bf565b6040516102c5959493929190615df3565b610380610911565b6040516102c59190615c0d565b6102f661039b366004615432565b61099e565b610316610a14565b6103166103b6366004615ad0565b610a48565b6103c3610b2b565b6040516102c59190615f21565b6102b8610b34565b6103166103e6366004615ab8565b610b3e565b6102b8610b57565b6102f66104013660046154e7565b610b7b565b610316610414366004615873565b610bb6565b6102b8610bd4565b61043461042f36600461578d565b610be5565b6040516102c5929190615eb3565b610455610450366004615ab8565b610c1c565b6040516102c59796959493929190615dc3565b6102b8610c65565b61048361047e3660046155dd565b610d43565b6040516102c59190615c5a565b610498610df9565b6040516102c593929190615ecc565b6102b86104b53660046153de565b610e14565b6104cd6104c836600461578d565b610e33565b6040516102c5929190615ca5565b6102b86104e93660046153de565b610e67565b6102b86104fc36600461582f565b610e82565b61043461050f36600461578d565b610ed4565b61051c610efa565b6040516102c59190615bf9565b61051c610f1e565b6102d6610f42565b610541610fa3565b6040516102c5929190615ee2565b6102b861055d366004615a6d565b610fad565b6103166105703660046153de565b610fe6565b6102f66105833660046154e7565b611022565b6102f66105963660046154e7565b611060565b61051c61106d565b6102b86105b13660046159c9565b611077565b6102b861110c565b6103166105cc3660046154e7565b611112565b6105e46105df3660046153de565b6111b2565b6040516102c593929190615ef0565b610316610601366004615472565b61120b565b6104cd61061436600461578d565b611354565b6102b86106273660046153fa565b61137b565b6103166113a6565b6102b86113d2565b6000846080015161066961064e610f1e565b6001600160a01b0316336001600160a01b03161460cd61149f565b61067e610674610b57565b82146101f461149f565b6106866114ad565b610692868686866114bd565b9695505050505050565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107285780601f106106fd57610100808354040283529160200191610728565b820191906000526020600020905b81548152906001019060200180831161070b57829003601f168201915b505050505090505b90565b6000610740338484611518565b5060015b92915050565b610752611580565b61075b816115ae565b50565b60025490565b600080600061077161162c565b15925061077c611649565b915061078661166d565b9050909192565b606081516001600160401b03811180156107a657600080fd5b506040519080825280602002602001820160405280156107d0578160200160208202803683370190505b50905060006107dd611691565b905060005b83518110156108a95773d7fad3bd59d6477cbe1be7f646f7f1ba25b230f86379eaef82600c86848151811061081357fe5b6020026020010151856040518463ffffffff1660e01b815260040161083a93929190615e64565b60206040518083038186803b15801561085257600080fd5b505af4158015610866573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061088a91906159e5565b83828151811061089657fe5b60209081029190910101526001016107e2565b5050919050565b60606108ba6116a3565b905090565b6000806000806000806108d061176c565b90506108db81611772565b95506108e68161177e565b94506108f18161178b565b93506108fc81611798565b9250610907816117a5565b9150509091929394565b60408051600280825260608083018452926020830190803683370190505090506109396117b2565b8160008151811061094657fe5b60200260200101906001600160a01b031690816001600160a01b03168152505061096e6117d6565b8160018151811061097b57fe5b60200260200101906001600160a01b031690816001600160a01b03168152505090565b6000806109ab853361137b565b90506109cf336001600160a01b03871614806109c75750838210155b61019e61149f565b6109da8585856117fa565b336001600160a01b038616148015906109f557506000198114155b15610a0757610a078533858403611518565b60019150505b9392505050565b610a1c6118da565b610a24611580565b610a2e60016118ed565b6000610a3861075e565b1115610a4657610a46611936565b565b610a50611580565b610a60600183101561012c61149f565b610a7161138883111561012d61149f565b6000610a7d8242611439565b9050610a916201518082101561013d61149f565b600080610a9c61198c565b91509150610aad811561013e61149f565b6000610abb866103e86113e3565b90506000838211610aea57610ae5610ad662015180866113e3565b610ae084886113e3565b611a00565b610b04565b610b04610afa62015180846113e3565b610ae086886113e3565b9050610b16600282111561013f61149f565b610b2284834289611a33565b50505050505050565b60055460ff1690565b60006108ba611acd565b610b46611580565b610b4e6118da565b61075b81611b6a565b7f000000000000000000000000000000000000000000000000000000000000000090565b3360008181526001602090815260408083206001600160a01b03871684529091528120549091610740918590610bb19086611bd5565b611518565b610bbe611580565b610bc66118da565b610bd08282611be7565b5050565b6008546000906108ba9060c0611ce6565b60006060610bfb8651610bf6611cf3565b611d17565b610c1089898989898989611d24611d8e611def565b97509795505050505050565b6000806000806000806000610c37610400891061013b61149f565b6000610c4289611f12565b9050610c4d81611f24565b959f949e50929c50909a509850965090945092505050565b60006060610c71610f1e565b6001600160a01b031663f94d4668610c87610b57565b6040518263ffffffff1660e01b8152600401610ca39190615ced565b60006040518083038186803b158015610cbb57600080fd5b505afa158015610ccf573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610cf79190810190615512565b509150506000610d0561198c565b509050610d1982610d146116a3565b611f87565b6000610d2782846000611fe8565b9050610d3b610d3461075e565b8290612184565b935050505090565b606081516001600160401b0381118015610d5c57600080fd5b50604051908082528060200260200182016040528015610d86578160200160208202803683370190505b5090506000610d93611691565b9050610d9d6151aa565b60005b8451811015610df157848181518110610db557fe5b60200260200101519150610dd282600001518484602001516121d5565b848281518110610dde57fe5b6020908102919091010152600101610da0565b505050919050565b6000806000610e0661198c565b90949093506103e892509050565b6001600160a01b0381166000908152602081905260409020545b919050565b606080610e3e6114ad565b610e4d89898989898989612266565b9092509050610e5a61162c565b15610c1057610c10611936565b6001600160a01b031660009081526006602052604090205490565b60007f000000000000000000000000000000000000000000000000000000000000000082604051602001610eb7929190615bb6565b604051602081830303815290604052805190602001209050919050565b60006060610ee58651610bf6611cf3565b610c10898989898989896122e461230a611def565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107285780601f106106fd57610100808354040283529160200191610728565b600a54600b549091565b60008360800151610fbf61064e610f1e565b610fca610674610b57565b610fd26114ad565b610fdd85858561236b565b95945050505050565b610fef81612452565b1561100157610ffc61247f565b61075b565b61100a81612497565b1561101757610ffc6124b3565b61075b6101356124c6565b60008061102f338561137b565b90508083106110495761104433856000611518565b611056565b6110563385858403611518565b5060019392505050565b60006107403384846117fa565b60006108ba612519565b600073d7fad3bd59d6477cbe1be7f646f7f1ba25b230f8630397bee0600c8461109e611691565b6040518463ffffffff1660e01b81526004016110bc93929190615e18565b60206040518083038186803b1580156110d457600080fd5b505af41580156110e8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061074491906159e5565b61040090565b61111a611580565b61112382612452565b156111885761113181612593565b6111396117b2565b6001600160a01b0316826001600160a01b03167fca6c2c5b6b44b5f3f0c08f0e28e5b6deda1cb38c3fe1113e8031d926c1e8c6d08360405161117b9190615ced565b60405180910390a3610bd0565b61119182612497565b156111a75761119f816125b5565b6111396117d6565b610bd06101356124c6565b60008060006111c0846125d1565b156111e0576111d56111d0612603565b612609565b925092509250611204565b6111e98461262c565b156111f9576111d56111d061265e565b6112046101356124c6565b9193909250565b6112198442111560d161149f565b6001600160a01b0387166000908152600660209081526040808320549051909291611270917f0000000000000000000000000000000000000000000000000000000000000000918c918c918c9188918d9101615d15565b604051602081830303815290604052805190602001209050600061129382612664565b90506000600182888888604051600081526020016040526040516112ba9493929190615da5565b6020604051602081039080840390855afa1580156112dc573d6000803e3d6000fd5b5050604051601f190151915061131e90506001600160a01b0382161580159061131657508b6001600160a01b0316826001600160a01b0316145b6101f861149f565b6001600160a01b038b1660009081526006602052604090206001850190556113478b8b8b611518565b5050505050505050505050565b60608061135f6114ad565b61136e89898989898989612680565b9092509050610c10611936565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6113ae611580565b6000806113b961198c565b915091506113c98161014061149f565b610bd0826127a4565b6201de2090565b80610bd0816127df565b6000828202610a0d8415806114005750838583816113fd57fe5b04145b600361149f565b61141f828414801561141857508183145b606761149f565b505050565b6001600160401b03811b1992909216911b1790565b600061144983831115600161149f565b50900390565b1b90565b6000610a0d838360555b60006001821b1984168284611473576000611476565b60015b60ff16901b17949350505050565b6001600160c01b03828116821b90821b198416179392505050565b81610bd057610bd0816124c6565b6114b5612858565b610a46612898565b60006114d183836114cc611cf3565b6128d3565b60606114db6116a3565b90506000865160018111156114ec57fe5b14611503576114fe86868686856128eb565b610692565b6106928686868685612960565b949350505050565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590611573908590615ced565b60405180910390a3505050565b60006115976000356001600160e01b031916610e82565b905061075b6115a682336129c4565b61019161149f565b80156115ce576115c96115bf611649565b421061019361149f565b6115e3565b6115e36115d961166d565b42106101a961149f565b6007805460ff19168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be6490611621908390615cca565b60405180910390a150565b600061163661166d565b4211806108ba57505060075460ff161590565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006108ba61169e61176c565b611798565b60606116ad612ab4565b90506116fe6116db7f0000000000000000000000000000000000000000000000000000000000000000612bea565b826000815181106116e857fe5b6020026020010151612c3990919063ffffffff16565b8160008151811061170b57fe5b6020026020010181815250506117506117437f0000000000000000000000000000000000000000000000000000000000000000612bea565b826001815181106116e857fe5b8160018151811061175d57fe5b60200260200101818152505090565b60085490565b60006107448282612c65565b6000610744826016612c65565b600061074482602c612c8c565b600061074482604b612c96565b6000610744826055612c9e565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b6118116001600160a01b038416151561019861149f565b6118286001600160a01b038316151561019961149f565b61183383838361141f565b6001600160a01b03831660009081526020819052604090205461185990826101a0612ca8565b6001600160a01b0380851660009081526020819052604080822093909355908416815220546118889082611bd5565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90611573908590615ced565b610a466118e561162c565b61019261149f565b611907611902826118fc61176c565b90611453565b612cbe565b7f3e350b41e86a8e10f804ade6d35340d620be35569cc75ac943e8bb14ab80ead1816040516116219190615cca565b600061194061176c565b905061194b816117a5565b1561075b5761196561195e600a54612cd3565b8290612d13565b905061198161197a61197561075e565b612cd3565b8290612d20565b905061075b81612cbe565b60008060008060008061199d612d2e565b9350935093509350804210156119f05760019450838311156119d45781810382420385850302816119ca57fe5b04840195506119eb565b81810382420384860302816119e557fe5b04840395505b6119f8565b600094508295505b505050509091565b6000611a0f821515600461149f565b82611a1c57506000610744565b816001840381611a2857fe5b046001019050610744565b611a47816001600160401b031660c061144f565b611a5b836001600160401b0316608061144f565b611a6f856001600160401b0316604061144f565b611a83876001600160401b0316600061144f565b1717176009556040517f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf290611abf908690869086908690615f06565b60405180910390a150505050565b60007f00000000000000000000000000000000000000000000000000000000000000007f00000000000000000000000000000000000000000000000000000000000000007f0000000000000000000000000000000000000000000000000000000000000000611b3a612d85565b30604051602001611b4f959493929190615d49565b60405160208183030381529060405280519060200120905090565b611b7d64e8d4a5100082101560cb61149f565b611b9367016345785d8a000082111560ca61149f565b600854611ba2908260c0611424565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90611621908390615ced565b6000828201610a0d848210158361149f565b6000611bf1610b57565b90506000611bfd610f1e565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611c2a929190615d8e565b60806040518083038186803b158015611c4257600080fd5b505afa158015611c56573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611c7a9190615af1565b604051630639cdb560e21b81529094506001600160a01b03851693506318e736d49250611cae915085908790600401615d75565b600060405180830381600087803b158015611cc857600080fd5b505af1158015611cdc573d6000803e3d6000fd5b5050505050505050565b1c6001600160401b031690565b7f000000000000000000000000000000000000000000000000000000000000000090565b610bd0818314606761149f565b6000606080611d3161162c565b15611d6957611d698789600081518110611d4757fe5b60200260200101518a600181518110611d5c57fe5b6020026020010151612d89565b611d798b8b8b8b8b8b8b8b612e3e565b9250925092505b985098509895505050505050565b60005b611d99611cf3565b81101561141f57611dd0838281518110611daf57fe5b6020026020010151838381518110611dc357fe5b6020026020010151612184565b838281518110611ddc57fe5b6020908102919091010152600101611d91565b333014611ead576000306001600160a01b0316600036604051611e13929190615bce565b6000604051808303816000865af19150503d8060008114611e50576040519150601f19603f3d011682016040523d82523d6000602084013e611e55565b606091505b505090508060008114611e6457fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b8114611e8f573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611eb76116a3565b9050611ec38782611f87565b60006060611edb8c8c8c8c8c8c898d8d63ffffffff16565b5091509150611eee81848663ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b6000908152600c602052604090205490565b6000806000806000806000611f3888612ed3565b9650611f4388612ee0565b9550611f4e88612eed565b9450611f5988612efa565b9350611f6488612f07565b9250611f6f88612f14565b9150611f7a88612f21565b9050919395979092949650565b60005b611f92611cf3565b81101561141f57611fc9838281518110611fa857fe5b6020026020010151838381518110611fbc57fe5b6020026020010151612c39565b838281518110611fd557fe5b6020908102919091010152600101611f8a565b81516000908190815b818110156120295761201f86828151811061200857fe5b602002602001015184611bd590919063ffffffff16565b9250600101611ff1565b508161203a57600092505050610a0d565b600082878302825b60ff81101561216c576000858a60008151811061205b57fe5b60200260200101510290506000600190505b868110156120af576120a561209e612098848e858151811061208b57fe5b60200260200101516113e3565b896113e3565b868c612f2d565b915060010161206d565b508394506121226120f16120d86120cf6120c9878c6113e3565b856113e3565b6103e88d612f2d565b6120eb6120e58a896113e3565b886113e3565b90611bd5565b61211c61210f6121056103e88803866113e3565b6103e88e15612f2d565b6120eb8a600101896113e3565b8b612f2d565b93508484111561214a576001858503116121455783975050505050505050610a0d565b612163565b6001848603116121635783975050505050505050610a0d565b50600101612042565b506121786101426124c6565b50505050509392505050565b6000612193821515600461149f565b826121a057506000610744565b670de0b6b3a7640000838102906121c3908583816121ba57fe5b0414600561149f565b8281816121cc57fe5b04915050610744565b6040516334171a8560e01b815260009073d7fad3bd59d6477cbe1be7f646f7f1ba25b230f8906334171a859061221690600c90889088908890600401615e39565b60206040518083038186803b15801561222e57600080fd5b505af4158015612242573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061151091906159e5565b6060808861227561064e610f1e565b612280610674610b57565b606061228a6116a3565b90506122968882611f87565b60006060806122ab8e8e8e8e8e8e8a8f611d24565b9250925092506122bb8d84612f4d565b6122c58285611d8e565b6122cf8185611d8e565b909550935050505b5097509795505050505050565b60006060806122fa8789600081518110611d4757fe5b611d798b8b8b8b8b8b8b8b612f57565b60005b612315611cf3565b81101561141f5761234c83828151811061232b57fe5b602002602001015183838151811061233f57fe5b6020026020010151612fb0565b83828151811061235857fe5b602090810291909101015260010161230d565b60008061237b8560200151612ffe565b9050600061238c8660400151612ffe565b905060008651600181111561239d57fe5b1415612403576123b08660600151613023565b60608701526123bf8583613044565b94506123cb8482613044565b93506123db866060015183613044565b606087015260006123ed878787613050565b90506123f98183613089565b9350505050610a0d565b61240d8583613044565b94506124198482613044565b9350612429866060015182613044565b6060870152600061243b878787613095565b905061244781846130c4565b90506123f9816130d0565b600061245d826125d1565b80156107445750600061246e6117b2565b6001600160a01b0316141592915050565b610a4661249261248d612603565b6130f6565b612593565b60006124a28261262c565b80156107445750600061246e6117d6565b610a466124c161248d61265e565b6125b5565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6000612523610f1e565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561255b57600080fd5b505afa15801561256f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108ba9190615857565b6000806125a76125a16117b2565b84613103565b9150915061141f82826131d4565b6000806125c36125a16117d6565b9150915061141f8282613240565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0390811691161490565b600d5490565b6000806000612617846132a0565b9250612622846132ac565b9395909450915050565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0390811691161490565b600e5490565b600061266e611acd565b82604051602001610eb7929190615bde565b6060808861268f61064e610f1e565b61269a610674610b57565b60606126a46116a3565b90506126ae61075e565b61275457600060606126c38d8d8d868b6132cc565b915091506126d8620f424083101560cc61149f565b6126e66000620f424061335b565b6126f58b620f4240840361335b565b6126ff818461230a565b80612708611cf3565b6001600160401b038111801561271d57600080fd5b50604051908082528060200260200182016040528015612747578160200160208202803683370190505b50955095505050506122d7565b61275e8882611f87565b60006060806127738e8e8e8e8e8e8a8f6122e4565b9250925092506127838c8461335b565b61278d828561230a565b6127978185611d8e565b90955093506122d7915050565b6127b081824242611a33565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516116219190615ced565b6002815110156127ee5761075b565b6000816000815181106127fd57fe5b602002602001015190506000600190505b825181101561141f57600083828151811061282557fe5b6020026020010151905061284e816001600160a01b0316846001600160a01b031610606561149f565b915060010161280e565b60006128626117b2565b6001600160a01b031614610a465760008061288361287e612603565b6132ac565b9150915080421115610bd057610bd082612593565b60006128a26117d6565b6001600160a01b031614610a46576000806128be61287e61265e565b9150915080421115610bd057610bd0826125b5565b61141f81841080156128e457508183105b606461149f565b60006128f78583611f87565b612918866060015183858151811061290b57fe5b6020026020010151613044565b6060870152600061292b87878787613365565b905061294a8184878151811061293d57fe5b60200260200101516130c4565b9050612955816130d0565b979650505050505050565b600061296f8660600151613023565b606087015261297e8583611f87565b612992866060015183868151811061290b57fe5b606087015260006129a58787878761339d565b9050612955818486815181106129b757fe5b6020026020010151613089565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b6129e3610efa565b6001600160a01b0316141580156129fe57506129fe836133c0565b15612a2657612a0b610efa565b6001600160a01b0316336001600160a01b0316149050610744565b612a2e612519565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612a5d93929190615cf6565b60206040518083038186803b158015612a7557600080fd5b505afa158015612a89573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612aad9190615771565b9050610744565b60606000612ac0611cf3565b90506060816001600160401b0381118015612ada57600080fd5b50604051908082528060200260200182016040528015612b04578160200160208202803683370190505b5090508115612b3357612b156133fc565b81600081518110612b2257fe5b602002602001018181525050612b3c565b91506107309050565b6001821115612b3357612b4d613420565b81600181518110612b5a57fe5b6020026020010181815250506002821115612b3357612b77613444565b81600281518110612b8457fe5b6020026020010181815250506003821115612b3357612ba1613468565b81600381518110612bae57fe5b6020026020010181815250506004821115612b3357612bcb61348c565b81600481518110612bd857fe5b60200260200101818152505091505090565b6000612bf582612452565b15612c1157612c0a612c05612603565b6132a0565b9050610e2e565b612c1a82612497565b15612c2a57612c0a612c0561265e565b50670de0b6b3a7640000610e2e565b6000828202612c538415806114005750838583816113fd57fe5b670de0b6b3a764000090049392505050565b600082821c623fffff16621fffff8113612c7f5780611510565b623fffff19179392505050565b1c637fffffff1690565b1c6103ff1690565b1c60019081161490565b6000612cb7848411158361149f565b5050900390565b600854612ccd90826000611484565b60085550565b600080612cdf836134b0565b90506000808213612cf857652d79883d20008203612d02565b652d79883d200082015b655af3107a40009005949350505050565b6000610a0d83838361350d565b6000610a0d8383601661350d565b600080600080612d4a6000600954611ce690919063ffffffff16565b600954909450612d5b906040611ce6565b600954909350612d6c906080611ce6565b600954909250612d7d9060c0611ce6565b905090919293565b4690565b6000612d9361176c565b90506000612d9f61198c565b509050612dab826117a5565b8015612db657508443115b15612e3757600080612dd2838787612dcd8861177e565b613524565b915091506000612de185611798565b90506000612dee8661178b565b90506000612e0782848787612e028c611772565b613559565b9050808314612e3157612e1a87826135b0565b9650612e2687426135be565b9650612e3187612cbe565b50505050505b5050505050565b6000606080612e4b61162c565b15612e6e57612e5a88876135cc565b9050612e6988826114396136b8565b612eb9565b612e76611cf3565b6001600160401b0381118015612e8b57600080fd5b50604051908082528060200260200182016040528015612eb5578160200160208202803683370190505b5090505b612ec4888686613723565b9093509150611d80888361378f565b60006107448260ea612c65565b60006107448260b56137be565b600061074482609f612c65565b600061074482606a6137be565b6000610744826054612c65565b600061074482601f6137be565b60006107448282612c8c565b600081612f4357612f3e84846137f1565b611510565b6115108484611a00565b610bd08282613811565b6000606080612f646118da565b6060612f7089886135cc565b9050612f7f89826114396136b8565b60006060612f8e8b89896138cd565b91509150612f9c8b82613926565b909d909c50909a5098505050505050505050565b6000612fbf821515600461149f565b82612fcc57506000610744565b670de0b6b3a764000083810290612fe6908583816121ba57fe5b826001820381612ff257fe5b04600101915050610744565b60008061300a83613933565b9050600061301784612bea565b90506115108282612c39565b600080613038613031610bd4565b8490613a32565b9050610a0d8382611439565b6000610a0d8383612c39565b600061306761305d611cf3565b60021460d261149f565b6060600080613077878787613a6e565b9250925092506129558784848461339d565b6000610a0d8383612184565b60006130a261305d611cf3565b60606000806130b2878787613a6e565b92509250925061295587848484613365565b6000610a0d8383612fb0565b60006107446130ef6130e0610bd4565b670de0b6b3a764000090611439565b8390612fb0565b6000610744826080611ce6565b600080836001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b15801561313f57600080fd5b505afa158015613153573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061317791906159e5565b905061318b600160801b821061014961149f565b6131a18342016001600160401b031660c061144f565b6131b5846001600160401b0316608061144f565b6131c9836001600160801b0316600061144f565b171791509250929050565b81600d819055507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03167fc1a224b14823b63c7711127f125fbf592434682f38881ebb61408747a303affc826040516132349190615ced565b60405180910390a25050565b81600e819055507f00000000000000000000000000000000000000000000000000000000000000006001600160a01b03167fc1a224b14823b63c7711127f125fbf592434682f38881ebb61408747a303affc826040516132349190615ced565b60006107448282613b2f565b6000806132b8836130f6565b91506132c58360c0611ce6565b9050915091565b600060606132d86118da565b60006132e384613b3c565b90506132fe60008260028111156132f657fe5b1460ce61149f565b606061330985613b52565b90506133188151610bf6611cf3565b6133228187611f87565b600061332c61198c565b509050600061333d82846001611fe8565b90508061334a8184613b68565b9b929a509198505050505050505050565b610bd08282613b73565b60006133918560a001518560008151811061337c57fe5b602002602001015186600181518110611d5c57fe5b610fdd85858585613c01565b60006133b48560a001518560008151811061337c57fe5b610fdd85858585613c2b565b60006133d2632f1a0bc960e01b610e82565b8214806133ed57506133ea637587926b60e11b610e82565b82145b80610744575061074482613c55565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006134c060008313606461149f565b670c7d713b49da0000821380156134de5750670f43fc2c04ee000082125b1561350457670de0b6b3a76400006134f583613c87565b816134fc57fe5b059050610e2e565b612c0a82613da5565b623fffff828116821b90821b198416179392505050565b6000806000613534878787614144565b905061354281878787614203565b915061354d81612cd3565b92505094509492505050565b6000806135758585854261356c8b611f12565b9392919061422e565b905060784288900310158061358a5786613593565b61359387614280565b6000818152600c6020526040902092909255509695505050505050565b6000610a0d8383604b61428d565b6000610a0d8383602c61429d565b6060806135d7611cf3565b6001600160401b03811180156135ec57600080fd5b50604051908082528060200260200182016040528015613616578160200160208202803683370190505b50905082613625579050610744565b6000808560008151811061363557fe5b602002602001015190506000600190505b61364e611cf3565b81101561368557600087828151811061366357fe5b602002602001015190508281111561367c578193508092505b50600101613646565b50613697600b5487600a5485896142af565b8383815181106136a357fe5b60209081029190910101525090949350505050565b60005b6136c3611cf3565b81101561371d576136fe8482815181106136d957fe5b60200260200101518483815181106136ed57fe5b60200260200101518463ffffffff16565b84828151811061370a57fe5b60209081029190910101526001016136bb565b50505050565b60006060600061373284613b3c565b9050600081600281111561374257fe5b141561375c57613752868561432f565b9250925050613787565b600181600281111561376a57fe5b141561377a5761375286856143f9565b61375286868661442b565b505b935093915050565b61379c82826114396136b8565b60006137a661198c565b50905061141f6137b882856001611fe8565b82613b68565b600082821c661fffffffffffff16660fffffffffffff81136137e05780611510565b661fffffffffffff19179392505050565b6000613800821515600461149f565b81838161380957fe5b049392505050565b6138286001600160a01b038316151561019b61149f565b6138348260008361141f565b6001600160a01b03821660009081526020819052604090205461385a90826101a1612ca8565b6001600160a01b03831660009081526020819052604090205560025461388090826144a7565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906138c1908590615ced565b60405180910390a35050565b6000606060006138dc84613b3c565b905060018160028111156138ec57fe5b14156138fd576137528686866144b5565b600281600281111561390b57fe5b141561391b57613752868561451f565b6137856101366124c6565b61379c8282611bd56136b8565b600061393e826125d1565b1561394b57612c0a6133fc565b6139548261262c565b1561396157612c0a613420565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156139a357612c0a613444565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156139e557612c0a613468565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415613a2757612c0a61348c565b610e2e6101356124c6565b6000828202613a4c8415806114005750838583816113fd57fe5b80613a5b576000915050610744565b670de0b6b3a76400006000198201612ff2565b60408051600280825260608281019093526000918291816020016020820280368337019050509250613aa386602001516125d1565b15613ae95760009150600190508483600081518110613abe57fe5b6020026020010181815250508383600181518110613ad857fe5b602002602001018181525050613b26565b60009050600191508383600081518110613aff57fe5b6020026020010181815250508483600181518110613b1957fe5b6020026020010181815250505b93509350939050565b1c6001600160801b031690565b60008180602001905181019061074491906158c0565b606081806020019051810190610a0d9190615985565b600a91909155600b55565b613b7f6000838361141f565b600254613b8c9082611bd5565b6002556001600160a01b038216600090815260208190526040902054613bb29082611bd5565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906138c1908590615ced565b6000613c0b6118da565b6000613c1561198c565b5090506000612955828787878b606001516145b3565b6000613c356118da565b6000613c3f61198c565b5090506000612955828787878b6060015161466b565b6000613c67631c74c91760e11b610e82565b8214806107445750613c7f6350dd6ed960e01b610e82565b909114919050565b670de0b6b3a7640000026000806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff1985010281613cc257fe5b05905060006a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a7640000821215613de157613dd7826a0c097ce7bc90715b34b9f160241b81613dd157fe5b05613da5565b6000039050610e2e565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c00000000000008312613e3257770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e0000008312613e6a576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613eb2576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613eed576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613f2457693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613f5b57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613f905768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613fbb57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312613ff0576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614025576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614059576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac831261408d576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d6310000080860302816140b057fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b60008061415c85614155868661470d565b6001611fe8565b90506103e86002860204600061417c8361417681856113e3565b90611439565b9050600061419786614191856002028a6113e3565b90612c39565b905060006141c06141a88489612c39565b6141766141b98a614191898d6113e3565b8590611bd5565b905060006141e96141d1858b612c39565b6141766141e28c6141918a8f6113e3565b8690611bd5565b90506141f58282612fb0565b9a9950505050505050505050565b6000806142136141e28786613a32565b9050600061422082612cd3565b939093039695505050505050565b60008061423a87612f21565b83039050600081870261424c89612ee0565b019050600082870261425d8a612efa565b019050600083870261426e8b612f14565b0190506141f589848a858b868c614767565b60006107448260016147c7565b6103ff811b1992909216911b1790565b637fffffff811b1992909216911b1790565b6000806142be878787876147cf565b9050808685815181106142cd57fe5b6020026020010151116142e4576000915050610fdd565b6000818786815181106142f357fe5b6020026020010151039050614323670de0b6b3a764000061431d8684612c3990919063ffffffff16565b90612184565b98975050505050505050565b6000606061433b6118da565b60008061434785614978565b9150915061435f614356611cf3565b8210606461149f565b6060614369611cf3565b6001600160401b038111801561437e57600080fd5b506040519080825280602002602001820160405280156143a8578160200160208202803683370190505b50905060006143b561198c565b5090506143d4818985876143c761075e565b6143cf610bd4565b61499a565b8284815181106143e057fe5b6020908102919091010152509196919550909350505050565b60006060600061440884614ab6565b9050606061441e868361441961075e565b614acc565b9196919550909350505050565b600060606144376118da565b6060600061444485614b67565b915091506144558251610bf6611cf3565b61445f8287611f87565b600061446961198c565b5090506000614489828a8661447c61075e565b614484610bd4565b614b7f565b90506144998382111560cf61149f565b989297509195505050505050565b6000610a0d83836001612ca8565b600060608060006144c585614b67565b915091506144db6144d4611cf3565b8351611d17565b6144e58287611f87565b60006144ef61198c565b509050600061450f828a8661450261075e565b61450a610bd4565b614e13565b90506144998382101560d061149f565b6000606060008061452f85614978565b9150915061453e614356611cf3565b6060614548611cf3565b6001600160401b038111801561455d57600080fd5b50604051908082528060200260200182016040528015614587578160200160208202803683370190505b509050600061459461198c565b5090506143d4818985876145a661075e565b6145ae610bd4565b615089565b6000806145c287876001611fe8565b90506145ea838786815181106145d457fe5b602002602001015161143990919063ffffffff16565b8685815181106145f657fe5b6020026020010181815250506000614610888884896147cf565b90508387868151811061461f57fe5b60200260200101510187868151811061463457fe5b60200260200101818152505061432360016120eb89898151811061465457fe5b60200260200101518461143990919063ffffffff16565b60008061467a87876001611fe8565b90506146a28387878151811061468c57fe5b6020026020010151611bd590919063ffffffff16565b8686815181106146ae57fe5b60200260200101818152505060006146c8888884886147cf565b9050838787815181106146d757fe5b6020026020010151038787815181106146ec57fe5b6020026020010181815250506143236001614176838a89815181106145d457fe5b6040805160028082526060808301845292602083019080368337019050509050828160008151811061473b57fe5b602002602001018181525050818160018151811061475557fe5b60200260200101818152505092915050565b6000614773828261144f565b61477e84601f615166565b614789866054615177565b61479488606a615166565b61479f8a609f615177565b6147aa8c60b5615166565b6147b58e60ea615177565b17171717171798975050505050505050565b016103ff1690565b6000808451860290506000856000815181106147e757fe5b60200260200101519050600086518760008151811061480257fe5b60200260200101510290506000600190505b875181101561485b5761484061483a614833848b858151811061208b57fe5b8a516113e3565b886137f1565b915061485188828151811061200857fe5b9250600101614814565b5086858151811061486857fe5b602002602001015182039150600061488087886113e3565b905060006148ac6148a061489884610ae089886113e3565b6103e86113e3565b8a898151811061208b57fe5b905060006148c06141e26148988b896137f1565b90506000806148dc6148d28686611bd5565b610ae08d86611bd5565b905060005b60ff81101561495c578192506149116148fe866120eb85866113e3565b610ae08e614176886120eb8860026113e3565b91508282111561493a57600183830311614935575097506115109650505050505050565b614954565b600182840311614954575097506115109650505050505050565b6001016148e1565b506149686101426124c6565b5050505050505050949350505050565b6000808280602001905181019061498f919061594f565b909590945092505050565b6000806149a988886001611fe8565b905060006149cb826149c5876149bf818b611439565b90612fb0565b90613a32565b905060006149db8a8a848b6147cf565b905060006149ef828b8b815181106145d457fe5b90506000805b8b51811015614a2e57614a248c8281518110614a0d57fe5b602002602001015183611bd590919063ffffffff16565b91506001016149f5565b506000614a57828d8d81518110614a4157fe5b602002602001015161218490919063ffffffff16565b90506000614a6482615184565b90506000614a728583613a32565b90506000614a808683611439565b9050614aa1614a9a83670de0b6b3a76400008e9003612c39565b8290611bd5565b99505050505050505050509695505050505050565b600081806020019051810190610a0d9190615922565b60606000614ada8484612184565b9050606085516001600160401b0381118015614af557600080fd5b50604051908082528060200260200182016040528015614b1f578160200160208202803683370190505b50905060005b8651811015614b5d57614b3e838883815181106116e857fe5b828281518110614b4a57fe5b6020908102919091010152600101614b25565b5095945050505050565b606060008280602001905181019061498f91906158dc565b600080805b8651811015614ba657614b9c878281518110614a0d57fe5b9150600101614b84565b50606085516001600160401b0381118015614bc057600080fd5b50604051908082528060200260200182016040528015614bea578160200160208202803683370190505b5090506000805b8851811015614cb1576000614c22858b8481518110614c0c57fe5b6020026020010151612fb090919063ffffffff16565b9050614c5e8a8381518110614c3357fe5b60200260200101516149bf8b8581518110614c4a57fe5b60200260200101518d86815181106145d457fe5b848381518110614c6a57fe5b602002602001018181525050614ca6614c9f82868581518110614c8957fe5b6020026020010151613a3290919063ffffffff16565b8490611bd5565b925050600101614bf1565b50606088516001600160401b0381118015614ccb57600080fd5b50604051908082528060200260200182016040528015614cf5578160200160208202803683370190505b50905060005b8951811015614dc0576000848281518110614d1257fe5b6020026020010151841115614d79576000614d3b614d2f86615184565b8d85815181106116e857fe5b90506000614d4f828d86815181106145d457fe5b9050614d70614d6982670de0b6b3a76400008d9003612fb0565b8390611bd5565b92505050614d90565b898281518110614d8557fe5b602002602001015190505b614da0818c84815181106145d457fe5b838381518110614dac57fe5b602090810291909101015250600101614cfb565b506000614dcf8b8b6001611fe8565b90506000614ddf8c846000611fe8565b90506000614ded8284612184565b9050614e02614dfb82615184565b8b90613a32565b9d9c50505050505050505050505050565b600080805b8651811015614e3a57614e30878281518110614a0d57fe5b9150600101614e18565b50606085516001600160401b0381118015614e5457600080fd5b50604051908082528060200260200182016040528015614e7e578160200160208202803683370190505b5090506000805b8851811015614f12576000614ea0858b8481518110614a4157fe5b9050614edc8a8381518110614eb157fe5b602002602001015161431d8b8581518110614ec857fe5b60200260200101518d868151811061468c57fe5b848381518110614ee857fe5b602002602001018181525050614f07614c9f828685815181106116e857fe5b925050600101614e85565b50606088516001600160401b0381118015614f2c57600080fd5b50604051908082528060200260200182016040528015614f56578160200160208202803683370190505b50905060005b895181101561501757600083858381518110614f7457fe5b60200260200101511115614fd0576000614f99614d2f86670de0b6b3a7640000611439565b90506000614fad828d86815181106145d457fe5b9050614fc7614d6982670de0b6b3a76400008d9003612c39565b92505050614fe7565b898281518110614fdc57fe5b602002602001015190505b614ff7818c848151811061468c57fe5b83838151811061500357fe5b602090810291909101015250600101614f5c565b5060006150268b8b6001611fe8565b905060006150368c846000611fe8565b905060006150448284612184565b9050670de0b6b3a76400008111156150795761506b8a670de0b6b3a763ffff198301612c39565b975050505050505050610fdd565b6000975050505050505050610fdd565b60008061509888886001611fe8565b905060006150ae826149c5876149bf818b611bd5565b905060006150be8a8a848b6147cf565b905060006150e88a8a815181106150d157fe5b60200260200101518361143990919063ffffffff16565b90506000805b8b51811015615110576151068c8281518110614a0d57fe5b91506001016150ee565b506000615123828d8d81518110614a4157fe5b9050600061513082615184565b9050600061513e8583613a32565b9050600061514c8683611439565b9050614aa1614a9a83670de0b6b3a76400008e9003612fb0565b661fffffffffffff91909116901b90565b623fffff91909116901b90565b6000670de0b6b3a7640000821061519c576000610744565b50670de0b6b3a76400000390565b604080518082019091526000808252602082015290565b803561074481615f7e565b600082601f8301126151dc578081fd5b81356151ef6151ea82615f55565b615f2f565b81815291506020808301908481018184028601820187101561521057600080fd5b60005b8481101561522f57813584529282019290820190600101615213565b505050505092915050565b600082601f83011261524a578081fd5b81516152586151ea82615f55565b81815291506020808301908481018184028601820187101561527957600080fd5b60005b8481101561522f5781518452928201929082019060010161527c565b600082601f8301126152a8578081fd5b81356001600160401b038111156152bd578182fd5b6152d0601f8201601f1916602001615f2f565b91508082528360208285010111156152e757600080fd5b8060208401602084013760009082016020015292915050565b80356002811061074457600080fd5b803561074481615fa1565b600061012080838503121561532d578182fd5b61533681615f2f565b9150506153438383615300565b815261535283602084016151c1565b602082015261536483604084016151c1565b6040820152606082013560608201526080820135608082015260a082013560a08201526153948360c084016151c1565b60c08201526153a68360e084016151c1565b60e0820152610100808301356001600160401b038111156153c657600080fd5b6153d285828601615298565b82840152505092915050565b6000602082840312156153ef578081fd5b8135610a0d81615f7e565b6000806040838503121561540c578081fd5b823561541781615f7e565b9150602083013561542781615f7e565b809150509250929050565b600080600060608486031215615446578081fd5b833561545181615f7e565b9250602084013561546181615f7e565b929592945050506040919091013590565b600080600080600080600060e0888a03121561548c578485fd5b873561549781615f7e565b965060208801356154a781615f7e565b95506040880135945060608801359350608088013560ff811681146154ca578384fd5b9699959850939692959460a0840135945060c09093013592915050565b600080604083850312156154f9578182fd5b823561550481615f7e565b946020939093013593505050565b600080600060608486031215615526578081fd5b83516001600160401b038082111561553c578283fd5b818601915086601f83011261554f578283fd5b815161555d6151ea82615f55565b80828252602080830192508086018b82838702890101111561557d578788fd5b8796505b848710156155a857805161559481615f7e565b845260019690960195928101928101615581565b5089015190975093505050808211156155bf578283fd5b506155cc8682870161523a565b925050604084015190509250925092565b600060208083850312156155ef578182fd5b82356001600160401b03811115615604578283fd5b8301601f81018513615614578283fd5b80356156226151ea82615f55565b818152838101908385016040808502860187018a1015615640578788fd5b8795505b8486101561568d5780828b03121561565a578788fd5b61566381615f2f565b61566d8b8461530f565b815282880135888201528452600195909501949286019290810190615644565b509098975050505050505050565b600060208083850312156156ad578182fd5b82356001600160401b038111156156c2578283fd5b8301601f810185136156d2578283fd5b80356156e06151ea82615f55565b818152838101908385016060808502860187018a10156156fe578788fd5b8795505b8486101561568d5780828b031215615718578788fd5b61572181615f2f565b61572b8b8461530f565b81528288013588820152604080840135908201528452600195909501949286019290810190615702565b600060208284031215615766578081fd5b8135610a0d81615f93565b600060208284031215615782578081fd5b8151610a0d81615f93565b600080600080600080600060e0888a0312156157a7578081fd5b8735965060208801356157b981615f7e565b955060408801356157c981615f7e565b945060608801356001600160401b03808211156157e4578283fd5b6157f08b838c016151cc565b955060808a0135945060a08a0135935060c08a0135915080821115615813578283fd5b506158208a828b01615298565b91505092959891949750929550565b600060208284031215615840578081fd5b81356001600160e01b031981168114610a0d578182fd5b600060208284031215615868578081fd5b8151610a0d81615f7e565b60008060408385031215615885578182fd5b823561589081615f7e565b915060208301356001600160401b038111156158aa578182fd5b6158b685828601615298565b9150509250929050565b6000602082840312156158d1578081fd5b8151610a0d81615fa1565b6000806000606084860312156158f0578081fd5b83516158fb81615fa1565b60208501519093506001600160401b03811115615916578182fd5b6155cc8682870161523a565b60008060408385031215615934578182fd5b825161593f81615fa1565b6020939093015192949293505050565b600080600060608486031215615963578081fd5b835161596e81615fa1565b602085015160409095015190969495509392505050565b60008060408385031215615997578182fd5b82516159a281615fa1565b60208401519092506001600160401b038111156159bd578182fd5b6158b68582860161523a565b6000602082840312156159da578081fd5b8135610a0d81615fa1565b6000602082840312156159f6578081fd5b5051919050565b60008060008060808587031215615a12578182fd5b84356001600160401b0380821115615a28578384fd5b615a348883890161531a565b95506020870135915080821115615a49578384fd5b50615a56878288016151cc565b949794965050505060408301359260600135919050565b600080600060608486031215615a81578081fd5b83356001600160401b03811115615a96578182fd5b615aa28682870161531a565b9660208601359650604090950135949350505050565b600060208284031215615ac9578081fd5b5035919050565b60008060408385031215615ae2578182fd5b50508035926020909101359150565b60008060008060808587031215615b06578182fd5b8451935060208501519250604085015191506060850151615b2681615f7e565b939692955090935050565b6000815180845260208085019450808401835b83811015615b6057815187529582019590820190600101615b44565b509495945050505050565b60008151808452815b81811015615b9057602081850181015186830182015201615b74565b81811115615ba15782602083870101525b50601f01601f19169290920160200192915050565b9182526001600160e01b031916602082015260240190565b6000828483379101908152919050565b61190160f01b81526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b81811015615c4e5783516001600160a01b031683529284019291840191600101615c29565b50909695505050505050565b6020808252825182820181905260009190848201906040850190845b81811015615c4e57835183529284019291840191600101615c76565b600060208252610a0d6020830184615b31565b600060408252615cb86040830185615b31565b8281036020840152610fdd8185615b31565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526115106040830184615b6b565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b968752602087019590955260408601939093526060850191909152608084015260a083015260c082015260e00190565b9485526020850193909352604084019190915260608301521515608082015260a00190565b83815260608101615e2884615f74565b602082019390935260400152919050565b84815260808101615e4985615f74565b84602083015283604083015282606083015295945050505050565b838152825160a0820190615e7781615f74565b806020840152506020840151604083015260408401516060830152826080830152949350505050565b600060208252610a0d6020830184615b6b565b6000838252604060208301526115106040830184615b31565b9283529015156020830152604082015260600190565b918252602082015260400190565b9283526020830191909152604082015260600190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b6040518181016001600160401b0381118282101715615f4d57600080fd5b604052919050565b60006001600160401b03821115615f6a578081fd5b5060209081020190565b6003811061075b57fe5b6001600160a01b038116811461075b57600080fd5b801515811461075b57600080fd5b6003811061075b57600080fdfea264697066735822122044502cf530b7900edafa18cb886436fdae711dd37bb442b33f34a42b6235128c64736f6c63430007010033c1a224b14823b63c7711127f125fbf592434682f38881ebb61408747a303affcca6c2c5b6b44b5f3f0c08f0e28e5b6deda1cb38c3fe1113e8031d926c1e8c6d00000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c0000000000000000000000000000000000000000000000000000000000000003200000000000000000000000000000000000000000000000000016bcc41e900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000b526f636b6574204675656c000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c4250542d724554482d4554480000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000042000000000000000000000000000000000000060000000000000000000000009bcef72be871e61ed4fbbc7630889bee758eb81d00000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000000000000000658843bb859b7b85ceab5cf77167e3f0a78dfe7f000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002a30

Deployed Bytecode

0x608060405234801561001057600080fd5b50600436106102a05760003560e01c80636daccffa11610167578063a457c2d7116100ce578063b867ee5a11610087578063b867ee5a146105d1578063d505accf146105f3578063d5c096c414610606578063dd62ed3e14610619578063eb0f24d61461062c578063ffd088eb14610634576102a0565b8063a457c2d714610575578063a9059cbb14610588578063aaabadc51461059b578063b10be739146105a3578063b48b5b40146105b6578063b7710251146105be576102a0565b8063893d20e811610120578063893d20e8146105145780638d928af81461052957806395d89b41146105315780639b02cdde146105395780639d2c110c1461054f578063a0daaed014610562576102a0565b80636daccffa1461049057806370a08231146104a757806374f3b009146104ba5780637ecebe00146104db578063851c1bb3146104ee57806387ec681714610501576102a0565b80632f1a0bc91161020b57806350dd6ed9116101c457806350dd6ed91461040657806355c67628146104195780636028bfd41461042157806360d1507c14610442578063679aefce146104685780636b84323914610470576102a0565b80632f1a0bc9146103a8578063313ce567146103bb5780633644e515146103d057806338e9922e146103d857806338fff2d0146103eb57806339509351146103f3576102a0565b80631dccd8301161025d5780631dccd830146103375780631dd746ea146103575780631ed4eddc1461035f578063238a2d591461037857806323b872dd1461038d578063292c914a146103a0576102a0565b806301ec954a146102a557806306fdde03146102ce578063095ea7b3146102e357806316c38b3c1461030357806318160ddd146103185780631c0de05114610320575b600080fd5b6102b86102b33660046159fd565b61063c565b6040516102c59190615ced565b60405180910390f35b6102d661069c565b6040516102c59190615ea0565b6102f66102f13660046154e7565b610733565b6040516102c59190615cca565b610316610311366004615755565b61074a565b005b6102b861075e565b610328610764565b6040516102c593929190615cd5565b61034a61034536600461569b565b61078d565b6040516102c59190615c92565b61034a6108b0565b6103676108bf565b6040516102c5959493929190615df3565b610380610911565b6040516102c59190615c0d565b6102f661039b366004615432565b61099e565b610316610a14565b6103166103b6366004615ad0565b610a48565b6103c3610b2b565b6040516102c59190615f21565b6102b8610b34565b6103166103e6366004615ab8565b610b3e565b6102b8610b57565b6102f66104013660046154e7565b610b7b565b610316610414366004615873565b610bb6565b6102b8610bd4565b61043461042f36600461578d565b610be5565b6040516102c5929190615eb3565b610455610450366004615ab8565b610c1c565b6040516102c59796959493929190615dc3565b6102b8610c65565b61048361047e3660046155dd565b610d43565b6040516102c59190615c5a565b610498610df9565b6040516102c593929190615ecc565b6102b86104b53660046153de565b610e14565b6104cd6104c836600461578d565b610e33565b6040516102c5929190615ca5565b6102b86104e93660046153de565b610e67565b6102b86104fc36600461582f565b610e82565b61043461050f36600461578d565b610ed4565b61051c610efa565b6040516102c59190615bf9565b61051c610f1e565b6102d6610f42565b610541610fa3565b6040516102c5929190615ee2565b6102b861055d366004615a6d565b610fad565b6103166105703660046153de565b610fe6565b6102f66105833660046154e7565b611022565b6102f66105963660046154e7565b611060565b61051c61106d565b6102b86105b13660046159c9565b611077565b6102b861110c565b6103166105cc3660046154e7565b611112565b6105e46105df3660046153de565b6111b2565b6040516102c593929190615ef0565b610316610601366004615472565b61120b565b6104cd61061436600461578d565b611354565b6102b86106273660046153fa565b61137b565b6103166113a6565b6102b86113d2565b6000846080015161066961064e610f1e565b6001600160a01b0316336001600160a01b03161460cd61149f565b61067e610674610b57565b82146101f461149f565b6106866114ad565b610692868686866114bd565b9695505050505050565b60038054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107285780601f106106fd57610100808354040283529160200191610728565b820191906000526020600020905b81548152906001019060200180831161070b57829003601f168201915b505050505090505b90565b6000610740338484611518565b5060015b92915050565b610752611580565b61075b816115ae565b50565b60025490565b600080600061077161162c565b15925061077c611649565b915061078661166d565b9050909192565b606081516001600160401b03811180156107a657600080fd5b506040519080825280602002602001820160405280156107d0578160200160208202803683370190505b50905060006107dd611691565b905060005b83518110156108a95773d7fad3bd59d6477cbe1be7f646f7f1ba25b230f86379eaef82600c86848151811061081357fe5b6020026020010151856040518463ffffffff1660e01b815260040161083a93929190615e64565b60206040518083038186803b15801561085257600080fd5b505af4158015610866573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061088a91906159e5565b83828151811061089657fe5b60209081029190910101526001016107e2565b5050919050565b60606108ba6116a3565b905090565b6000806000806000806108d061176c565b90506108db81611772565b95506108e68161177e565b94506108f18161178b565b93506108fc81611798565b9250610907816117a5565b9150509091929394565b60408051600280825260608083018452926020830190803683370190505090506109396117b2565b8160008151811061094657fe5b60200260200101906001600160a01b031690816001600160a01b03168152505061096e6117d6565b8160018151811061097b57fe5b60200260200101906001600160a01b031690816001600160a01b03168152505090565b6000806109ab853361137b565b90506109cf336001600160a01b03871614806109c75750838210155b61019e61149f565b6109da8585856117fa565b336001600160a01b038616148015906109f557506000198114155b15610a0757610a078533858403611518565b60019150505b9392505050565b610a1c6118da565b610a24611580565b610a2e60016118ed565b6000610a3861075e565b1115610a4657610a46611936565b565b610a50611580565b610a60600183101561012c61149f565b610a7161138883111561012d61149f565b6000610a7d8242611439565b9050610a916201518082101561013d61149f565b600080610a9c61198c565b91509150610aad811561013e61149f565b6000610abb866103e86113e3565b90506000838211610aea57610ae5610ad662015180866113e3565b610ae084886113e3565b611a00565b610b04565b610b04610afa62015180846113e3565b610ae086886113e3565b9050610b16600282111561013f61149f565b610b2284834289611a33565b50505050505050565b60055460ff1690565b60006108ba611acd565b610b46611580565b610b4e6118da565b61075b81611b6a565b7f4fd63966879300cafafbb35d157dc5229278ed2300020000000000000000002b90565b3360008181526001602090815260408083206001600160a01b03871684529091528120549091610740918590610bb19086611bd5565b611518565b610bbe611580565b610bc66118da565b610bd08282611be7565b5050565b6008546000906108ba9060c0611ce6565b60006060610bfb8651610bf6611cf3565b611d17565b610c1089898989898989611d24611d8e611def565b97509795505050505050565b6000806000806000806000610c37610400891061013b61149f565b6000610c4289611f12565b9050610c4d81611f24565b959f949e50929c50909a509850965090945092505050565b60006060610c71610f1e565b6001600160a01b031663f94d4668610c87610b57565b6040518263ffffffff1660e01b8152600401610ca39190615ced565b60006040518083038186803b158015610cbb57600080fd5b505afa158015610ccf573d6000803e3d6000fd5b505050506040513d6000823e601f3d908101601f19168201604052610cf79190810190615512565b509150506000610d0561198c565b509050610d1982610d146116a3565b611f87565b6000610d2782846000611fe8565b9050610d3b610d3461075e565b8290612184565b935050505090565b606081516001600160401b0381118015610d5c57600080fd5b50604051908082528060200260200182016040528015610d86578160200160208202803683370190505b5090506000610d93611691565b9050610d9d6151aa565b60005b8451811015610df157848181518110610db557fe5b60200260200101519150610dd282600001518484602001516121d5565b848281518110610dde57fe5b6020908102919091010152600101610da0565b505050919050565b6000806000610e0661198c565b90949093506103e892509050565b6001600160a01b0381166000908152602081905260409020545b919050565b606080610e3e6114ad565b610e4d89898989898989612266565b9092509050610e5a61162c565b15610c1057610c10611936565b6001600160a01b031660009081526006602052604090205490565b60007f000000000000000000000000b08e16cfc07c684daa2f93c70323badb2a6cbfd282604051602001610eb7929190615bb6565b604051602081830303815290604052805190602001209050919050565b60006060610ee58651610bf6611cf3565b610c10898989898989896122e461230a611def565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c890565b60048054604080516020601f60026000196101006001881615020190951694909404938401819004810282018101909252828152606093909290918301828280156107285780601f106106fd57610100808354040283529160200191610728565b600a54600b549091565b60008360800151610fbf61064e610f1e565b610fca610674610b57565b610fd26114ad565b610fdd85858561236b565b95945050505050565b610fef81612452565b1561100157610ffc61247f565b61075b565b61100a81612497565b1561101757610ffc6124b3565b61075b6101356124c6565b60008061102f338561137b565b90508083106110495761104433856000611518565b611056565b6110563385858403611518565b5060019392505050565b60006107403384846117fa565b60006108ba612519565b600073d7fad3bd59d6477cbe1be7f646f7f1ba25b230f8630397bee0600c8461109e611691565b6040518463ffffffff1660e01b81526004016110bc93929190615e18565b60206040518083038186803b1580156110d457600080fd5b505af41580156110e8573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061074491906159e5565b61040090565b61111a611580565b61112382612452565b156111885761113181612593565b6111396117b2565b6001600160a01b0316826001600160a01b03167fca6c2c5b6b44b5f3f0c08f0e28e5b6deda1cb38c3fe1113e8031d926c1e8c6d08360405161117b9190615ced565b60405180910390a3610bd0565b61119182612497565b156111a75761119f816125b5565b6111396117d6565b610bd06101356124c6565b60008060006111c0846125d1565b156111e0576111d56111d0612603565b612609565b925092509250611204565b6111e98461262c565b156111f9576111d56111d061265e565b6112046101356124c6565b9193909250565b6112198442111560d161149f565b6001600160a01b0387166000908152600660209081526040808320549051909291611270917f6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9918c918c918c9188918d9101615d15565b604051602081830303815290604052805190602001209050600061129382612664565b90506000600182888888604051600081526020016040526040516112ba9493929190615da5565b6020604051602081039080840390855afa1580156112dc573d6000803e3d6000fd5b5050604051601f190151915061131e90506001600160a01b0382161580159061131657508b6001600160a01b0316826001600160a01b0316145b6101f861149f565b6001600160a01b038b1660009081526006602052604090206001850190556113478b8b8b611518565b5050505050505050505050565b60608061135f6114ad565b61136e89898989898989612680565b9092509050610c10611936565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6113ae611580565b6000806113b961198c565b915091506113c98161014061149f565b610bd0826127a4565b6201de2090565b80610bd0816127df565b6000828202610a0d8415806114005750838583816113fd57fe5b04145b600361149f565b61141f828414801561141857508183145b606761149f565b505050565b6001600160401b03811b1992909216911b1790565b600061144983831115600161149f565b50900390565b1b90565b6000610a0d838360555b60006001821b1984168284611473576000611476565b60015b60ff16901b17949350505050565b6001600160c01b03828116821b90821b198416179392505050565b81610bd057610bd0816124c6565b6114b5612858565b610a46612898565b60006114d183836114cc611cf3565b6128d3565b60606114db6116a3565b90506000865160018111156114ec57fe5b14611503576114fe86868686856128eb565b610692565b6106928686868685612960565b949350505050565b6001600160a01b0380841660008181526001602090815260408083209487168084529490915290819020849055517f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b92590611573908590615ced565b60405180910390a3505050565b60006115976000356001600160e01b031916610e82565b905061075b6115a682336129c4565b61019161149f565b80156115ce576115c96115bf611649565b421061019361149f565b6115e3565b6115e36115d961166d565b42106101a961149f565b6007805460ff19168215151790556040517f9e3a5e37224532dea67b89face185703738a228a6e8a23dee546960180d3be6490611621908390615cca565b60405180910390a150565b600061163661166d565b4211806108ba57505060075460ff161590565b7f0000000000000000000000000000000000000000000000000000000062f6394290565b7f0000000000000000000000000000000000000000000000000000000062f6394290565b60006108ba61169e61176c565b611798565b60606116ad612ab4565b90506116fe6116db7f0000000000000000000000004200000000000000000000000000000000000006612bea565b826000815181106116e857fe5b6020026020010151612c3990919063ffffffff16565b8160008151811061170b57fe5b6020026020010181815250506117506117437f0000000000000000000000009bcef72be871e61ed4fbbc7630889bee758eb81d612bea565b826001815181106116e857fe5b8160018151811061175d57fe5b60200260200101818152505090565b60085490565b60006107448282612c65565b6000610744826016612c65565b600061074482602c612c8c565b600061074482604b612c96565b6000610744826055612c9e565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000658843bb859b7b85ceab5cf77167e3f0a78dfe7f90565b6118116001600160a01b038416151561019861149f565b6118286001600160a01b038316151561019961149f565b61183383838361141f565b6001600160a01b03831660009081526020819052604090205461185990826101a0612ca8565b6001600160a01b0380851660009081526020819052604080822093909355908416815220546118889082611bd5565b6001600160a01b0380841660008181526020819052604090819020939093559151908516907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef90611573908590615ced565b610a466118e561162c565b61019261149f565b611907611902826118fc61176c565b90611453565b612cbe565b7f3e350b41e86a8e10f804ade6d35340d620be35569cc75ac943e8bb14ab80ead1816040516116219190615cca565b600061194061176c565b905061194b816117a5565b1561075b5761196561195e600a54612cd3565b8290612d13565b905061198161197a61197561075e565b612cd3565b8290612d20565b905061075b81612cbe565b60008060008060008061199d612d2e565b9350935093509350804210156119f05760019450838311156119d45781810382420385850302816119ca57fe5b04840195506119eb565b81810382420384860302816119e557fe5b04840395505b6119f8565b600094508295505b505050509091565b6000611a0f821515600461149f565b82611a1c57506000610744565b816001840381611a2857fe5b046001019050610744565b611a47816001600160401b031660c061144f565b611a5b836001600160401b0316608061144f565b611a6f856001600160401b0316604061144f565b611a83876001600160401b0316600061144f565b1717176009556040517f1835882ee7a34ac194f717a35e09bb1d24c82a3b9d854ab6c9749525b714cdf290611abf908690869086908690615f06565b60405180910390a150505050565b60007f8b73c3c69bb8fe3d512ecc4cf759cc79239f7b179b0ffacaa9a75d522b39400f7ff475b426b59f0f5829edbc23f7b385b9ebaf961739dea6c13549c598eef90cac7fc89efdaa54c0f20c7adf612882df0950f5a951637e0307cdcb4c672f298b8bc6611b3a612d85565b30604051602001611b4f959493929190615d49565b60405160208183030381529060405280519060200120905090565b611b7d64e8d4a5100082101560cb61149f565b611b9367016345785d8a000082111560ca61149f565b600854611ba2908260c0611424565b6008556040517fa9ba3ffe0b6c366b81232caab38605a0699ad5398d6cce76f91ee809e322dafc90611621908390615ced565b6000828201610a0d848210158361149f565b6000611bf1610b57565b90506000611bfd610f1e565b6001600160a01b031663b05f8e4883866040518363ffffffff1660e01b8152600401611c2a929190615d8e565b60806040518083038186803b158015611c4257600080fd5b505afa158015611c56573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190611c7a9190615af1565b604051630639cdb560e21b81529094506001600160a01b03851693506318e736d49250611cae915085908790600401615d75565b600060405180830381600087803b158015611cc857600080fd5b505af1158015611cdc573d6000803e3d6000fd5b5050505050505050565b1c6001600160401b031690565b7f000000000000000000000000000000000000000000000000000000000000000290565b610bd0818314606761149f565b6000606080611d3161162c565b15611d6957611d698789600081518110611d4757fe5b60200260200101518a600181518110611d5c57fe5b6020026020010151612d89565b611d798b8b8b8b8b8b8b8b612e3e565b9250925092505b985098509895505050505050565b60005b611d99611cf3565b81101561141f57611dd0838281518110611daf57fe5b6020026020010151838381518110611dc357fe5b6020026020010151612184565b838281518110611ddc57fe5b6020908102919091010152600101611d91565b333014611ead576000306001600160a01b0316600036604051611e13929190615bce565b6000604051808303816000865af19150503d8060008114611e50576040519150601f19603f3d011682016040523d82523d6000602084013e611e55565b606091505b505090508060008114611e6457fe5b60046000803e6000516001600160e01b0319166343adbafb60e01b8114611e8f573d6000803e3d6000fd5b506020600460003e604060205260243d03602460403e601c3d016000f35b6060611eb76116a3565b9050611ec38782611f87565b60006060611edb8c8c8c8c8c8c898d8d63ffffffff16565b5091509150611eee81848663ffffffff16565b8051601f1982018390526343adbafb603f1983015260200260231982016044820181fd5b6000908152600c602052604090205490565b6000806000806000806000611f3888612ed3565b9650611f4388612ee0565b9550611f4e88612eed565b9450611f5988612efa565b9350611f6488612f07565b9250611f6f88612f14565b9150611f7a88612f21565b9050919395979092949650565b60005b611f92611cf3565b81101561141f57611fc9838281518110611fa857fe5b6020026020010151838381518110611fbc57fe5b6020026020010151612c39565b838281518110611fd557fe5b6020908102919091010152600101611f8a565b81516000908190815b818110156120295761201f86828151811061200857fe5b602002602001015184611bd590919063ffffffff16565b9250600101611ff1565b508161203a57600092505050610a0d565b600082878302825b60ff81101561216c576000858a60008151811061205b57fe5b60200260200101510290506000600190505b868110156120af576120a561209e612098848e858151811061208b57fe5b60200260200101516113e3565b896113e3565b868c612f2d565b915060010161206d565b508394506121226120f16120d86120cf6120c9878c6113e3565b856113e3565b6103e88d612f2d565b6120eb6120e58a896113e3565b886113e3565b90611bd5565b61211c61210f6121056103e88803866113e3565b6103e88e15612f2d565b6120eb8a600101896113e3565b8b612f2d565b93508484111561214a576001858503116121455783975050505050505050610a0d565b612163565b6001848603116121635783975050505050505050610a0d565b50600101612042565b506121786101426124c6565b50505050509392505050565b6000612193821515600461149f565b826121a057506000610744565b670de0b6b3a7640000838102906121c3908583816121ba57fe5b0414600561149f565b8281816121cc57fe5b04915050610744565b6040516334171a8560e01b815260009073d7fad3bd59d6477cbe1be7f646f7f1ba25b230f8906334171a859061221690600c90889088908890600401615e39565b60206040518083038186803b15801561222e57600080fd5b505af4158015612242573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061151091906159e5565b6060808861227561064e610f1e565b612280610674610b57565b606061228a6116a3565b90506122968882611f87565b60006060806122ab8e8e8e8e8e8e8a8f611d24565b9250925092506122bb8d84612f4d565b6122c58285611d8e565b6122cf8185611d8e565b909550935050505b5097509795505050505050565b60006060806122fa8789600081518110611d4757fe5b611d798b8b8b8b8b8b8b8b612f57565b60005b612315611cf3565b81101561141f5761234c83828151811061232b57fe5b602002602001015183838151811061233f57fe5b6020026020010151612fb0565b83828151811061235857fe5b602090810291909101015260010161230d565b60008061237b8560200151612ffe565b9050600061238c8660400151612ffe565b905060008651600181111561239d57fe5b1415612403576123b08660600151613023565b60608701526123bf8583613044565b94506123cb8482613044565b93506123db866060015183613044565b606087015260006123ed878787613050565b90506123f98183613089565b9350505050610a0d565b61240d8583613044565b94506124198482613044565b9350612429866060015182613044565b6060870152600061243b878787613095565b905061244781846130c4565b90506123f9816130d0565b600061245d826125d1565b80156107445750600061246e6117b2565b6001600160a01b0316141592915050565b610a4661249261248d612603565b6130f6565b612593565b60006124a28261262c565b80156107445750600061246e6117d6565b610a466124c161248d61265e565b6125b5565b62461bcd60e51b6000908152602060045260076024526642414c23000030600a808404818106603090810160081b95839006959095019082900491820690940160101b939093010160c81b604452606490fd5b6000612523610f1e565b6001600160a01b031663aaabadc56040518163ffffffff1660e01b815260040160206040518083038186803b15801561255b57600080fd5b505afa15801561256f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906108ba9190615857565b6000806125a76125a16117b2565b84613103565b9150915061141f82826131d4565b6000806125c36125a16117d6565b9150915061141f8282613240565b7f00000000000000000000000042000000000000000000000000000000000000066001600160a01b0390811691161490565b600d5490565b6000806000612617846132a0565b9250612622846132ac565b9395909450915050565b7f0000000000000000000000009bcef72be871e61ed4fbbc7630889bee758eb81d6001600160a01b0390811691161490565b600e5490565b600061266e611acd565b82604051602001610eb7929190615bde565b6060808861268f61064e610f1e565b61269a610674610b57565b60606126a46116a3565b90506126ae61075e565b61275457600060606126c38d8d8d868b6132cc565b915091506126d8620f424083101560cc61149f565b6126e66000620f424061335b565b6126f58b620f4240840361335b565b6126ff818461230a565b80612708611cf3565b6001600160401b038111801561271d57600080fd5b50604051908082528060200260200182016040528015612747578160200160208202803683370190505b50955095505050506122d7565b61275e8882611f87565b60006060806127738e8e8e8e8e8e8a8f6122e4565b9250925092506127838c8461335b565b61278d828561230a565b6127978185611d8e565b90955093506122d7915050565b6127b081824242611a33565b7fa0d01593e47e69d07e0ccd87bece09411e07dd1ed40ca8f2e7af2976542a0233816040516116219190615ced565b6002815110156127ee5761075b565b6000816000815181106127fd57fe5b602002602001015190506000600190505b825181101561141f57600083828151811061282557fe5b6020026020010151905061284e816001600160a01b0316846001600160a01b031610606561149f565b915060010161280e565b60006128626117b2565b6001600160a01b031614610a465760008061288361287e612603565b6132ac565b9150915080421115610bd057610bd082612593565b60006128a26117d6565b6001600160a01b031614610a46576000806128be61287e61265e565b9150915080421115610bd057610bd0826125b5565b61141f81841080156128e457508183105b606461149f565b60006128f78583611f87565b612918866060015183858151811061290b57fe5b6020026020010151613044565b6060870152600061292b87878787613365565b905061294a8184878151811061293d57fe5b60200260200101516130c4565b9050612955816130d0565b979650505050505050565b600061296f8660600151613023565b606087015261297e8583611f87565b612992866060015183868151811061290b57fe5b606087015260006129a58787878761339d565b9050612955818486815181106129b757fe5b6020026020010151613089565b600073ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1ba1b6129e3610efa565b6001600160a01b0316141580156129fe57506129fe836133c0565b15612a2657612a0b610efa565b6001600160a01b0316336001600160a01b0316149050610744565b612a2e612519565b6001600160a01b0316639be2a8848484306040518463ffffffff1660e01b8152600401612a5d93929190615cf6565b60206040518083038186803b158015612a7557600080fd5b505afa158015612a89573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190612aad9190615771565b9050610744565b60606000612ac0611cf3565b90506060816001600160401b0381118015612ada57600080fd5b50604051908082528060200260200182016040528015612b04578160200160208202803683370190505b5090508115612b3357612b156133fc565b81600081518110612b2257fe5b602002602001018181525050612b3c565b91506107309050565b6001821115612b3357612b4d613420565b81600181518110612b5a57fe5b6020026020010181815250506002821115612b3357612b77613444565b81600281518110612b8457fe5b6020026020010181815250506003821115612b3357612ba1613468565b81600381518110612bae57fe5b6020026020010181815250506004821115612b3357612bcb61348c565b81600481518110612bd857fe5b60200260200101818152505091505090565b6000612bf582612452565b15612c1157612c0a612c05612603565b6132a0565b9050610e2e565b612c1a82612497565b15612c2a57612c0a612c0561265e565b50670de0b6b3a7640000610e2e565b6000828202612c538415806114005750838583816113fd57fe5b670de0b6b3a764000090049392505050565b600082821c623fffff16621fffff8113612c7f5780611510565b623fffff19179392505050565b1c637fffffff1690565b1c6103ff1690565b1c60019081161490565b6000612cb7848411158361149f565b5050900390565b600854612ccd90826000611484565b60085550565b600080612cdf836134b0565b90506000808213612cf857652d79883d20008203612d02565b652d79883d200082015b655af3107a40009005949350505050565b6000610a0d83838361350d565b6000610a0d8383601661350d565b600080600080612d4a6000600954611ce690919063ffffffff16565b600954909450612d5b906040611ce6565b600954909350612d6c906080611ce6565b600954909250612d7d9060c0611ce6565b905090919293565b4690565b6000612d9361176c565b90506000612d9f61198c565b509050612dab826117a5565b8015612db657508443115b15612e3757600080612dd2838787612dcd8861177e565b613524565b915091506000612de185611798565b90506000612dee8661178b565b90506000612e0782848787612e028c611772565b613559565b9050808314612e3157612e1a87826135b0565b9650612e2687426135be565b9650612e3187612cbe565b50505050505b5050505050565b6000606080612e4b61162c565b15612e6e57612e5a88876135cc565b9050612e6988826114396136b8565b612eb9565b612e76611cf3565b6001600160401b0381118015612e8b57600080fd5b50604051908082528060200260200182016040528015612eb5578160200160208202803683370190505b5090505b612ec4888686613723565b9093509150611d80888361378f565b60006107448260ea612c65565b60006107448260b56137be565b600061074482609f612c65565b600061074482606a6137be565b6000610744826054612c65565b600061074482601f6137be565b60006107448282612c8c565b600081612f4357612f3e84846137f1565b611510565b6115108484611a00565b610bd08282613811565b6000606080612f646118da565b6060612f7089886135cc565b9050612f7f89826114396136b8565b60006060612f8e8b89896138cd565b91509150612f9c8b82613926565b909d909c50909a5098505050505050505050565b6000612fbf821515600461149f565b82612fcc57506000610744565b670de0b6b3a764000083810290612fe6908583816121ba57fe5b826001820381612ff257fe5b04600101915050610744565b60008061300a83613933565b9050600061301784612bea565b90506115108282612c39565b600080613038613031610bd4565b8490613a32565b9050610a0d8382611439565b6000610a0d8383612c39565b600061306761305d611cf3565b60021460d261149f565b6060600080613077878787613a6e565b9250925092506129558784848461339d565b6000610a0d8383612184565b60006130a261305d611cf3565b60606000806130b2878787613a6e565b92509250925061295587848484613365565b6000610a0d8383612fb0565b60006107446130ef6130e0610bd4565b670de0b6b3a764000090611439565b8390612fb0565b6000610744826080611ce6565b600080836001600160a01b031663679aefce6040518163ffffffff1660e01b815260040160206040518083038186803b15801561313f57600080fd5b505afa158015613153573d6000803e3d6000fd5b505050506040513d601f19601f8201168201806040525081019061317791906159e5565b905061318b600160801b821061014961149f565b6131a18342016001600160401b031660c061144f565b6131b5846001600160401b0316608061144f565b6131c9836001600160801b0316600061144f565b171791509250929050565b81600d819055507f00000000000000000000000042000000000000000000000000000000000000066001600160a01b03167fc1a224b14823b63c7711127f125fbf592434682f38881ebb61408747a303affc826040516132349190615ced565b60405180910390a25050565b81600e819055507f0000000000000000000000009bcef72be871e61ed4fbbc7630889bee758eb81d6001600160a01b03167fc1a224b14823b63c7711127f125fbf592434682f38881ebb61408747a303affc826040516132349190615ced565b60006107448282613b2f565b6000806132b8836130f6565b91506132c58360c0611ce6565b9050915091565b600060606132d86118da565b60006132e384613b3c565b90506132fe60008260028111156132f657fe5b1460ce61149f565b606061330985613b52565b90506133188151610bf6611cf3565b6133228187611f87565b600061332c61198c565b509050600061333d82846001611fe8565b90508061334a8184613b68565b9b929a509198505050505050505050565b610bd08282613b73565b60006133918560a001518560008151811061337c57fe5b602002602001015186600181518110611d5c57fe5b610fdd85858585613c01565b60006133b48560a001518560008151811061337c57fe5b610fdd85858585613c2b565b60006133d2632f1a0bc960e01b610e82565b8214806133ed57506133ea637587926b60e11b610e82565b82145b80610744575061074482613c55565b7f0000000000000000000000000000000000000000000000000de0b6b3a764000090565b7f0000000000000000000000000000000000000000000000000de0b6b3a764000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b7f000000000000000000000000000000000000000000000000000000000000000090565b60006134c060008313606461149f565b670c7d713b49da0000821380156134de5750670f43fc2c04ee000082125b1561350457670de0b6b3a76400006134f583613c87565b816134fc57fe5b059050610e2e565b612c0a82613da5565b623fffff828116821b90821b198416179392505050565b6000806000613534878787614144565b905061354281878787614203565b915061354d81612cd3565b92505094509492505050565b6000806135758585854261356c8b611f12565b9392919061422e565b905060784288900310158061358a5786613593565b61359387614280565b6000818152600c6020526040902092909255509695505050505050565b6000610a0d8383604b61428d565b6000610a0d8383602c61429d565b6060806135d7611cf3565b6001600160401b03811180156135ec57600080fd5b50604051908082528060200260200182016040528015613616578160200160208202803683370190505b50905082613625579050610744565b6000808560008151811061363557fe5b602002602001015190506000600190505b61364e611cf3565b81101561368557600087828151811061366357fe5b602002602001015190508281111561367c578193508092505b50600101613646565b50613697600b5487600a5485896142af565b8383815181106136a357fe5b60209081029190910101525090949350505050565b60005b6136c3611cf3565b81101561371d576136fe8482815181106136d957fe5b60200260200101518483815181106136ed57fe5b60200260200101518463ffffffff16565b84828151811061370a57fe5b60209081029190910101526001016136bb565b50505050565b60006060600061373284613b3c565b9050600081600281111561374257fe5b141561375c57613752868561432f565b9250925050613787565b600181600281111561376a57fe5b141561377a5761375286856143f9565b61375286868661442b565b505b935093915050565b61379c82826114396136b8565b60006137a661198c565b50905061141f6137b882856001611fe8565b82613b68565b600082821c661fffffffffffff16660fffffffffffff81136137e05780611510565b661fffffffffffff19179392505050565b6000613800821515600461149f565b81838161380957fe5b049392505050565b6138286001600160a01b038316151561019b61149f565b6138348260008361141f565b6001600160a01b03821660009081526020819052604090205461385a90826101a1612ca8565b6001600160a01b03831660009081526020819052604090205560025461388090826144a7565b6002556040516000906001600160a01b038416907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906138c1908590615ced565b60405180910390a35050565b6000606060006138dc84613b3c565b905060018160028111156138ec57fe5b14156138fd576137528686866144b5565b600281600281111561390b57fe5b141561391b57613752868561451f565b6137856101366124c6565b61379c8282611bd56136b8565b600061393e826125d1565b1561394b57612c0a6133fc565b6139548261262c565b1561396157612c0a613420565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156139a357612c0a613444565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b031614156139e557612c0a613468565b7f00000000000000000000000000000000000000000000000000000000000000006001600160a01b0316826001600160a01b03161415613a2757612c0a61348c565b610e2e6101356124c6565b6000828202613a4c8415806114005750838583816113fd57fe5b80613a5b576000915050610744565b670de0b6b3a76400006000198201612ff2565b60408051600280825260608281019093526000918291816020016020820280368337019050509250613aa386602001516125d1565b15613ae95760009150600190508483600081518110613abe57fe5b6020026020010181815250508383600181518110613ad857fe5b602002602001018181525050613b26565b60009050600191508383600081518110613aff57fe5b6020026020010181815250508483600181518110613b1957fe5b6020026020010181815250505b93509350939050565b1c6001600160801b031690565b60008180602001905181019061074491906158c0565b606081806020019051810190610a0d9190615985565b600a91909155600b55565b613b7f6000838361141f565b600254613b8c9082611bd5565b6002556001600160a01b038216600090815260208190526040902054613bb29082611bd5565b6001600160a01b0383166000818152602081905260408082209390935591519091907fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef906138c1908590615ced565b6000613c0b6118da565b6000613c1561198c565b5090506000612955828787878b606001516145b3565b6000613c356118da565b6000613c3f61198c565b5090506000612955828787878b6060015161466b565b6000613c67631c74c91760e11b610e82565b8214806107445750613c7f6350dd6ed960e01b610e82565b909114919050565b670de0b6b3a7640000026000806a0c097ce7bc90715b34b9f160241b808401906ec097ce7bc90715b34b9f0fffffffff1985010281613cc257fe5b05905060006a0c097ce7bc90715b34b9f160241b82800205905081806a0c097ce7bc90715b34b9f160241b81840205915060038205016a0c097ce7bc90715b34b9f160241b82840205915060058205016a0c097ce7bc90715b34b9f160241b82840205915060078205016a0c097ce7bc90715b34b9f160241b82840205915060098205016a0c097ce7bc90715b34b9f160241b828402059150600b8205016a0c097ce7bc90715b34b9f160241b828402059150600d8205016a0c097ce7bc90715b34b9f160241b828402059150600f826002919005919091010295945050505050565b6000670de0b6b3a7640000821215613de157613dd7826a0c097ce7bc90715b34b9f160241b81613dd157fe5b05613da5565b6000039050610e2e565b60007e1600ef3172e58d2e933ec884fde10064c63b5372d805e203c00000000000008312613e3257770195e54c5dd42177f53a27172fa9ec630262827000000000830592506806f05b59d3b2000000015b73011798004d755d3c8bc8e03204cf44619e0000008312613e6a576b1425982cf597cd205cef7380830592506803782dace9d9000000015b606492830292026e01855144814a7ff805980ff00840008312613eb2576e01855144814a7ff805980ff008400068056bc75e2d63100000840205925068ad78ebc5ac62000000015b6b02df0ab5a80a22c61ab5a7008312613eed576b02df0ab5a80a22c61ab5a70068056bc75e2d6310000084020592506856bc75e2d631000000015b693f1fce3da636ea5cf8508312613f2457693f1fce3da636ea5cf85068056bc75e2d631000008402059250682b5e3af16b18800000015b690127fa27722cc06cc5e28312613f5b57690127fa27722cc06cc5e268056bc75e2d6310000084020592506815af1d78b58c400000015b68280e60114edb805d038312613f905768280e60114edb805d0368056bc75e2d631000008402059250680ad78ebc5ac6200000015b680ebc5fb417461211108312613fbb57680ebc5fb4174612111068056bc75e2d631000009384020592015b6808f00f760a4b2db55d8312613ff0576808f00f760a4b2db55d68056bc75e2d6310000084020592506802b5e3af16b1880000015b6806f5f17757889379378312614025576806f5f177578893793768056bc75e2d63100000840205925068015af1d78b58c40000015b6806248f33704b2866038312614059576806248f33704b28660368056bc75e2d63100000840205925067ad78ebc5ac620000015b6805c548670b9510e7ac831261408d576805c548670b9510e7ac68056bc75e2d6310000084020592506756bc75e2d6310000015b600068056bc75e2d63100000840168056bc75e2d6310000080860302816140b057fe5b059050600068056bc75e2d63100000828002059050818068056bc75e2d63100000818402059150600382050168056bc75e2d63100000828402059150600582050168056bc75e2d63100000828402059150600782050168056bc75e2d63100000828402059150600982050168056bc75e2d63100000828402059150600b820501600202606485820105979650505050505050565b60008061415c85614155868661470d565b6001611fe8565b90506103e86002860204600061417c8361417681856113e3565b90611439565b9050600061419786614191856002028a6113e3565b90612c39565b905060006141c06141a88489612c39565b6141766141b98a614191898d6113e3565b8590611bd5565b905060006141e96141d1858b612c39565b6141766141e28c6141918a8f6113e3565b8690611bd5565b90506141f58282612fb0565b9a9950505050505050505050565b6000806142136141e28786613a32565b9050600061422082612cd3565b939093039695505050505050565b60008061423a87612f21565b83039050600081870261424c89612ee0565b019050600082870261425d8a612efa565b019050600083870261426e8b612f14565b0190506141f589848a858b868c614767565b60006107448260016147c7565b6103ff811b1992909216911b1790565b637fffffff811b1992909216911b1790565b6000806142be878787876147cf565b9050808685815181106142cd57fe5b6020026020010151116142e4576000915050610fdd565b6000818786815181106142f357fe5b6020026020010151039050614323670de0b6b3a764000061431d8684612c3990919063ffffffff16565b90612184565b98975050505050505050565b6000606061433b6118da565b60008061434785614978565b9150915061435f614356611cf3565b8210606461149f565b6060614369611cf3565b6001600160401b038111801561437e57600080fd5b506040519080825280602002602001820160405280156143a8578160200160208202803683370190505b50905060006143b561198c565b5090506143d4818985876143c761075e565b6143cf610bd4565b61499a565b8284815181106143e057fe5b6020908102919091010152509196919550909350505050565b60006060600061440884614ab6565b9050606061441e868361441961075e565b614acc565b9196919550909350505050565b600060606144376118da565b6060600061444485614b67565b915091506144558251610bf6611cf3565b61445f8287611f87565b600061446961198c565b5090506000614489828a8661447c61075e565b614484610bd4565b614b7f565b90506144998382111560cf61149f565b989297509195505050505050565b6000610a0d83836001612ca8565b600060608060006144c585614b67565b915091506144db6144d4611cf3565b8351611d17565b6144e58287611f87565b60006144ef61198c565b509050600061450f828a8661450261075e565b61450a610bd4565b614e13565b90506144998382101560d061149f565b6000606060008061452f85614978565b9150915061453e614356611cf3565b6060614548611cf3565b6001600160401b038111801561455d57600080fd5b50604051908082528060200260200182016040528015614587578160200160208202803683370190505b509050600061459461198c565b5090506143d4818985876145a661075e565b6145ae610bd4565b615089565b6000806145c287876001611fe8565b90506145ea838786815181106145d457fe5b602002602001015161143990919063ffffffff16565b8685815181106145f657fe5b6020026020010181815250506000614610888884896147cf565b90508387868151811061461f57fe5b60200260200101510187868151811061463457fe5b60200260200101818152505061432360016120eb89898151811061465457fe5b60200260200101518461143990919063ffffffff16565b60008061467a87876001611fe8565b90506146a28387878151811061468c57fe5b6020026020010151611bd590919063ffffffff16565b8686815181106146ae57fe5b60200260200101818152505060006146c8888884886147cf565b9050838787815181106146d757fe5b6020026020010151038787815181106146ec57fe5b6020026020010181815250506143236001614176838a89815181106145d457fe5b6040805160028082526060808301845292602083019080368337019050509050828160008151811061473b57fe5b602002602001018181525050818160018151811061475557fe5b60200260200101818152505092915050565b6000614773828261144f565b61477e84601f615166565b614789866054615177565b61479488606a615166565b61479f8a609f615177565b6147aa8c60b5615166565b6147b58e60ea615177565b17171717171798975050505050505050565b016103ff1690565b6000808451860290506000856000815181106147e757fe5b60200260200101519050600086518760008151811061480257fe5b60200260200101510290506000600190505b875181101561485b5761484061483a614833848b858151811061208b57fe5b8a516113e3565b886137f1565b915061485188828151811061200857fe5b9250600101614814565b5086858151811061486857fe5b602002602001015182039150600061488087886113e3565b905060006148ac6148a061489884610ae089886113e3565b6103e86113e3565b8a898151811061208b57fe5b905060006148c06141e26148988b896137f1565b90506000806148dc6148d28686611bd5565b610ae08d86611bd5565b905060005b60ff81101561495c578192506149116148fe866120eb85866113e3565b610ae08e614176886120eb8860026113e3565b91508282111561493a57600183830311614935575097506115109650505050505050565b614954565b600182840311614954575097506115109650505050505050565b6001016148e1565b506149686101426124c6565b5050505050505050949350505050565b6000808280602001905181019061498f919061594f565b909590945092505050565b6000806149a988886001611fe8565b905060006149cb826149c5876149bf818b611439565b90612fb0565b90613a32565b905060006149db8a8a848b6147cf565b905060006149ef828b8b815181106145d457fe5b90506000805b8b51811015614a2e57614a248c8281518110614a0d57fe5b602002602001015183611bd590919063ffffffff16565b91506001016149f5565b506000614a57828d8d81518110614a4157fe5b602002602001015161218490919063ffffffff16565b90506000614a6482615184565b90506000614a728583613a32565b90506000614a808683611439565b9050614aa1614a9a83670de0b6b3a76400008e9003612c39565b8290611bd5565b99505050505050505050509695505050505050565b600081806020019051810190610a0d9190615922565b60606000614ada8484612184565b9050606085516001600160401b0381118015614af557600080fd5b50604051908082528060200260200182016040528015614b1f578160200160208202803683370190505b50905060005b8651811015614b5d57614b3e838883815181106116e857fe5b828281518110614b4a57fe5b6020908102919091010152600101614b25565b5095945050505050565b606060008280602001905181019061498f91906158dc565b600080805b8651811015614ba657614b9c878281518110614a0d57fe5b9150600101614b84565b50606085516001600160401b0381118015614bc057600080fd5b50604051908082528060200260200182016040528015614bea578160200160208202803683370190505b5090506000805b8851811015614cb1576000614c22858b8481518110614c0c57fe5b6020026020010151612fb090919063ffffffff16565b9050614c5e8a8381518110614c3357fe5b60200260200101516149bf8b8581518110614c4a57fe5b60200260200101518d86815181106145d457fe5b848381518110614c6a57fe5b602002602001018181525050614ca6614c9f82868581518110614c8957fe5b6020026020010151613a3290919063ffffffff16565b8490611bd5565b925050600101614bf1565b50606088516001600160401b0381118015614ccb57600080fd5b50604051908082528060200260200182016040528015614cf5578160200160208202803683370190505b50905060005b8951811015614dc0576000848281518110614d1257fe5b6020026020010151841115614d79576000614d3b614d2f86615184565b8d85815181106116e857fe5b90506000614d4f828d86815181106145d457fe5b9050614d70614d6982670de0b6b3a76400008d9003612fb0565b8390611bd5565b92505050614d90565b898281518110614d8557fe5b602002602001015190505b614da0818c84815181106145d457fe5b838381518110614dac57fe5b602090810291909101015250600101614cfb565b506000614dcf8b8b6001611fe8565b90506000614ddf8c846000611fe8565b90506000614ded8284612184565b9050614e02614dfb82615184565b8b90613a32565b9d9c50505050505050505050505050565b600080805b8651811015614e3a57614e30878281518110614a0d57fe5b9150600101614e18565b50606085516001600160401b0381118015614e5457600080fd5b50604051908082528060200260200182016040528015614e7e578160200160208202803683370190505b5090506000805b8851811015614f12576000614ea0858b8481518110614a4157fe5b9050614edc8a8381518110614eb157fe5b602002602001015161431d8b8581518110614ec857fe5b60200260200101518d868151811061468c57fe5b848381518110614ee857fe5b602002602001018181525050614f07614c9f828685815181106116e857fe5b925050600101614e85565b50606088516001600160401b0381118015614f2c57600080fd5b50604051908082528060200260200182016040528015614f56578160200160208202803683370190505b50905060005b895181101561501757600083858381518110614f7457fe5b60200260200101511115614fd0576000614f99614d2f86670de0b6b3a7640000611439565b90506000614fad828d86815181106145d457fe5b9050614fc7614d6982670de0b6b3a76400008d9003612c39565b92505050614fe7565b898281518110614fdc57fe5b602002602001015190505b614ff7818c848151811061468c57fe5b83838151811061500357fe5b602090810291909101015250600101614f5c565b5060006150268b8b6001611fe8565b905060006150368c846000611fe8565b905060006150448284612184565b9050670de0b6b3a76400008111156150795761506b8a670de0b6b3a763ffff198301612c39565b975050505050505050610fdd565b6000975050505050505050610fdd565b60008061509888886001611fe8565b905060006150ae826149c5876149bf818b611bd5565b905060006150be8a8a848b6147cf565b905060006150e88a8a815181106150d157fe5b60200260200101518361143990919063ffffffff16565b90506000805b8b51811015615110576151068c8281518110614a0d57fe5b91506001016150ee565b506000615123828d8d81518110614a4157fe5b9050600061513082615184565b9050600061513e8583613a32565b9050600061514c8683611439565b9050614aa1614a9a83670de0b6b3a76400008e9003612fb0565b661fffffffffffff91909116901b90565b623fffff91909116901b90565b6000670de0b6b3a7640000821061519c576000610744565b50670de0b6b3a76400000390565b604080518082019091526000808252602082015290565b803561074481615f7e565b600082601f8301126151dc578081fd5b81356151ef6151ea82615f55565b615f2f565b81815291506020808301908481018184028601820187101561521057600080fd5b60005b8481101561522f57813584529282019290820190600101615213565b505050505092915050565b600082601f83011261524a578081fd5b81516152586151ea82615f55565b81815291506020808301908481018184028601820187101561527957600080fd5b60005b8481101561522f5781518452928201929082019060010161527c565b600082601f8301126152a8578081fd5b81356001600160401b038111156152bd578182fd5b6152d0601f8201601f1916602001615f2f565b91508082528360208285010111156152e757600080fd5b8060208401602084013760009082016020015292915050565b80356002811061074457600080fd5b803561074481615fa1565b600061012080838503121561532d578182fd5b61533681615f2f565b9150506153438383615300565b815261535283602084016151c1565b602082015261536483604084016151c1565b6040820152606082013560608201526080820135608082015260a082013560a08201526153948360c084016151c1565b60c08201526153a68360e084016151c1565b60e0820152610100808301356001600160401b038111156153c657600080fd5b6153d285828601615298565b82840152505092915050565b6000602082840312156153ef578081fd5b8135610a0d81615f7e565b6000806040838503121561540c578081fd5b823561541781615f7e565b9150602083013561542781615f7e565b809150509250929050565b600080600060608486031215615446578081fd5b833561545181615f7e565b9250602084013561546181615f7e565b929592945050506040919091013590565b600080600080600080600060e0888a03121561548c578485fd5b873561549781615f7e565b965060208801356154a781615f7e565b95506040880135945060608801359350608088013560ff811681146154ca578384fd5b9699959850939692959460a0840135945060c09093013592915050565b600080604083850312156154f9578182fd5b823561550481615f7e565b946020939093013593505050565b600080600060608486031215615526578081fd5b83516001600160401b038082111561553c578283fd5b818601915086601f83011261554f578283fd5b815161555d6151ea82615f55565b80828252602080830192508086018b82838702890101111561557d578788fd5b8796505b848710156155a857805161559481615f7e565b845260019690960195928101928101615581565b5089015190975093505050808211156155bf578283fd5b506155cc8682870161523a565b925050604084015190509250925092565b600060208083850312156155ef578182fd5b82356001600160401b03811115615604578283fd5b8301601f81018513615614578283fd5b80356156226151ea82615f55565b818152838101908385016040808502860187018a1015615640578788fd5b8795505b8486101561568d5780828b03121561565a578788fd5b61566381615f2f565b61566d8b8461530f565b815282880135888201528452600195909501949286019290810190615644565b509098975050505050505050565b600060208083850312156156ad578182fd5b82356001600160401b038111156156c2578283fd5b8301601f810185136156d2578283fd5b80356156e06151ea82615f55565b818152838101908385016060808502860187018a10156156fe578788fd5b8795505b8486101561568d5780828b031215615718578788fd5b61572181615f2f565b61572b8b8461530f565b81528288013588820152604080840135908201528452600195909501949286019290810190615702565b600060208284031215615766578081fd5b8135610a0d81615f93565b600060208284031215615782578081fd5b8151610a0d81615f93565b600080600080600080600060e0888a0312156157a7578081fd5b8735965060208801356157b981615f7e565b955060408801356157c981615f7e565b945060608801356001600160401b03808211156157e4578283fd5b6157f08b838c016151cc565b955060808a0135945060a08a0135935060c08a0135915080821115615813578283fd5b506158208a828b01615298565b91505092959891949750929550565b600060208284031215615840578081fd5b81356001600160e01b031981168114610a0d578182fd5b600060208284031215615868578081fd5b8151610a0d81615f7e565b60008060408385031215615885578182fd5b823561589081615f7e565b915060208301356001600160401b038111156158aa578182fd5b6158b685828601615298565b9150509250929050565b6000602082840312156158d1578081fd5b8151610a0d81615fa1565b6000806000606084860312156158f0578081fd5b83516158fb81615fa1565b60208501519093506001600160401b03811115615916578182fd5b6155cc8682870161523a565b60008060408385031215615934578182fd5b825161593f81615fa1565b6020939093015192949293505050565b600080600060608486031215615963578081fd5b835161596e81615fa1565b602085015160409095015190969495509392505050565b60008060408385031215615997578182fd5b82516159a281615fa1565b60208401519092506001600160401b038111156159bd578182fd5b6158b68582860161523a565b6000602082840312156159da578081fd5b8135610a0d81615fa1565b6000602082840312156159f6578081fd5b5051919050565b60008060008060808587031215615a12578182fd5b84356001600160401b0380821115615a28578384fd5b615a348883890161531a565b95506020870135915080821115615a49578384fd5b50615a56878288016151cc565b949794965050505060408301359260600135919050565b600080600060608486031215615a81578081fd5b83356001600160401b03811115615a96578182fd5b615aa28682870161531a565b9660208601359650604090950135949350505050565b600060208284031215615ac9578081fd5b5035919050565b60008060408385031215615ae2578182fd5b50508035926020909101359150565b60008060008060808587031215615b06578182fd5b8451935060208501519250604085015191506060850151615b2681615f7e565b939692955090935050565b6000815180845260208085019450808401835b83811015615b6057815187529582019590820190600101615b44565b509495945050505050565b60008151808452815b81811015615b9057602081850181015186830182015201615b74565b81811115615ba15782602083870101525b50601f01601f19169290920160200192915050565b9182526001600160e01b031916602082015260240190565b6000828483379101908152919050565b61190160f01b81526002810192909252602282015260420190565b6001600160a01b0391909116815260200190565b6020808252825182820181905260009190848201906040850190845b81811015615c4e5783516001600160a01b031683529284019291840191600101615c29565b50909695505050505050565b6020808252825182820181905260009190848201906040850190845b81811015615c4e57835183529284019291840191600101615c76565b600060208252610a0d6020830184615b31565b600060408252615cb86040830185615b31565b8281036020840152610fdd8185615b31565b901515815260200190565b92151583526020830191909152604082015260600190565b90815260200190565b9283526001600160a01b03918216602084015216604082015260600190565b9586526001600160a01b0394851660208701529290931660408501526060840152608083019190915260a082015260c00190565b9485526020850193909352604084019190915260608301526001600160a01b0316608082015260a00190565b6000838252604060208301526115106040830184615b6b565b9182526001600160a01b0316602082015260400190565b93845260ff9290921660208401526040830152606082015260800190565b968752602087019590955260408601939093526060850191909152608084015260a083015260c082015260e00190565b9485526020850193909352604084019190915260608301521515608082015260a00190565b83815260608101615e2884615f74565b602082019390935260400152919050565b84815260808101615e4985615f74565b84602083015283604083015282606083015295945050505050565b838152825160a0820190615e7781615f74565b806020840152506020840151604083015260408401516060830152826080830152949350505050565b600060208252610a0d6020830184615b6b565b6000838252604060208301526115106040830184615b31565b9283529015156020830152604082015260600190565b918252602082015260400190565b9283526020830191909152604082015260600190565b93845260208401929092526040830152606082015260800190565b60ff91909116815260200190565b6040518181016001600160401b0381118282101715615f4d57600080fd5b604052919050565b60006001600160401b03821115615f6a578081fd5b5060209081020190565b6003811061075b57fe5b6001600160a01b038116811461075b57600080fd5b801515811461075b57600080fd5b6003811061075b57600080fdfea264697066735822122044502cf530b7900edafa18cb886436fdae711dd37bb442b33f34a42b6235128c64736f6c63430007010033

Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)

0000000000000000000000000000000000000000000000000000000000000020000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8000000000000000000000000000000000000000000000000000000000000018000000000000000000000000000000000000000000000000000000000000001c00000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000026000000000000000000000000000000000000000000000000000000000000002c0000000000000000000000000000000000000000000000000000000000000003200000000000000000000000000000000000000000000000000016bcc41e900000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000010000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000b526f636b6574204675656c000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000c4250542d724554482d4554480000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000200000000000000000000000042000000000000000000000000000000000000060000000000000000000000009bcef72be871e61ed4fbbc7630889bee758eb81d00000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000000000000000000000000000000658843bb859b7b85ceab5cf77167e3f0a78dfe7f000000000000000000000000000000000000000000000000000000000000000200000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002a30

-----Decoded View---------------
Arg [0] : params (tuple): System.Collections.Generic.List`1[Nethereum.ABI.FunctionEncoding.ParameterOutput]

-----Encoded View---------------
26 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000020
Arg [1] : 000000000000000000000000ba12222222228d8ba445958a75a0704d566bf2c8
Arg [2] : 0000000000000000000000000000000000000000000000000000000000000180
Arg [3] : 00000000000000000000000000000000000000000000000000000000000001c0
Arg [4] : 0000000000000000000000000000000000000000000000000000000000000200
Arg [5] : 0000000000000000000000000000000000000000000000000000000000000260
Arg [6] : 00000000000000000000000000000000000000000000000000000000000002c0
Arg [7] : 0000000000000000000000000000000000000000000000000000000000000032
Arg [8] : 00000000000000000000000000000000000000000000000000016bcc41e90000
Arg [9] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [10] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [11] : 0000000000000000000000000000000000000000000000000000000000000001
Arg [12] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [13] : 000000000000000000000000000000000000000000000000000000000000000b
Arg [14] : 526f636b6574204675656c000000000000000000000000000000000000000000
Arg [15] : 000000000000000000000000000000000000000000000000000000000000000c
Arg [16] : 4250542d724554482d4554480000000000000000000000000000000000000000
Arg [17] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [18] : 0000000000000000000000004200000000000000000000000000000000000006
Arg [19] : 0000000000000000000000009bcef72be871e61ed4fbbc7630889bee758eb81d
Arg [20] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [21] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [22] : 000000000000000000000000658843bb859b7b85ceab5cf77167e3f0a78dfe7f
Arg [23] : 0000000000000000000000000000000000000000000000000000000000000002
Arg [24] : 0000000000000000000000000000000000000000000000000000000000000000
Arg [25] : 0000000000000000000000000000000000000000000000000000000000002a30


[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.