ETH Price: $3,874.50 (+1.03%)

Token

: Optimistic World (OW)

Overview

Max Total Supply

2,977,621 OW

Holders

1,603,192

Market

Volume (24H)

N/A

Min Price (24H)

N/A

Max Price (24H)

N/A
Balance
1 OW
0x78e09dc6496c698c95ffe59e47c7d353439d41f8
Loading...
Loading
Loading...
Loading
Loading...
Loading

Click here to update the token information / general information

Minimal Proxy Contract for 0x4056334cdca09a54ad0e99c195a8de321406c242

Contract Name:
DCNT721A

Compiler Version
v0.8.17+commit.8df45f5f

Optimization Enabled:
Yes with 200 runs

Other Settings:
default evmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 26 : DCNT721A.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

/*
 ______   _______  _______  _______  _       _________
(  __  \ (  ____ \(  ____ \(  ____ \( (    /|\__   __/
| (  \  )| (    \/| (    \/| (    \/|  \  ( |   ) (
| |   ) || (__    | |      | (__    |   \ | |   | |
| |   | ||  __)   | |      |  __)   | (\ \) |   | |
| |   ) || (      | |      | (      | | \   |   | |
| (__/  )| (____/\| (____/\| (____/\| )  \  |   | |
(______/ (_______/(_______/(_______/|/    )_)   )_(

*/

/// ============ Imports ============

import './erc721a/ERC721A.sol';
import './interfaces/IMetadataRenderer.sol';
import '@openzeppelin/contracts/proxy/utils/Initializable.sol';
import '@openzeppelin/contracts/access/Ownable.sol';
import '@openzeppelin/contracts/utils/cryptography/MerkleProof.sol';
import '@openzeppelin/contracts/access/AccessControl.sol';
import './interfaces/ITokenWithBalance.sol';
import './storage/EditionConfig.sol';
import './storage/MetadataConfig.sol';
import './storage/DCNT721AStorage.sol';
import './utils/Splits.sol';
import './utils/Version.sol';
import './utils/OperatorFilterer.sol';

/// @title template NFT contract
contract DCNT721A is
  ERC721A,
  AccessControl,
  OperatorFilterer,
  DCNT721AStorage,
  Initializable,
  Ownable,
  Version(6),
  Splits
{

  uint256 public MAX_TOKENS;
  uint256 public tokenPrice;
  uint256 public maxTokenPurchase;

  bool public hasAdjustableCap;
  bool public isSoulbound;

  uint256 public saleStart;
  uint256 public saleEnd;
  bool public saleIsPaused;
  string public baseURI;
  string internal _contractURI;
  address public metadataRenderer;
  uint256 public royaltyBPS;
  address public payoutAddress;

  uint256 public presaleStart;
  uint256 public presaleEnd;
  bytes32 public presaleMerkleRoot;

  address public splitMain;
  address public splitWallet;
  address public parentIP;

  /// ============ Events ============

  /// @notice Emitted after a successful token claim
  /// @param sender recipient of NFT mint
  /// @param tokenId_ of token minted
  event Minted(address sender, uint256 tokenId_);

  /// ========== Modifier =============
  /// @notice verifies caller has minimum balance to pass through token gate
  modifier verifyTokenGate(bool isPresale) {
    if (tokenGateConfig.tokenAddress != address(0)
      && (tokenGateConfig.saleType == SaleType.ALL ||
          isPresale && tokenGateConfig.saleType == SaleType.PRESALE) ||
          !isPresale && tokenGateConfig.saleType == SaleType.PRIMARY) {
            require(ITokenWithBalance(tokenGateConfig.tokenAddress).balanceOf(msg.sender) >= tokenGateConfig.minBalance, 'do not own required token');
    }

    _;
  }

  modifier onlyAdmin() {
    require(hasRole(DEFAULT_ADMIN_ROLE, _msgSender()), "onlyAdmin");

    _;
  }

  /// ============ Constructor ============

  function initialize(
    address _owner,
    EditionConfig memory _editionConfig,
    MetadataConfig memory _metadataConfig,
    TokenGateConfig memory _tokenGateConfig,
    address _metadataRenderer,
    address _splitMain
  ) public initializer {
    _transferOwnership(_owner);
    _grantRole(DEFAULT_ADMIN_ROLE, _owner);
    _name = _editionConfig.name;
    _symbol = _editionConfig.symbol;
    _currentIndex = _startTokenId();
    MAX_TOKENS = _editionConfig.maxTokens;
    tokenPrice = _editionConfig.tokenPrice;
    maxTokenPurchase = _editionConfig.maxTokenPurchase;
    saleStart = _editionConfig.saleStart;
    saleEnd = _editionConfig.saleEnd;
    royaltyBPS = _editionConfig.royaltyBPS;
    payoutAddress = _editionConfig.payoutAddress;
    hasAdjustableCap = _editionConfig.hasAdjustableCap;
    isSoulbound = _editionConfig.isSoulbound;
    parentIP = _metadataConfig.parentIP;
    splitMain = _splitMain;
    tokenGateConfig = _tokenGateConfig;
    presaleMerkleRoot = _editionConfig.presaleMerkleRoot;
    presaleStart = _editionConfig.presaleStart;
    presaleEnd = _editionConfig.presaleEnd;

    if (
      _metadataRenderer != address(0) &&
      _metadataConfig.metadataRendererInit.length > 0
    ) {
      metadataRenderer = _metadataRenderer;
      IMetadataRenderer(_metadataRenderer).initializeWithData(
        _metadataConfig.metadataRendererInit
      );
    } else {
      _contractURI = _metadataConfig.contractURI;
      baseURI = _metadataConfig.metadataURI;
    }
  }

  /// @notice purchase nft
  function mint(address to, uint256 numberOfTokens)
    external
    payable
    verifyTokenGate(false)
  {
    uint256 mintIndex = _nextTokenId();
    require(block.timestamp >= saleStart && block.timestamp <= saleEnd, "Sales are not active.");
    require(!saleIsPaused, "Sale must be active to mint");
    require(
      mintIndex + numberOfTokens <= MAX_TOKENS,
      "Purchase would exceed max supply"
    );
    require(mintIndex <= MAX_TOKENS, "SOLD OUT");
    require(msg.value >= (tokenPrice * numberOfTokens), "Insufficient funds");
    if ( maxTokenPurchase != 0 ) {
      require(numberOfTokens <= maxTokenPurchase, "Exceeded max number per mint");
    }

    _safeMint(to, numberOfTokens);
    unchecked {
      for (uint256 i = 0; i < numberOfTokens; i++) {
        emit Minted(to, mintIndex++);
      }
    }
  }

  /// @notice allows the owner to "airdrop" users an NFT
  function mintAirdrop(address[] calldata recipients) external onlyAdmin {
    uint256 atId = _nextTokenId();
    uint256 startAt = atId;
    require(atId + recipients.length <= MAX_TOKENS,
      "Purchase would exceed max supply"
    );

    unchecked {
      for (
        uint256 endAt = atId + recipients.length;
        atId < endAt;
        atId++
      ) {
        _safeMint(recipients[atId - startAt], 1);
        emit Minted(recipients[atId - startAt], atId);
      }
    }
  }

  /// @notice presale mint function
  function mintPresale(
    uint256 quantity,
    uint256 maxQuantity,
    uint256 pricePerToken,
    bytes32[] calldata merkleProof
  )
    external
    payable
    verifyTokenGate(true)
  {
    require (block.timestamp >= presaleStart && block.timestamp <= presaleEnd, 'not presale');
    uint256 mintIndex = _nextTokenId();
    require(!saleIsPaused, "Sale must be active to mint");
    require(
      mintIndex + quantity <= MAX_TOKENS,
      "Purchase would exceed max supply"
    );
    require (MerkleProof.verify(
        merkleProof,
        presaleMerkleRoot,
        keccak256(
          // address, uint256, uint256
          abi.encodePacked(msg.sender,maxQuantity,pricePerToken)
        )
      ), 'not approved');

    require(msg.value >= (pricePerToken * quantity), "Insufficient funds");
    require(balanceOf(msg.sender) + quantity <= maxQuantity, 'minted too many');
    _safeMint(msg.sender, quantity);
    unchecked {
      for (uint256 i = 0; i < quantity; i++) {
        emit Minted(msg.sender, mintIndex++);
      }
    }
  }

  function setPresaleMerkleRoot(bytes32 _presaleMerkleRoot) external onlyAdmin {
    presaleMerkleRoot = _presaleMerkleRoot;
  }

  /// @notice pause or unpause sale
  function flipSaleState() external onlyAdmin {
    saleIsPaused = !saleIsPaused;
  }

  /// @notice is the current sale active
  function saleIsActive() external view returns(bool _saleIsActive) {
    _saleIsActive = (block.timestamp >= saleStart && block.timestamp <= saleEnd) && (!saleIsPaused);
  }

  ///change maximum number of tokens available to mint
  function adjustCap(uint256 newCap) external onlyAdmin {
    require(hasAdjustableCap, 'cannot adjust size of this collection');
    require(_nextTokenId() <= newCap, 'cannot decrease cap');
    MAX_TOKENS = newCap;
  }

  /// @notice set the payout address, zero address defaults to owner
  function setPayoutAddress(address _payoutAddress) external onlyAdmin {
    payoutAddress = _payoutAddress;
  }

  /// @notice withdraw funds from contract to seller funds recipient
  function withdraw() external {
    require(
      _getSplitWallet() == address(0),
      "Cannot withdraw with an active split"
    );

    address to = payoutAddress != address(0) ? payoutAddress : owner();
    (bool success, ) = payable(to).call{value: address(this).balance}("");
    require(success, "Could not withdraw");
  }

  function setBaseURI(string memory uri) external onlyAdmin {
    baseURI = uri;
  }

  function _baseURI() internal view virtual override returns (string memory) {
    return baseURI;
  }

  function setMetadataRenderer(address _metadataRenderer) external onlyAdmin {
    metadataRenderer = _metadataRenderer;
  }

  /// @notice update the contract URI
  function setContractURI(string memory uri) external onlyAdmin {
    _contractURI = uri;
  }

  /// @notice view the current contract URI
  function contractURI()
    public
    view
    virtual
    returns (string memory)
  {
    return (metadataRenderer != address(0))
      ? IMetadataRenderer(metadataRenderer).contractURI()
      : _contractURI;
  }

  /// @notice view the token URI for a given tokenId
  function tokenURI(uint256 tokenId)
    public
    view
    virtual
    override
    returns (string memory)
  {
    if (!_exists(tokenId)) revert URIQueryForNonexistentToken();

    if (metadataRenderer != address(0)) {
      return IMetadataRenderer(metadataRenderer).tokenURI(tokenId);
    }
    return super.tokenURI(tokenId);
  }

  /// @notice save some for creator
  function reserveDCNT(uint256 numReserved) external onlyAdmin {
    uint256 supply = _nextTokenId();
    require(
      supply + numReserved < MAX_TOKENS,
      "Purchase would exceed max supply"
    );
    for (uint256 i = 0; i < numReserved; i++) {
      _safeMint(msg.sender, supply + i + 1);
    }
  }

  function royaltyInfo(uint256 tokenId, uint256 salePrice)
    external
    view
    returns (address receiver, uint256 royaltyAmount)
  {
    require(_exists(tokenId), "Nonexistent token");

    if (splitWallet != address(0)) {
      receiver = splitWallet;
    } else if ( payoutAddress != address(0) ) {
      receiver = payoutAddress;
    } else {
      receiver = owner();
    }

    uint256 royaltyPayment = (salePrice * royaltyBPS) / 10_000;

    return (receiver, royaltyPayment);
  }

  function supportsInterface(bytes4 interfaceId)
    public
    view
    virtual
    override(ERC721A, AccessControl)
    returns (bool)
  {
    return
      interfaceId == 0x2a55205a || // ERC2981 interface ID for ERC2981.
      AccessControl.supportsInterface(interfaceId) ||
      ERC721A.supportsInterface(interfaceId) ||
      super.supportsInterface(interfaceId);
  }

  function _getSplitMain() internal virtual override returns (address) {
    return splitMain;
  }

  function _getSplitWallet() internal virtual override returns (address) {
    return splitWallet;
  }

  function _setSplitWallet(address _splitWallet) internal virtual override {
    splitWallet = _splitWallet;
  }

  /// @notice update the public sale start time
  function updateSaleStartEnd(uint256 newStart, uint256 newEnd) external onlyAdmin {
    saleStart = newStart;
    saleEnd = newEnd;
  }

  /// @notice update the public sale start time
  function updatePresaleStartEnd(uint256 newStart, uint256 newEnd) external onlyAdmin {
    presaleStart = newStart;
    presaleEnd = newEnd;
  }

  /// @notice update the registration with the operator filter registry
  /// @param enable whether or not to enable the operator filter
  /// @param operatorFilter the address for the operator filter subscription
  function updateOperatorFilter(bool enable, address operatorFilter) external onlyAdmin {
    address self = address(this);
    if (!operatorFilterRegistry.isRegistered(self) && enable) {
      operatorFilterRegistry.registerAndSubscribe(self, operatorFilter);
    } else if (enable) {
      operatorFilterRegistry.subscribe(self, operatorFilter);
    } else {
      operatorFilterRegistry.unsubscribe(self, false);
      operatorFilterRegistry.unregister(self);
    }
  }

  /// @dev Use ERC721A token hook and OperatorFilterer modifier to restrict transfers
  function _beforeTokenTransfers(
    address from,
    address to,
    uint256 , // startTokenId
    uint256   // quantity
  ) internal virtual override onlyAllowedOperator(from) {
    require (!isSoulbound || (from == address(0) || to == address(0)), 'soulbound');
  }

  /// @dev Use OperatorFilterer modifier to restrict approvals
  function setApprovalForAll(
    address operator,
    bool approved
  ) public virtual override onlyAllowedOperatorApproval(operator) {
    super.setApprovalForAll(operator, approved);
  }

  /// @dev Use OperatorFilterer modifier to restrict approvals
  function approve(
    address operator,
    uint256 tokenId
  ) public virtual override onlyAllowedOperatorApproval(operator) {
    super.approve(operator, tokenId);
  }
}

File 2 of 26 : AccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)

pragma solidity ^0.8.0;

import "./IAccessControl.sol";
import "../utils/Context.sol";
import "../utils/Strings.sol";
import "../utils/introspection/ERC165.sol";

/**
 * @dev Contract module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it.
 */
abstract contract AccessControl is Context, IAccessControl, ERC165 {
    struct RoleData {
        mapping(address => bool) members;
        bytes32 adminRole;
    }

    mapping(bytes32 => RoleData) private _roles;

    bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;

    /**
     * @dev Modifier that checks that an account has a specific role. Reverts
     * with a standardized message including the required role.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     *
     * _Available since v4.1._
     */
    modifier onlyRole(bytes32 role) {
        _checkRole(role);
        _;
    }

    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) public view virtual override returns (bool) {
        return _roles[role].members[account];
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRole(bytes32 role) internal view virtual {
        _checkRole(role, _msgSender());
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role`.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRole(bytes32 role, address account) internal view virtual {
        if (!hasRole(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControl: account ",
                        Strings.toHexString(account),
                        " is missing role ",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {
        return _roles[role].adminRole;
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleGranted} event.
     */
    function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _grantRole(role, account);
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     *
     * May emit a {RoleRevoked} event.
     */
    function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {
        _revokeRole(role, account);
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     *
     * May emit a {RoleRevoked} event.
     */
    function renounceRole(bytes32 role, address account) public virtual override {
        require(account == _msgSender(), "AccessControl: can only renounce roles for self");

        _revokeRole(role, account);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event. Note that unlike {grantRole}, this function doesn't perform any
     * checks on the calling account.
     *
     * May emit a {RoleGranted} event.
     *
     * [WARNING]
     * ====
     * This function should only be called from the constructor when setting
     * up the initial roles for the system.
     *
     * Using this function in any other way is effectively circumventing the admin
     * system imposed by {AccessControl}.
     * ====
     *
     * NOTE: This function is deprecated in favor of {_grantRole}.
     */
    function _setupRole(bytes32 role, address account) internal virtual {
        _grantRole(role, account);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
        bytes32 previousAdminRole = getRoleAdmin(role);
        _roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    /**
     * @dev Grants `role` to `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function _grantRole(bytes32 role, address account) internal virtual {
        if (!hasRole(role, account)) {
            _roles[role].members[account] = true;
            emit RoleGranted(role, account, _msgSender());
        }
    }

    /**
     * @dev Revokes `role` from `account`.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function _revokeRole(bytes32 role, address account) internal virtual {
        if (hasRole(role, account)) {
            _roles[role].members[account] = false;
            emit RoleRevoked(role, account, _msgSender());
        }
    }
}

File 3 of 26 : IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)

pragma solidity ^0.8.0;

/**
 * @dev External interface of AccessControl declared to support ERC165 detection.
 */
interface IAccessControl {
    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     *
     * _Available since v3.1._
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call, an admin role
     * bearer except when using {AccessControl-_setupRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external;

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `account`.
     */
    function renounceRole(bytes32 role, address account) external;
}

File 4 of 26 : Ownable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)

pragma solidity ^0.8.0;

import "../utils/Context.sol";

/**
 * @dev Contract module which provides a basic access control mechanism, where
 * there is an account (an owner) that can be granted exclusive access to
 * specific functions.
 *
 * By default, the owner account will be the one that deploys the contract. This
 * can later be changed with {transferOwnership}.
 *
 * This module is used through inheritance. It will make available the modifier
 * `onlyOwner`, which can be applied to your functions to restrict their use to
 * the owner.
 */
abstract contract Ownable is Context {
    address private _owner;

    event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);

    /**
     * @dev Initializes the contract setting the deployer as the initial owner.
     */
    constructor() {
        _transferOwnership(_msgSender());
    }

    /**
     * @dev Throws if called by any account other than the owner.
     */
    modifier onlyOwner() {
        _checkOwner();
        _;
    }

    /**
     * @dev Returns the address of the current owner.
     */
    function owner() public view virtual returns (address) {
        return _owner;
    }

    /**
     * @dev Throws if the sender is not the owner.
     */
    function _checkOwner() internal view virtual {
        require(owner() == _msgSender(), "Ownable: caller is not the owner");
    }

    /**
     * @dev Leaves the contract without owner. It will not be possible to call
     * `onlyOwner` functions anymore. Can only be called by the current owner.
     *
     * NOTE: Renouncing ownership will leave the contract without an owner,
     * thereby removing any functionality that is only available to the owner.
     */
    function renounceOwnership() public virtual onlyOwner {
        _transferOwnership(address(0));
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Can only be called by the current owner.
     */
    function transferOwnership(address newOwner) public virtual onlyOwner {
        require(newOwner != address(0), "Ownable: new owner is the zero address");
        _transferOwnership(newOwner);
    }

    /**
     * @dev Transfers ownership of the contract to a new account (`newOwner`).
     * Internal function without access restriction.
     */
    function _transferOwnership(address newOwner) internal virtual {
        address oldOwner = _owner;
        _owner = newOwner;
        emit OwnershipTransferred(oldOwner, newOwner);
    }
}

File 5 of 26 : Initializable.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (proxy/utils/Initializable.sol)

pragma solidity ^0.8.2;

import "../../utils/Address.sol";

/**
 * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
 * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
 * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
 * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
 *
 * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
 * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
 * case an upgrade adds a module that needs to be initialized.
 *
 * For example:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * contract MyToken is ERC20Upgradeable {
 *     function initialize() initializer public {
 *         __ERC20_init("MyToken", "MTK");
 *     }
 * }
 * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
 *     function initializeV2() reinitializer(2) public {
 *         __ERC20Permit_init("MyToken");
 *     }
 * }
 * ```
 *
 * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
 * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
 *
 * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
 * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
 *
 * [CAUTION]
 * ====
 * Avoid leaving a contract uninitialized.
 *
 * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
 * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
 * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
 *
 * [.hljs-theme-light.nopadding]
 * ```
 * /// @custom:oz-upgrades-unsafe-allow constructor
 * constructor() {
 *     _disableInitializers();
 * }
 * ```
 * ====
 */
abstract contract Initializable {
    /**
     * @dev Indicates that the contract has been initialized.
     * @custom:oz-retyped-from bool
     */
    uint8 private _initialized;

    /**
     * @dev Indicates that the contract is in the process of being initialized.
     */
    bool private _initializing;

    /**
     * @dev Triggered when the contract has been initialized or reinitialized.
     */
    event Initialized(uint8 version);

    /**
     * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
     * `onlyInitializing` functions can be used to initialize parent contracts.
     *
     * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
     * constructor.
     *
     * Emits an {Initialized} event.
     */
    modifier initializer() {
        bool isTopLevelCall = !_initializing;
        require(
            (isTopLevelCall && _initialized < 1) || (!Address.isContract(address(this)) && _initialized == 1),
            "Initializable: contract is already initialized"
        );
        _initialized = 1;
        if (isTopLevelCall) {
            _initializing = true;
        }
        _;
        if (isTopLevelCall) {
            _initializing = false;
            emit Initialized(1);
        }
    }

    /**
     * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
     * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
     * used to initialize parent contracts.
     *
     * A reinitializer may be used after the original initialization step. This is essential to configure modules that
     * are added through upgrades and that require initialization.
     *
     * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
     * cannot be nested. If one is invoked in the context of another, execution will revert.
     *
     * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
     * a contract, executing them in the right order is up to the developer or operator.
     *
     * WARNING: setting the version to 255 will prevent any future reinitialization.
     *
     * Emits an {Initialized} event.
     */
    modifier reinitializer(uint8 version) {
        require(!_initializing && _initialized < version, "Initializable: contract is already initialized");
        _initialized = version;
        _initializing = true;
        _;
        _initializing = false;
        emit Initialized(version);
    }

    /**
     * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
     * {initializer} and {reinitializer} modifiers, directly or indirectly.
     */
    modifier onlyInitializing() {
        require(_initializing, "Initializable: contract is not initializing");
        _;
    }

    /**
     * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
     * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
     * to any version. It is recommended to use this to lock implementation contracts that are designed to be called
     * through proxies.
     *
     * Emits an {Initialized} event the first time it is successfully executed.
     */
    function _disableInitializers() internal virtual {
        require(!_initializing, "Initializable: contract is initializing");
        if (_initialized < type(uint8).max) {
            _initialized = type(uint8).max;
            emit Initialized(type(uint8).max);
        }
    }

    /**
     * @dev Internal function that returns the initialized version. Returns `_initialized`
     */
    function _getInitializedVersion() internal view returns (uint8) {
        return _initialized;
    }

    /**
     * @dev Internal function that returns the initialized version. Returns `_initializing`
     */
    function _isInitializing() internal view returns (bool) {
        return _initializing;
    }
}

File 6 of 26 : Address.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)

pragma solidity ^0.8.1;

/**
 * @dev Collection of functions related to the address type
 */
library Address {
    /**
     * @dev Returns true if `account` is a contract.
     *
     * [IMPORTANT]
     * ====
     * It is unsafe to assume that an address for which this function returns
     * false is an externally-owned account (EOA) and not a contract.
     *
     * Among others, `isContract` will return false for the following
     * types of addresses:
     *
     *  - an externally-owned account
     *  - a contract in construction
     *  - an address where a contract will be created
     *  - an address where a contract lived, but was destroyed
     * ====
     *
     * [IMPORTANT]
     * ====
     * You shouldn't rely on `isContract` to protect against flash loan attacks!
     *
     * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
     * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
     * constructor.
     * ====
     */
    function isContract(address account) internal view returns (bool) {
        // This method relies on extcodesize/address.code.length, which returns 0
        // for contracts in construction, since the code is only stored at the end
        // of the constructor execution.

        return account.code.length > 0;
    }

    /**
     * @dev Replacement for Solidity's `transfer`: sends `amount` wei to
     * `recipient`, forwarding all available gas and reverting on errors.
     *
     * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
     * of certain opcodes, possibly making contracts go over the 2300 gas limit
     * imposed by `transfer`, making them unable to receive funds via
     * `transfer`. {sendValue} removes this limitation.
     *
     * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
     *
     * IMPORTANT: because control is transferred to `recipient`, care must be
     * taken to not create reentrancy vulnerabilities. Consider using
     * {ReentrancyGuard} or the
     * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
     */
    function sendValue(address payable recipient, uint256 amount) internal {
        require(address(this).balance >= amount, "Address: insufficient balance");

        (bool success, ) = recipient.call{value: amount}("");
        require(success, "Address: unable to send value, recipient may have reverted");
    }

    /**
     * @dev Performs a Solidity function call using a low level `call`. A
     * plain `call` is an unsafe replacement for a function call: use this
     * function instead.
     *
     * If `target` reverts with a revert reason, it is bubbled up by this
     * function (like regular Solidity function calls).
     *
     * Returns the raw returned data. To convert to the expected return value,
     * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
     *
     * Requirements:
     *
     * - `target` must be a contract.
     * - calling `target` with `data` must not revert.
     *
     * _Available since v3.1._
     */
    function functionCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, "Address: low-level call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
     * `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, 0, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but also transferring `value` wei to `target`.
     *
     * Requirements:
     *
     * - the calling contract must have an ETH balance of at least `value`.
     * - the called Solidity function must be `payable`.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value
    ) internal returns (bytes memory) {
        return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
    }

    /**
     * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
     * with `errorMessage` as a fallback revert reason when `target` reverts.
     *
     * _Available since v3.1._
     */
    function functionCallWithValue(
        address target,
        bytes memory data,
        uint256 value,
        string memory errorMessage
    ) internal returns (bytes memory) {
        require(address(this).balance >= value, "Address: insufficient balance for call");
        (bool success, bytes memory returndata) = target.call{value: value}(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
        return functionStaticCall(target, data, "Address: low-level static call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a static call.
     *
     * _Available since v3.3._
     */
    function functionStaticCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        (bool success, bytes memory returndata) = target.staticcall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) {
        return functionDelegateCall(target, data, "Address: low-level delegate call failed");
    }

    /**
     * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
     * but performing a delegate call.
     *
     * _Available since v3.4._
     */
    function functionDelegateCall(
        address target,
        bytes memory data,
        string memory errorMessage
    ) internal returns (bytes memory) {
        (bool success, bytes memory returndata) = target.delegatecall(data);
        return verifyCallResultFromTarget(target, success, returndata, errorMessage);
    }

    /**
     * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
     * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
     *
     * _Available since v4.8._
     */
    function verifyCallResultFromTarget(
        address target,
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal view returns (bytes memory) {
        if (success) {
            if (returndata.length == 0) {
                // only check isContract if the call was successful and the return data is empty
                // otherwise we already know that it was a contract
                require(isContract(target), "Address: call to non-contract");
            }
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    /**
     * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
     * revert reason or using the provided one.
     *
     * _Available since v4.3._
     */
    function verifyCallResult(
        bool success,
        bytes memory returndata,
        string memory errorMessage
    ) internal pure returns (bytes memory) {
        if (success) {
            return returndata;
        } else {
            _revert(returndata, errorMessage);
        }
    }

    function _revert(bytes memory returndata, string memory errorMessage) private pure {
        // Look for revert reason and bubble it up if present
        if (returndata.length > 0) {
            // The easiest way to bubble the revert reason is using memory via assembly
            /// @solidity memory-safe-assembly
            assembly {
                let returndata_size := mload(returndata)
                revert(add(32, returndata), returndata_size)
            }
        } else {
            revert(errorMessage);
        }
    }
}

File 7 of 26 : Context.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)

pragma solidity ^0.8.0;

/**
 * @dev Provides information about the current execution context, including the
 * sender of the transaction and its data. While these are generally available
 * via msg.sender and msg.data, they should not be accessed in such a direct
 * manner, since when dealing with meta-transactions the account sending and
 * paying for execution may not be the actual sender (as far as an application
 * is concerned).
 *
 * This contract is only required for intermediate, library-like contracts.
 */
abstract contract Context {
    function _msgSender() internal view virtual returns (address) {
        return msg.sender;
    }

    function _msgData() internal view virtual returns (bytes calldata) {
        return msg.data;
    }
}

File 8 of 26 : MerkleProof.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)

pragma solidity ^0.8.0;

/**
 * @dev These functions deal with verification of Merkle Tree proofs.
 *
 * The tree and the proofs can be generated using our
 * https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
 * You will find a quickstart guide in the readme.
 *
 * WARNING: You should avoid using leaf values that are 64 bytes long prior to
 * hashing, or use a hash function other than keccak256 for hashing leaves.
 * This is because the concatenation of a sorted pair of internal nodes in
 * the merkle tree could be reinterpreted as a leaf value.
 * OpenZeppelin's JavaScript library generates merkle trees that are safe
 * against this attack out of the box.
 */
library MerkleProof {
    /**
     * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
     * defined by `root`. For this, a `proof` must be provided, containing
     * sibling hashes on the branch from the leaf to the root of the tree. Each
     * pair of leaves and each pair of pre-images are assumed to be sorted.
     */
    function verify(
        bytes32[] memory proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProof(proof, leaf) == root;
    }

    /**
     * @dev Calldata version of {verify}
     *
     * _Available since v4.7._
     */
    function verifyCalldata(
        bytes32[] calldata proof,
        bytes32 root,
        bytes32 leaf
    ) internal pure returns (bool) {
        return processProofCalldata(proof, leaf) == root;
    }

    /**
     * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
     * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
     * hash matches the root of the tree. When processing the proof, the pairs
     * of leafs & pre-images are assumed to be sorted.
     *
     * _Available since v4.4._
     */
    function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Calldata version of {processProof}
     *
     * _Available since v4.7._
     */
    function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) {
        bytes32 computedHash = leaf;
        for (uint256 i = 0; i < proof.length; i++) {
            computedHash = _hashPair(computedHash, proof[i]);
        }
        return computedHash;
    }

    /**
     * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
     * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerify(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProof(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Calldata version of {multiProofVerify}
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function multiProofVerifyCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32 root,
        bytes32[] memory leaves
    ) internal pure returns (bool) {
        return processMultiProofCalldata(proof, proofFlags, leaves) == root;
    }

    /**
     * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
     * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
     * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
     * respectively.
     *
     * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
     * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
     * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
     *
     * _Available since v4.7._
     */
    function processMultiProof(
        bytes32[] memory proof,
        bool[] memory proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    /**
     * @dev Calldata version of {processMultiProof}.
     *
     * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
     *
     * _Available since v4.7._
     */
    function processMultiProofCalldata(
        bytes32[] calldata proof,
        bool[] calldata proofFlags,
        bytes32[] memory leaves
    ) internal pure returns (bytes32 merkleRoot) {
        // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
        // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
        // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
        // the merkle tree.
        uint256 leavesLen = leaves.length;
        uint256 totalHashes = proofFlags.length;

        // Check proof validity.
        require(leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof");

        // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
        // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
        bytes32[] memory hashes = new bytes32[](totalHashes);
        uint256 leafPos = 0;
        uint256 hashPos = 0;
        uint256 proofPos = 0;
        // At each step, we compute the next hash using two values:
        // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
        //   get the next hash.
        // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
        //   `proof` array.
        for (uint256 i = 0; i < totalHashes; i++) {
            bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++];
            bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++];
            hashes[i] = _hashPair(a, b);
        }

        if (totalHashes > 0) {
            return hashes[totalHashes - 1];
        } else if (leavesLen > 0) {
            return leaves[0];
        } else {
            return proof[0];
        }
    }

    function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
        return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
    }

    function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) {
        /// @solidity memory-safe-assembly
        assembly {
            mstore(0x00, a)
            mstore(0x20, b)
            value := keccak256(0x00, 0x40)
        }
    }
}

File 9 of 26 : ERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)

pragma solidity ^0.8.0;

import "./IERC165.sol";

/**
 * @dev Implementation of the {IERC165} interface.
 *
 * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
 * for the additional interface id that will be supported. For example:
 *
 * ```solidity
 * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
 *     return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
 * }
 * ```
 *
 * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
 */
abstract contract ERC165 is IERC165 {
    /**
     * @dev See {IERC165-supportsInterface}.
     */
    function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
        return interfaceId == type(IERC165).interfaceId;
    }
}

File 10 of 26 : IERC165.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)

pragma solidity ^0.8.0;

/**
 * @dev Interface of the ERC165 standard, as defined in the
 * https://eips.ethereum.org/EIPS/eip-165[EIP].
 *
 * Implementers can declare support of contract interfaces, which can then be
 * queried by others ({ERC165Checker}).
 *
 * For an implementation, see {ERC165}.
 */
interface IERC165 {
    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30 000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);
}

File 11 of 26 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)

pragma solidity ^0.8.0;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    enum Rounding {
        Down, // Toward negative infinity
        Up, // Toward infinity
        Zero // Toward zero
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds up instead
     * of rounding down.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
     * with further edits by Uniswap Labs also under MIT license.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator
    ) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod0 := mul(x, y)
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            require(denominator > prod1);

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
            // See https://cs.stackexchange.com/q/138556/92363.

            // Does not overflow because the denominator cannot be zero at this stage in the function.
            uint256 twos = denominator & (~denominator + 1);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
            // in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(
        uint256 x,
        uint256 y,
        uint256 denominator,
        Rounding rounding
    ) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10, rounded down, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10**64) {
                value /= 10**64;
                result += 64;
            }
            if (value >= 10**32) {
                value /= 10**32;
                result += 32;
            }
            if (value >= 10**16) {
                value /= 10**16;
                result += 16;
            }
            if (value >= 10**8) {
                value /= 10**8;
                result += 8;
            }
            if (value >= 10**4) {
                value /= 10**4;
                result += 4;
            }
            if (value >= 10**2) {
                value /= 10**2;
                result += 2;
            }
            if (value >= 10**1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256, rounded down, of a positive value.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
        }
    }
}

File 12 of 26 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)

pragma solidity ^0.8.0;

import "./math/Math.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant _SYMBOLS = "0123456789abcdef";
    uint8 private constant _ADDRESS_LENGTH = 20;

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = _SYMBOLS[value & 0xf];
            value >>= 4;
        }
        require(value == 0, "Strings: hex length insufficient");
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
    }
}

File 13 of 26 : ERC721A.sol
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.2
// Creator: Chiru Labs

pragma solidity ^0.8.4;

import "erc721a/contracts/IERC721A.sol";

/**
 * @dev Interface of ERC721 token receiver.
 */
interface ERC721A__IERC721Receiver {
  function onERC721Received(
    address operator,
    address from,
    uint256 tokenId,
    bytes calldata data
  ) external returns (bytes4);
}

/**
 * @title ERC721A
 *
 * @dev Implementation of the [ERC721](https://eips.ethereum.org/EIPS/eip-721)
 * Non-Fungible Token Standard, including the Metadata extension.
 * Optimized for lower gas during batch mints.
 *
 * Token IDs are minted in sequential order (e.g. 0, 1, 2, 3, ...)
 * starting from `_startTokenId()`.
 *
 * Assumptions:
 *
 * - An owner cannot have more than 2**64 - 1 (max value of uint64) of supply.
 * - The maximum token ID cannot exceed 2**256 - 1 (max value of uint256).
 */
contract ERC721A is IERC721A {
  // Reference type for token approval.
  struct TokenApprovalRef {
    address value;
  }

  // =============================================================
  //                           CONSTANTS
  // =============================================================

  // Mask of an entry in packed address data.
  uint256 private constant _BITMASK_ADDRESS_DATA_ENTRY = (1 << 64) - 1;

  // The bit position of `numberMinted` in packed address data.
  uint256 private constant _BITPOS_NUMBER_MINTED = 64;

  // The bit position of `numberBurned` in packed address data.
  uint256 private constant _BITPOS_NUMBER_BURNED = 128;

  // The bit position of `aux` in packed address data.
  uint256 private constant _BITPOS_AUX = 192;

  // Mask of all 256 bits in packed address data except the 64 bits for `aux`.
  uint256 private constant _BITMASK_AUX_COMPLEMENT = (1 << 192) - 1;

  // The bit position of `startTimestamp` in packed ownership.
  uint256 private constant _BITPOS_START_TIMESTAMP = 160;

  // The bit mask of the `burned` bit in packed ownership.
  uint256 private constant _BITMASK_BURNED = 1 << 224;

  // The bit position of the `nextInitialized` bit in packed ownership.
  uint256 private constant _BITPOS_NEXT_INITIALIZED = 225;

  // The bit mask of the `nextInitialized` bit in packed ownership.
  uint256 private constant _BITMASK_NEXT_INITIALIZED = 1 << 225;

  // The bit position of `extraData` in packed ownership.
  uint256 private constant _BITPOS_EXTRA_DATA = 232;

  // Mask of all 256 bits in a packed ownership except the 24 bits for `extraData`.
  uint256 private constant _BITMASK_EXTRA_DATA_COMPLEMENT = (1 << 232) - 1;

  // The mask of the lower 160 bits for addresses.
  uint256 private constant _BITMASK_ADDRESS = (1 << 160) - 1;

  // The maximum `quantity` that can be minted with {_mintERC2309}.
  // This limit is to prevent overflows on the address data entries.
  // For a limit of 5000, a total of 3.689e15 calls to {_mintERC2309}
  // is required to cause an overflow, which is unrealistic.
  uint256 private constant _MAX_MINT_ERC2309_QUANTITY_LIMIT = 5000;

  // The `Transfer` event signature is given by:
  // `keccak256(bytes("Transfer(address,address,uint256)"))`.
  bytes32 private constant _TRANSFER_EVENT_SIGNATURE =
    0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef;

  // =============================================================
  //                            STORAGE
  // =============================================================

  // The next token ID to be minted.
  // internal, set in child initializer
  uint256 internal _currentIndex;

  // The number of tokens burned.
  uint256 private _burnCounter;

  // Token name
  // internal, set in child initializer
  string internal _name;

  // Token symbol
  // internal, set in child initializer
  string internal _symbol;

  // Mapping from token ID to ownership details
  // An empty struct value does not necessarily mean the token is unowned.
  // See {_packedOwnershipOf} implementation for details.
  //
  // Bits Layout:
  // - [0..159]   `addr`
  // - [160..223] `startTimestamp`
  // - [224]      `burned`
  // - [225]      `nextInitialized`
  // - [232..255] `extraData`
  mapping(uint256 => uint256) private _packedOwnerships;

  // Mapping owner address to address data.
  //
  // Bits Layout:
  // - [0..63]    `balance`
  // - [64..127]  `numberMinted`
  // - [128..191] `numberBurned`
  // - [192..255] `aux`
  mapping(address => uint256) private _packedAddressData;

  // Mapping from token ID to approved address.
  mapping(uint256 => TokenApprovalRef) private _tokenApprovals;

  // Mapping from owner to operator approvals
  mapping(address => mapping(address => bool)) private _operatorApprovals;

  // =============================================================
  //                          CONSTRUCTOR
  // =============================================================

  // set _name _symbol and _currentIndex in child initializer
  constructor() {}

  // =============================================================
  //                   TOKEN COUNTING OPERATIONS
  // =============================================================

  /**
   * @dev Returns the starting token ID.
   * To change the starting token ID, please override this function.
   */
  function _startTokenId() internal view virtual returns (uint256) {
    return 0;
  }

  /**
   * @dev Returns the next token ID to be minted.
   */
  function _nextTokenId() internal view virtual returns (uint256) {
    return _currentIndex;
  }

  /**
   * @dev Returns the total number of tokens in existence.
   * Burned tokens will reduce the count.
   * To get the total number of tokens minted, please see {_totalMinted}.
   */
  function totalSupply() public view virtual override returns (uint256) {
    // Counter underflow is impossible as _burnCounter cannot be incremented
    // more than `_currentIndex - _startTokenId()` times.
    unchecked {
      return _currentIndex - _burnCounter - _startTokenId();
    }
  }

  /**
   * @dev Returns the total amount of tokens minted in the contract.
   */
  function _totalMinted() internal view virtual returns (uint256) {
    // Counter underflow is impossible as `_currentIndex` does not decrement,
    // and it is initialized to `_startTokenId()`.
    unchecked {
      return _currentIndex - _startTokenId();
    }
  }

  /**
   * @dev Returns the total number of tokens burned.
   */
  function _totalBurned() internal view virtual returns (uint256) {
    return _burnCounter;
  }

  // =============================================================
  //                    ADDRESS DATA OPERATIONS
  // =============================================================

  /**
   * @dev Returns the number of tokens in `owner`'s account.
   */
  function balanceOf(address owner)
    public
    view
    virtual
    override
    returns (uint256)
  {
    if (owner == address(0)) revert BalanceQueryForZeroAddress();
    return _packedAddressData[owner] & _BITMASK_ADDRESS_DATA_ENTRY;
  }

  /**
   * Returns the number of tokens minted by `owner`.
   */
  function _numberMinted(address owner) internal view returns (uint256) {
    return
      (_packedAddressData[owner] >> _BITPOS_NUMBER_MINTED) &
      _BITMASK_ADDRESS_DATA_ENTRY;
  }

  /**
   * Returns the number of tokens burned by or on behalf of `owner`.
   */
  function _numberBurned(address owner) internal view returns (uint256) {
    return
      (_packedAddressData[owner] >> _BITPOS_NUMBER_BURNED) &
      _BITMASK_ADDRESS_DATA_ENTRY;
  }

  /**
   * Returns the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
   */
  function _getAux(address owner) internal view returns (uint64) {
    return uint64(_packedAddressData[owner] >> _BITPOS_AUX);
  }

  /**
   * Sets the auxiliary data for `owner`. (e.g. number of whitelist mint slots used).
   * If there are multiple variables, please pack them into a uint64.
   */
  function _setAux(address owner, uint64 aux) internal virtual {
    uint256 packed = _packedAddressData[owner];
    uint256 auxCasted;
    // Cast `aux` with assembly to avoid redundant masking.
    assembly {
      auxCasted := aux
    }
    packed = (packed & _BITMASK_AUX_COMPLEMENT) | (auxCasted << _BITPOS_AUX);
    _packedAddressData[owner] = packed;
  }

  // =============================================================
  //                            IERC165
  // =============================================================

  /**
   * @dev Returns true if this contract implements the interface defined by
   * `interfaceId`. See the corresponding
   * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
   * to learn more about how these ids are created.
   *
   * This function call must use less than 30000 gas.
   */
  function supportsInterface(bytes4 interfaceId)
    public
    view
    virtual
    override
    returns (bool)
  {
    // The interface IDs are constants representing the first 4 bytes
    // of the XOR of all function selectors in the interface.
    // See: [ERC165](https://eips.ethereum.org/EIPS/eip-165)
    // (e.g. `bytes4(i.functionA.selector ^ i.functionB.selector ^ ...)`)
    return
      interfaceId == 0x01ffc9a7 || // ERC165 interface ID for ERC165.
      interfaceId == 0x80ac58cd || // ERC165 interface ID for ERC721.
      interfaceId == 0x5b5e139f; // ERC165 interface ID for ERC721Metadata.
  }

  // =============================================================
  //                        IERC721Metadata
  // =============================================================

  /**
   * @dev Returns the token collection name.
   */
  function name() public view virtual override returns (string memory) {
    return _name;
  }

  /**
   * @dev Returns the token collection symbol.
   */
  function symbol() public view virtual override returns (string memory) {
    return _symbol;
  }

  /**
   * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
   */
  function tokenURI(uint256 tokenId)
    public
    view
    virtual
    override
    returns (string memory)
  {
    if (!_exists(tokenId)) revert URIQueryForNonexistentToken();

    string memory baseURI = _baseURI();
    return
      bytes(baseURI).length != 0
        ? string(abi.encodePacked(baseURI, _toString(tokenId)))
        : "";
  }

  /**
   * @dev Base URI for computing {tokenURI}. If set, the resulting URI for each
   * token will be the concatenation of the `baseURI` and the `tokenId`. Empty
   * by default, it can be overridden in child contracts.
   */
  function _baseURI() internal view virtual returns (string memory) {
    return "";
  }

  // =============================================================
  //                     OWNERSHIPS OPERATIONS
  // =============================================================

  /**
   * @dev Returns the owner of the `tokenId` token.
   *
   * Requirements:
   *
   * - `tokenId` must exist.
   */
  function ownerOf(uint256 tokenId)
    public
    view
    virtual
    override
    returns (address)
  {
    return address(uint160(_packedOwnershipOf(tokenId)));
  }

  /**
   * @dev Gas spent here starts off proportional to the maximum mint batch size.
   * It gradually moves to O(1) as tokens get transferred around over time.
   */
  function _ownershipOf(uint256 tokenId)
    internal
    view
    virtual
    returns (TokenOwnership memory)
  {
    return _unpackedOwnership(_packedOwnershipOf(tokenId));
  }

  /**
   * @dev Returns the unpacked `TokenOwnership` struct at `index`.
   */
  function _ownershipAt(uint256 index)
    internal
    view
    virtual
    returns (TokenOwnership memory)
  {
    return _unpackedOwnership(_packedOwnerships[index]);
  }

  /**
   * @dev Initializes the ownership slot minted at `index` for efficiency purposes.
   */
  function _initializeOwnershipAt(uint256 index) internal virtual {
    if (_packedOwnerships[index] == 0) {
      _packedOwnerships[index] = _packedOwnershipOf(index);
    }
  }

  /**
   * Returns the packed ownership data of `tokenId`.
   */
  function _packedOwnershipOf(uint256 tokenId) private view returns (uint256) {
    uint256 curr = tokenId;

    unchecked {
      if (_startTokenId() <= curr)
        if (curr < _currentIndex) {
          uint256 packed = _packedOwnerships[curr];
          // If not burned.
          if (packed & _BITMASK_BURNED == 0) {
            // Invariant:
            // There will always be an initialized ownership slot
            // (i.e. `ownership.addr != address(0) && ownership.burned == false`)
            // before an unintialized ownership slot
            // (i.e. `ownership.addr == address(0) && ownership.burned == false`)
            // Hence, `curr` will not underflow.
            //
            // We can directly compare the packed value.
            // If the address is zero, packed will be zero.
            while (packed == 0) {
              packed = _packedOwnerships[--curr];
            }
            return packed;
          }
        }
    }
    revert OwnerQueryForNonexistentToken();
  }

  /**
   * @dev Returns the unpacked `TokenOwnership` struct from `packed`.
   */
  function _unpackedOwnership(uint256 packed)
    private
    pure
    returns (TokenOwnership memory ownership)
  {
    ownership.addr = address(uint160(packed));
    ownership.startTimestamp = uint64(packed >> _BITPOS_START_TIMESTAMP);
    ownership.burned = packed & _BITMASK_BURNED != 0;
    ownership.extraData = uint24(packed >> _BITPOS_EXTRA_DATA);
  }

  /**
   * @dev Packs ownership data into a single uint256.
   */
  function _packOwnershipData(address owner, uint256 flags)
    private
    view
    returns (uint256 result)
  {
    assembly {
      // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
      owner := and(owner, _BITMASK_ADDRESS)
      // `owner | (block.timestamp << _BITPOS_START_TIMESTAMP) | flags`.
      result := or(owner, or(shl(_BITPOS_START_TIMESTAMP, timestamp()), flags))
    }
  }

  /**
   * @dev Returns the `nextInitialized` flag set if `quantity` equals 1.
   */
  function _nextInitializedFlag(uint256 quantity)
    private
    pure
    returns (uint256 result)
  {
    // For branchless setting of the `nextInitialized` flag.
    assembly {
      // `(quantity == 1) << _BITPOS_NEXT_INITIALIZED`.
      result := shl(_BITPOS_NEXT_INITIALIZED, eq(quantity, 1))
    }
  }

  // =============================================================
  //                      APPROVAL OPERATIONS
  // =============================================================

  /**
   * @dev Gives permission to `to` to transfer `tokenId` token to another account.
   * The approval is cleared when the token is transferred.
   *
   * Only a single account can be approved at a time, so approving the
   * zero address clears previous approvals.
   *
   * Requirements:
   *
   * - The caller must own the token or be an approved operator.
   * - `tokenId` must exist.
   *
   * Emits an {Approval} event.
   */
  function approve(address to, uint256 tokenId) public virtual override {
    address owner = ownerOf(tokenId);

    if (_msgSenderERC721A() != owner)
      if (!isApprovedForAll(owner, _msgSenderERC721A())) {
        revert ApprovalCallerNotOwnerNorApproved();
      }

    _tokenApprovals[tokenId].value = to;
    emit Approval(owner, to, tokenId);
  }

  /**
   * @dev Returns the account approved for `tokenId` token.
   *
   * Requirements:
   *
   * - `tokenId` must exist.
   */
  function getApproved(uint256 tokenId)
    public
    view
    virtual
    override
    returns (address)
  {
    if (!_exists(tokenId)) revert ApprovalQueryForNonexistentToken();

    return _tokenApprovals[tokenId].value;
  }

  /**
   * @dev Approve or remove `operator` as an operator for the caller.
   * Operators can call {transferFrom} or {safeTransferFrom}
   * for any token owned by the caller.
   *
   * Requirements:
   *
   * - The `operator` cannot be the caller.
   *
   * Emits an {ApprovalForAll} event.
   */
  function setApprovalForAll(address operator, bool approved)
    public
    virtual
    override
  {
    if (operator == _msgSenderERC721A()) revert ApproveToCaller();

    _operatorApprovals[_msgSenderERC721A()][operator] = approved;
    emit ApprovalForAll(_msgSenderERC721A(), operator, approved);
  }

  /**
   * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
   *
   * See {setApprovalForAll}.
   */
  function isApprovedForAll(address owner, address operator)
    public
    view
    virtual
    override
    returns (bool)
  {
    return _operatorApprovals[owner][operator];
  }

  /**
   * @dev Returns whether `tokenId` exists.
   *
   * Tokens can be managed by their owner or approved accounts via {approve} or {setApprovalForAll}.
   *
   * Tokens start existing when they are minted. See {_mint}.
   */
  function _exists(uint256 tokenId) internal view virtual returns (bool) {
    return
      _startTokenId() <= tokenId &&
      tokenId < _currentIndex && // If within bounds,
      _packedOwnerships[tokenId] & _BITMASK_BURNED == 0; // and not burned.
  }

  /**
   * @dev Returns whether `msgSender` is equal to `approvedAddress` or `owner`.
   */
  function _isSenderApprovedOrOwner(
    address approvedAddress,
    address owner,
    address msgSender
  ) private pure returns (bool result) {
    assembly {
      // Mask `owner` to the lower 160 bits, in case the upper bits somehow aren't clean.
      owner := and(owner, _BITMASK_ADDRESS)
      // Mask `msgSender` to the lower 160 bits, in case the upper bits somehow aren't clean.
      msgSender := and(msgSender, _BITMASK_ADDRESS)
      // `msgSender == owner || msgSender == approvedAddress`.
      result := or(eq(msgSender, owner), eq(msgSender, approvedAddress))
    }
  }

  /**
   * @dev Returns the storage slot and value for the approved address of `tokenId`.
   */
  function _getApprovedSlotAndAddress(uint256 tokenId)
    private
    view
    returns (uint256 approvedAddressSlot, address approvedAddress)
  {
    TokenApprovalRef storage tokenApproval = _tokenApprovals[tokenId];
    // The following is equivalent to `approvedAddress = _tokenApprovals[tokenId]`.
    assembly {
      approvedAddressSlot := tokenApproval.slot
      approvedAddress := sload(approvedAddressSlot)
    }
  }

  // =============================================================
  //                      TRANSFER OPERATIONS
  // =============================================================

  /**
   * @dev Transfers `tokenId` from `from` to `to`.
   *
   * Requirements:
   *
   * - `from` cannot be the zero address.
   * - `to` cannot be the zero address.
   * - `tokenId` token must be owned by `from`.
   * - If the caller is not `from`, it must be approved to move this token
   * by either {approve} or {setApprovalForAll}.
   *
   * Emits a {Transfer} event.
   */
  function transferFrom(
    address from,
    address to,
    uint256 tokenId
  ) public virtual override {
    uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

    if (address(uint160(prevOwnershipPacked)) != from)
      revert TransferFromIncorrectOwner();

    (
      uint256 approvedAddressSlot,
      address approvedAddress
    ) = _getApprovedSlotAndAddress(tokenId);

    // The nested ifs save around 20+ gas over a compound boolean condition.
    if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
      if (!isApprovedForAll(from, _msgSenderERC721A()))
        revert TransferCallerNotOwnerNorApproved();

    if (to == address(0)) revert TransferToZeroAddress();

    _beforeTokenTransfers(from, to, tokenId, 1);

    // Clear approvals from the previous owner.
    assembly {
      if approvedAddress {
        // This is equivalent to `delete _tokenApprovals[tokenId]`.
        sstore(approvedAddressSlot, 0)
      }
    }

    // Underflow of the sender's balance is impossible because we check for
    // ownership above and the recipient's balance can't realistically overflow.
    // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
    unchecked {
      // We can directly increment and decrement the balances.
      --_packedAddressData[from]; // Updates: `balance -= 1`.
      ++_packedAddressData[to]; // Updates: `balance += 1`.

      // Updates:
      // - `address` to the next owner.
      // - `startTimestamp` to the timestamp of transfering.
      // - `burned` to `false`.
      // - `nextInitialized` to `true`.
      _packedOwnerships[tokenId] = _packOwnershipData(
        to,
        _BITMASK_NEXT_INITIALIZED |
          _nextExtraData(from, to, prevOwnershipPacked)
      );

      // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
      if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
        uint256 nextTokenId = tokenId + 1;
        // If the next slot's address is zero and not burned (i.e. packed value is zero).
        if (_packedOwnerships[nextTokenId] == 0) {
          // If the next slot is within bounds.
          if (nextTokenId != _currentIndex) {
            // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
            _packedOwnerships[nextTokenId] = prevOwnershipPacked;
          }
        }
      }
    }

    emit Transfer(from, to, tokenId);
    _afterTokenTransfers(from, to, tokenId, 1);
  }

  /**
   * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
   */
  function safeTransferFrom(
    address from,
    address to,
    uint256 tokenId
  ) public virtual override {
    safeTransferFrom(from, to, tokenId, "");
  }

  /**
   * @dev Safely transfers `tokenId` token from `from` to `to`.
   *
   * Requirements:
   *
   * - `from` cannot be the zero address.
   * - `to` cannot be the zero address.
   * - `tokenId` token must exist and be owned by `from`.
   * - If the caller is not `from`, it must be approved to move this token
   * by either {approve} or {setApprovalForAll}.
   * - If `to` refers to a smart contract, it must implement
   * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
   *
   * Emits a {Transfer} event.
   */
  function safeTransferFrom(
    address from,
    address to,
    uint256 tokenId,
    bytes memory _data
  ) public virtual override {
    transferFrom(from, to, tokenId);
    if (to.code.length != 0)
      if (!_checkContractOnERC721Received(from, to, tokenId, _data)) {
        revert TransferToNonERC721ReceiverImplementer();
      }
  }

  /**
   * @dev Hook that is called before a set of serially-ordered token IDs
   * are about to be transferred. This includes minting.
   * And also called before burning one token.
   *
   * `startTokenId` - the first token ID to be transferred.
   * `quantity` - the amount to be transferred.
   *
   * Calling conditions:
   *
   * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
   * transferred to `to`.
   * - When `from` is zero, `tokenId` will be minted for `to`.
   * - When `to` is zero, `tokenId` will be burned by `from`.
   * - `from` and `to` are never both zero.
   */
  function _beforeTokenTransfers(
    address from,
    address to,
    uint256 startTokenId,
    uint256 quantity
  ) internal virtual {}

  /**
   * @dev Hook that is called after a set of serially-ordered token IDs
   * have been transferred. This includes minting.
   * And also called after one token has been burned.
   *
   * `startTokenId` - the first token ID to be transferred.
   * `quantity` - the amount to be transferred.
   *
   * Calling conditions:
   *
   * - When `from` and `to` are both non-zero, `from`'s `tokenId` has been
   * transferred to `to`.
   * - When `from` is zero, `tokenId` has been minted for `to`.
   * - When `to` is zero, `tokenId` has been burned by `from`.
   * - `from` and `to` are never both zero.
   */
  function _afterTokenTransfers(
    address from,
    address to,
    uint256 startTokenId,
    uint256 quantity
  ) internal virtual {}

  /**
   * @dev Private function to invoke {IERC721Receiver-onERC721Received} on a target contract.
   *
   * `from` - Previous owner of the given token ID.
   * `to` - Target address that will receive the token.
   * `tokenId` - Token ID to be transferred.
   * `_data` - Optional data to send along with the call.
   *
   * Returns whether the call correctly returned the expected magic value.
   */
  function _checkContractOnERC721Received(
    address from,
    address to,
    uint256 tokenId,
    bytes memory _data
  ) private returns (bool) {
    try
      ERC721A__IERC721Receiver(to).onERC721Received(
        _msgSenderERC721A(),
        from,
        tokenId,
        _data
      )
    returns (bytes4 retval) {
      return retval == ERC721A__IERC721Receiver(to).onERC721Received.selector;
    } catch (bytes memory reason) {
      if (reason.length == 0) {
        revert TransferToNonERC721ReceiverImplementer();
      } else {
        assembly {
          revert(add(32, reason), mload(reason))
        }
      }
    }
  }

  // =============================================================
  //                        MINT OPERATIONS
  // =============================================================

  /**
   * @dev Mints `quantity` tokens and transfers them to `to`.
   *
   * Requirements:
   *
   * - `to` cannot be the zero address.
   * - `quantity` must be greater than 0.
   *
   * Emits a {Transfer} event for each mint.
   */
  function _mint(address to, uint256 quantity) internal virtual {
    uint256 startTokenId = _currentIndex;
    if (quantity == 0) revert MintZeroQuantity();

    _beforeTokenTransfers(address(0), to, startTokenId, quantity);

    // Overflows are incredibly unrealistic.
    // `balance` and `numberMinted` have a maximum limit of 2**64.
    // `tokenId` has a maximum limit of 2**256.
    unchecked {
      // Updates:
      // - `balance += quantity`.
      // - `numberMinted += quantity`.
      //
      // We can directly add to the `balance` and `numberMinted`.
      _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

      // Updates:
      // - `address` to the owner.
      // - `startTimestamp` to the timestamp of minting.
      // - `burned` to `false`.
      // - `nextInitialized` to `quantity == 1`.
      _packedOwnerships[startTokenId] = _packOwnershipData(
        to,
        _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
      );

      uint256 toMasked;
      uint256 end = startTokenId + quantity;

      // Use assembly to loop and emit the `Transfer` event for gas savings.
      assembly {
        // Mask `to` to the lower 160 bits, in case the upper bits somehow aren't clean.
        toMasked := and(to, _BITMASK_ADDRESS)
        // Emit the `Transfer` event.
        log4(
          0, // Start of data (0, since no data).
          0, // End of data (0, since no data).
          _TRANSFER_EVENT_SIGNATURE, // Signature.
          0, // `address(0)`.
          toMasked, // `to`.
          startTokenId // `tokenId`.
        )

        for {
          let tokenId := add(startTokenId, 1)
        } iszero(eq(tokenId, end)) {
          tokenId := add(tokenId, 1)
        } {
          // Emit the `Transfer` event. Similar to above.
          log4(0, 0, _TRANSFER_EVENT_SIGNATURE, 0, toMasked, tokenId)
        }
      }
      if (toMasked == 0) revert MintToZeroAddress();

      _currentIndex = end;
    }
    _afterTokenTransfers(address(0), to, startTokenId, quantity);
  }

  /**
   * @dev Mints `quantity` tokens and transfers them to `to`.
   *
   * This function is intended for efficient minting only during contract creation.
   *
   * It emits only one {ConsecutiveTransfer} as defined in
   * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309),
   * instead of a sequence of {Transfer} event(s).
   *
   * Calling this function outside of contract creation WILL make your contract
   * non-compliant with the ERC721 standard.
   * For full ERC721 compliance, substituting ERC721 {Transfer} event(s) with the ERC2309
   * {ConsecutiveTransfer} event is only permissible during contract creation.
   *
   * Requirements:
   *
   * - `to` cannot be the zero address.
   * - `quantity` must be greater than 0.
   *
   * Emits a {ConsecutiveTransfer} event.
   */
  function _mintERC2309(address to, uint256 quantity) internal virtual {
    uint256 startTokenId = _currentIndex;
    if (to == address(0)) revert MintToZeroAddress();
    if (quantity == 0) revert MintZeroQuantity();
    if (quantity > _MAX_MINT_ERC2309_QUANTITY_LIMIT)
      revert MintERC2309QuantityExceedsLimit();

    _beforeTokenTransfers(address(0), to, startTokenId, quantity);

    // Overflows are unrealistic due to the above check for `quantity` to be below the limit.
    unchecked {
      // Updates:
      // - `balance += quantity`.
      // - `numberMinted += quantity`.
      //
      // We can directly add to the `balance` and `numberMinted`.
      _packedAddressData[to] += quantity * ((1 << _BITPOS_NUMBER_MINTED) | 1);

      // Updates:
      // - `address` to the owner.
      // - `startTimestamp` to the timestamp of minting.
      // - `burned` to `false`.
      // - `nextInitialized` to `quantity == 1`.
      _packedOwnerships[startTokenId] = _packOwnershipData(
        to,
        _nextInitializedFlag(quantity) | _nextExtraData(address(0), to, 0)
      );

      emit ConsecutiveTransfer(
        startTokenId,
        startTokenId + quantity - 1,
        address(0),
        to
      );

      _currentIndex = startTokenId + quantity;
    }
    _afterTokenTransfers(address(0), to, startTokenId, quantity);
  }

  /**
   * @dev Safely mints `quantity` tokens and transfers them to `to`.
   *
   * Requirements:
   *
   * - If `to` refers to a smart contract, it must implement
   * {IERC721Receiver-onERC721Received}, which is called for each safe transfer.
   * - `quantity` must be greater than 0.
   *
   * See {_mint}.
   *
   * Emits a {Transfer} event for each mint.
   */
  function _safeMint(
    address to,
    uint256 quantity,
    bytes memory _data
  ) internal virtual {
    _mint(to, quantity);

    unchecked {
      if (to.code.length != 0) {
        uint256 end = _currentIndex;
        uint256 index = end - quantity;
        do {
          if (!_checkContractOnERC721Received(address(0), to, index++, _data)) {
            revert TransferToNonERC721ReceiverImplementer();
          }
        } while (index < end);
        // Reentrancy protection.
        if (_currentIndex != end) revert();
      }
    }
  }

  /**
   * @dev Equivalent to `_safeMint(to, quantity, '')`.
   */
  function _safeMint(address to, uint256 quantity) internal virtual {
    _safeMint(to, quantity, "");
  }

  // =============================================================
  //                        BURN OPERATIONS
  // =============================================================

  /**
   * @dev Equivalent to `_burn(tokenId, false)`.
   */
  function _burn(uint256 tokenId) internal virtual {
    _burn(tokenId, false);
  }

  /**
   * @dev Destroys `tokenId`.
   * The approval is cleared when the token is burned.
   *
   * Requirements:
   *
   * - `tokenId` must exist.
   *
   * Emits a {Transfer} event.
   */
  function _burn(uint256 tokenId, bool approvalCheck) internal virtual {
    uint256 prevOwnershipPacked = _packedOwnershipOf(tokenId);

    address from = address(uint160(prevOwnershipPacked));

    (
      uint256 approvedAddressSlot,
      address approvedAddress
    ) = _getApprovedSlotAndAddress(tokenId);

    if (approvalCheck) {
      // The nested ifs save around 20+ gas over a compound boolean condition.
      if (!_isSenderApprovedOrOwner(approvedAddress, from, _msgSenderERC721A()))
        if (!isApprovedForAll(from, _msgSenderERC721A()))
          revert TransferCallerNotOwnerNorApproved();
    }

    _beforeTokenTransfers(from, address(0), tokenId, 1);

    // Clear approvals from the previous owner.
    assembly {
      if approvedAddress {
        // This is equivalent to `delete _tokenApprovals[tokenId]`.
        sstore(approvedAddressSlot, 0)
      }
    }

    // Underflow of the sender's balance is impossible because we check for
    // ownership above and the recipient's balance can't realistically overflow.
    // Counter overflow is incredibly unrealistic as `tokenId` would have to be 2**256.
    unchecked {
      // Updates:
      // - `balance -= 1`.
      // - `numberBurned += 1`.
      //
      // We can directly decrement the balance, and increment the number burned.
      // This is equivalent to `packed -= 1; packed += 1 << _BITPOS_NUMBER_BURNED;`.
      _packedAddressData[from] += (1 << _BITPOS_NUMBER_BURNED) - 1;

      // Updates:
      // - `address` to the last owner.
      // - `startTimestamp` to the timestamp of burning.
      // - `burned` to `true`.
      // - `nextInitialized` to `true`.
      _packedOwnerships[tokenId] = _packOwnershipData(
        from,
        (_BITMASK_BURNED | _BITMASK_NEXT_INITIALIZED) |
          _nextExtraData(from, address(0), prevOwnershipPacked)
      );

      // If the next slot may not have been initialized (i.e. `nextInitialized == false`) .
      if (prevOwnershipPacked & _BITMASK_NEXT_INITIALIZED == 0) {
        uint256 nextTokenId = tokenId + 1;
        // If the next slot's address is zero and not burned (i.e. packed value is zero).
        if (_packedOwnerships[nextTokenId] == 0) {
          // If the next slot is within bounds.
          if (nextTokenId != _currentIndex) {
            // Initialize the next slot to maintain correctness for `ownerOf(tokenId + 1)`.
            _packedOwnerships[nextTokenId] = prevOwnershipPacked;
          }
        }
      }
    }

    emit Transfer(from, address(0), tokenId);
    _afterTokenTransfers(from, address(0), tokenId, 1);

    // Overflow not possible, as _burnCounter cannot be exceed _currentIndex times.
    unchecked {
      _burnCounter++;
    }
  }

  // =============================================================
  //                     EXTRA DATA OPERATIONS
  // =============================================================

  /**
   * @dev Directly sets the extra data for the ownership data `index`.
   */
  function _setExtraDataAt(uint256 index, uint24 extraData) internal virtual {
    uint256 packed = _packedOwnerships[index];
    if (packed == 0) revert OwnershipNotInitializedForExtraData();
    uint256 extraDataCasted;
    // Cast `extraData` with assembly to avoid redundant masking.
    assembly {
      extraDataCasted := extraData
    }
    packed =
      (packed & _BITMASK_EXTRA_DATA_COMPLEMENT) |
      (extraDataCasted << _BITPOS_EXTRA_DATA);
    _packedOwnerships[index] = packed;
  }

  /**
   * @dev Called during each token transfer to set the 24bit `extraData` field.
   * Intended to be overridden by the cosumer contract.
   *
   * `previousExtraData` - the value of `extraData` before transfer.
   *
   * Calling conditions:
   *
   * - When `from` and `to` are both non-zero, `from`'s `tokenId` will be
   * transferred to `to`.
   * - When `from` is zero, `tokenId` will be minted for `to`.
   * - When `to` is zero, `tokenId` will be burned by `from`.
   * - `from` and `to` are never both zero.
   */
  function _extraData(
    address from,
    address to,
    uint24 previousExtraData
  ) internal view virtual returns (uint24) {}

  /**
   * @dev Returns the next extra data for the packed ownership data.
   * The returned result is shifted into position.
   */
  function _nextExtraData(
    address from,
    address to,
    uint256 prevOwnershipPacked
  ) private view returns (uint256) {
    uint24 extraData = uint24(prevOwnershipPacked >> _BITPOS_EXTRA_DATA);
    return uint256(_extraData(from, to, extraData)) << _BITPOS_EXTRA_DATA;
  }

  // =============================================================
  //                       OTHER OPERATIONS
  // =============================================================

  /**
   * @dev Returns the message sender (defaults to `msg.sender`).
   *
   * If you are writing GSN compatible contracts, you need to override this function.
   */
  function _msgSenderERC721A() internal view virtual returns (address) {
    return msg.sender;
  }

  /**
   * @dev Converts a uint256 to its ASCII string decimal representation.
   */
  function _toString(uint256 value)
    internal
    pure
    virtual
    returns (string memory str)
  {
    assembly {
      // The maximum value of a uint256 contains 78 digits (1 byte per digit),
      // but we allocate 0x80 bytes to keep the free memory pointer 32-byte word aliged.
      // We will need 1 32-byte word to store the length,
      // and 3 32-byte words to store a maximum of 78 digits. Total: 0x20 + 3 * 0x20 = 0x80.
      str := add(mload(0x40), 0x80)
      // Update the free memory pointer to allocate.
      mstore(0x40, str)

      // Cache the end of the memory to calculate the length later.
      let end := str

      // We write the string from rightmost digit to leftmost digit.
      // The following is essentially a do-while loop that also handles the zero case.
      // prettier-ignore
      for { let temp := value } 1 {} {
                str := sub(str, 1)
                // Write the character to the pointer.
                // The ASCII index of the '0' character is 48.
                mstore8(str, add(48, mod(temp, 10)))
                // Keep dividing `temp` until zero.
                temp := div(temp, 10)
                // prettier-ignore
                if iszero(temp) { break }
            }

      let length := sub(end, str)
      // Move the pointer 32 bytes leftwards to make room for the length.
      str := sub(str, 0x20)
      // Store the length.
      mstore(str, length)
    }
  }
}

File 14 of 26 : IMetadataRenderer.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface IMetadataRenderer {
  function tokenURI(uint256) external view returns (string memory);

  function contractURI() external view returns (string memory);

  function initializeWithData(bytes memory initData) external;

  /// @notice Storage for token edition information
  struct TokenEditionInfo {
    string description;
    string imageURI;
    string animationURI;
  }
}

File 15 of 26 : ITokenWithBalance.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

interface ITokenWithBalance {
  function balanceOf(address owner) external
    returns (uint256);
}

File 16 of 26 : ISplitMain.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8.4;

import {ERC20} from "solmate/src/tokens/ERC20.sol";

/**
 * @title ISplitMain
 * @author 0xSplits <[email protected]>
 */
interface ISplitMain {
  /**
   * FUNCTIONS
   */

  function walletImplementation() external returns (address);

  function createSplit(
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee,
    address controller
  ) external returns (address);

  function predictImmutableSplitAddress(
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee
  ) external view returns (address);

  function updateSplit(
    address split,
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee
  ) external;

  function transferControl(address split, address newController) external;

  function cancelControlTransfer(address split) external;

  function acceptControl(address split) external;

  function makeSplitImmutable(address split) external;

  function distributeETH(
    address split,
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee,
    address distributorAddress
  ) external;

  function updateAndDistributeETH(
    address split,
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee,
    address distributorAddress
  ) external;

  function distributeERC20(
    address split,
    ERC20 token,
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee,
    address distributorAddress
  ) external;

  function updateAndDistributeERC20(
    address split,
    ERC20 token,
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee,
    address distributorAddress
  ) external;

  function withdraw(
    address account,
    uint256 withdrawETH,
    ERC20[] calldata tokens
  ) external;

  /**
   * EVENTS
   */

  /** @notice emitted after each successful split creation
   *  @param split Address of the created split
   */
  event CreateSplit(address indexed split);

  /** @notice emitted after each successful split update
   *  @param split Address of the updated split
   */
  event UpdateSplit(address indexed split);

  /** @notice emitted after each initiated split control transfer
   *  @param split Address of the split control transfer was initiated for
   *  @param newPotentialController Address of the split's new potential controller
   */
  event InitiateControlTransfer(
    address indexed split,
    address indexed newPotentialController
  );

  /** @notice emitted after each canceled split control transfer
   *  @param split Address of the split control transfer was canceled for
   */
  event CancelControlTransfer(address indexed split);

  /** @notice emitted after each successful split control transfer
   *  @param split Address of the split control was transferred for
   *  @param previousController Address of the split's previous controller
   *  @param newController Address of the split's new controller
   */
  event ControlTransfer(
    address indexed split,
    address indexed previousController,
    address indexed newController
  );

  /** @notice emitted after each successful ETH balance split
   *  @param split Address of the split that distributed its balance
   *  @param amount Amount of ETH distributed
   *  @param distributorAddress Address to credit distributor fee to
   */
  event DistributeETH(
    address indexed split,
    uint256 amount,
    address indexed distributorAddress
  );

  /** @notice emitted after each successful ERC20 balance split
   *  @param split Address of the split that distributed its balance
   *  @param token Address of ERC20 distributed
   *  @param amount Amount of ERC20 distributed
   *  @param distributorAddress Address to credit distributor fee to
   */
  event DistributeERC20(
    address indexed split,
    ERC20 indexed token,
    uint256 amount,
    address indexed distributorAddress
  );

  /** @notice emitted after each successful withdrawal
   *  @param account Address that funds were withdrawn to
   *  @param ethAmount Amount of ETH withdrawn
   *  @param tokens Addresses of ERC20s withdrawn
   *  @param tokenAmounts Amounts of corresponding ERC20s withdrawn
   */
  event Withdrawal(
    address indexed account,
    uint256 ethAmount,
    ERC20[] tokens,
    uint256[] tokenAmounts
  );
}

File 17 of 26 : DCNT721AStorage.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import './TokenGateConfig.sol';

contract DCNT721AStorage {
  /// @notice token gating
  TokenGateConfig public tokenGateConfig;
}

File 18 of 26 : EditionConfig.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

struct EditionConfig {
  string name;
  string symbol;
  bool hasAdjustableCap;
  bool isSoulbound;
  uint256 maxTokens;
  uint256 tokenPrice;
  uint256 maxTokenPurchase;
  bytes32 presaleMerkleRoot;
  uint256 presaleStart;
  uint256 presaleEnd;
  uint256 saleStart;
  uint256 saleEnd;
  uint256 royaltyBPS;
  address payoutAddress;
}

File 19 of 26 : MetadataConfig.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

struct MetadataConfig {
  string contractURI;
  string metadataURI;
  bytes metadataRendererInit;
  address parentIP;
}

File 20 of 26 : TokenGateConfig.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

enum SaleType {
  ALL,
  PRESALE,
  PRIMARY
}

struct TokenGateConfig {
  address tokenAddress; 
  uint88 minBalance;
  SaleType saleType;
}

File 21 of 26 : OperatorFilterer.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.0;

import {IOperatorFilterRegistry} from "operator-filter-registry/src/IOperatorFilterRegistry.sol";

/**
 * @title  OperatorFilterer
 * @notice Abstract contract whose constructor automatically registers and optionally subscribes to or copies another
 *     registrant's entries in the OperatorFilterRegistry.
 * @dev  This smart contract is meant to be inherited by token contracts so they can use the following:
 *     - `onlyAllowedOperator` modifier for `transferFrom` and `safeTransferFrom` methods.
 *     - `onlyAllowedOperatorApproval` modifier for `approve` and `setApprovalForAll` methods.
 */
abstract contract OperatorFilterer {
  error OperatorNotAllowed(address operator);

  IOperatorFilterRegistry public constant operatorFilterRegistry =
    IOperatorFilterRegistry(0x000000000000AAeB6D7670E522A718067333cd4E);

  modifier onlyAllowedOperator(address from) virtual {
    // Allow spending tokens from addresses with balance
    // Note that this still allows listings and marketplaces with escrow to transfer tokens if transferred
    // from an EOA.
    if (from != msg.sender) {
      _checkFilterOperator(msg.sender);
    }
    _;
  }

  modifier onlyAllowedOperatorApproval(address operator) virtual {
    _checkFilterOperator(operator);
    _;
  }

  function _checkFilterOperator(address operator) internal view virtual {
    // Check registry code length to facilitate testing in environments without a deployed registry.
    if (address(operatorFilterRegistry).code.length > 0) {
      if (!operatorFilterRegistry.isOperatorAllowed(address(this), operator)) {
        revert OperatorNotAllowed(operator);
      }
    }
  }
}

File 22 of 26 : Splits.sol
// SPDX-License-Identifier: GPL-3.0-or-later
pragma solidity ^0.8;

import {ERC20} from "solmate/src/tokens/ERC20.sol";
import "../splits/interfaces/ISplitMain.sol";
import "@openzeppelin/contracts/access/Ownable.sol";

abstract contract Splits is Ownable {
  function _getSplitMain() internal virtual returns (address);

  function _getSplitWallet() internal virtual returns (address);

  function _setSplitWallet(address _splitWallet) internal virtual;

  function createSplit(
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee
  ) public virtual onlyOwner {
    require(_getSplitMain() != address(0), 'SplitMain not set');
    require(_getSplitWallet() == address(0), "Split already created");
    address splitAddress = ISplitMain(_getSplitMain()).createSplit(
      accounts,
      percentAllocations,
      distributorFee,
      msg.sender
    );
    _setSplitWallet(splitAddress);
  }

  function distributeETH(
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee,
    address distributorAddress
  ) public virtual requireSplit {
    _transferETHToSplit();
    ISplitMain(_getSplitMain()).distributeETH(
      _getSplitWallet(),
      accounts,
      percentAllocations,
      distributorFee,
      distributorAddress
    );
  }

  function distributeERC20(
    ERC20 token,
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee,
    address distributorAddress
  ) public virtual requireSplit {
    _transferERC20ToSplit(token);
    ISplitMain(_getSplitMain()).distributeERC20(
      _getSplitWallet(),
      token,
      accounts,
      percentAllocations,
      distributorFee,
      distributorAddress
    );
  }

  function distributeAndWithdraw(
    address account,
    uint256 withdrawETH,
    ERC20[] memory tokens,
    address[] calldata accounts,
    uint32[] calldata percentAllocations,
    uint32 distributorFee,
    address distributorAddress
  ) public virtual requireSplit {
    if (withdrawETH != 0) {
      distributeETH(
        accounts,
        percentAllocations,
        distributorFee,
        distributorAddress
      );
    }

    for (uint256 i = 0; i < tokens.length; ++i) {
      distributeERC20(
        tokens[i],
        accounts,
        percentAllocations,
        distributorFee,
        distributorAddress
      );
    }

    _withdraw(account, withdrawETH, tokens);
  }

  function transferToSplit(uint256 transferETH, ERC20[] memory tokens)
    public
    virtual
    requireSplit
  {
    if (transferETH != 0) {
      _transferETHToSplit();
    }

    for (uint256 i = 0; i < tokens.length; ++i) {
      _transferERC20ToSplit(tokens[i]);
    }
  }

  function _transferETHToSplit() internal virtual {
    (bool success, ) = _getSplitWallet().call{value: address(this).balance}("");
    require(success, "Could not transfer ETH to split");
  }

  function _transferERC20ToSplit(ERC20 token) internal virtual {
    uint256 balance = token.balanceOf(address(this));
    token.transfer(_getSplitWallet(), balance);
  }

  function _withdraw(
    address account,
    uint256 withdrawETH,
    ERC20[] memory tokens
  ) internal virtual {
    ISplitMain(_getSplitMain()).withdraw(
      account,
      withdrawETH,
      tokens
    );
  }

  modifier requireSplit() {
    require(_getSplitWallet() != address(0), "Split not created yet");
    _;
  }
}

File 23 of 26 : Version.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.10;

contract Version {
  uint32 private immutable _version;

  /// @notice The version of the contract
  /// @return The version ID of this contract implementation
  function contractVersion() external view returns (uint32) {
      return _version;
  }

  constructor(uint32 version) {
    _version = version;
  }
}

File 24 of 26 : IERC721A.sol
// SPDX-License-Identifier: MIT
// ERC721A Contracts v4.2.2
// Creator: Chiru Labs

pragma solidity ^0.8.4;

/**
 * @dev Interface of ERC721A.
 */
interface IERC721A {
    /**
     * The caller must own the token or be an approved operator.
     */
    error ApprovalCallerNotOwnerNorApproved();

    /**
     * The token does not exist.
     */
    error ApprovalQueryForNonexistentToken();

    /**
     * The caller cannot approve to their own address.
     */
    error ApproveToCaller();

    /**
     * Cannot query the balance for the zero address.
     */
    error BalanceQueryForZeroAddress();

    /**
     * Cannot mint to the zero address.
     */
    error MintToZeroAddress();

    /**
     * The quantity of tokens minted must be more than zero.
     */
    error MintZeroQuantity();

    /**
     * The token does not exist.
     */
    error OwnerQueryForNonexistentToken();

    /**
     * The caller must own the token or be an approved operator.
     */
    error TransferCallerNotOwnerNorApproved();

    /**
     * The token must be owned by `from`.
     */
    error TransferFromIncorrectOwner();

    /**
     * Cannot safely transfer to a contract that does not implement the
     * ERC721Receiver interface.
     */
    error TransferToNonERC721ReceiverImplementer();

    /**
     * Cannot transfer to the zero address.
     */
    error TransferToZeroAddress();

    /**
     * The token does not exist.
     */
    error URIQueryForNonexistentToken();

    /**
     * The `quantity` minted with ERC2309 exceeds the safety limit.
     */
    error MintERC2309QuantityExceedsLimit();

    /**
     * The `extraData` cannot be set on an unintialized ownership slot.
     */
    error OwnershipNotInitializedForExtraData();

    // =============================================================
    //                            STRUCTS
    // =============================================================

    struct TokenOwnership {
        // The address of the owner.
        address addr;
        // Stores the start time of ownership with minimal overhead for tokenomics.
        uint64 startTimestamp;
        // Whether the token has been burned.
        bool burned;
        // Arbitrary data similar to `startTimestamp` that can be set via {_extraData}.
        uint24 extraData;
    }

    // =============================================================
    //                         TOKEN COUNTERS
    // =============================================================

    /**
     * @dev Returns the total number of tokens in existence.
     * Burned tokens will reduce the count.
     * To get the total number of tokens minted, please see {_totalMinted}.
     */
    function totalSupply() external view returns (uint256);

    // =============================================================
    //                            IERC165
    // =============================================================

    /**
     * @dev Returns true if this contract implements the interface defined by
     * `interfaceId`. See the corresponding
     * [EIP section](https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified)
     * to learn more about how these ids are created.
     *
     * This function call must use less than 30000 gas.
     */
    function supportsInterface(bytes4 interfaceId) external view returns (bool);

    // =============================================================
    //                            IERC721
    // =============================================================

    /**
     * @dev Emitted when `tokenId` token is transferred from `from` to `to`.
     */
    event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
     */
    event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);

    /**
     * @dev Emitted when `owner` enables or disables
     * (`approved`) `operator` to manage all of its assets.
     */
    event ApprovalForAll(address indexed owner, address indexed operator, bool approved);

    /**
     * @dev Returns the number of tokens in `owner`'s account.
     */
    function balanceOf(address owner) external view returns (uint256 balance);

    /**
     * @dev Returns the owner of the `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function ownerOf(uint256 tokenId) external view returns (address owner);

    /**
     * @dev Safely transfers `tokenId` token from `from` to `to`,
     * checking first that contract recipients are aware of the ERC721 protocol
     * to prevent tokens from being forever locked.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must exist and be owned by `from`.
     * - If the caller is not `from`, it must be have been allowed to move
     * this token by either {approve} or {setApprovalForAll}.
     * - If `to` refers to a smart contract, it must implement
     * {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
     *
     * Emits a {Transfer} event.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId,
        bytes calldata data
    ) external;

    /**
     * @dev Equivalent to `safeTransferFrom(from, to, tokenId, '')`.
     */
    function safeTransferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Transfers `tokenId` from `from` to `to`.
     *
     * WARNING: Usage of this method is discouraged, use {safeTransferFrom}
     * whenever possible.
     *
     * Requirements:
     *
     * - `from` cannot be the zero address.
     * - `to` cannot be the zero address.
     * - `tokenId` token must be owned by `from`.
     * - If the caller is not `from`, it must be approved to move this token
     * by either {approve} or {setApprovalForAll}.
     *
     * Emits a {Transfer} event.
     */
    function transferFrom(
        address from,
        address to,
        uint256 tokenId
    ) external;

    /**
     * @dev Gives permission to `to` to transfer `tokenId` token to another account.
     * The approval is cleared when the token is transferred.
     *
     * Only a single account can be approved at a time, so approving the
     * zero address clears previous approvals.
     *
     * Requirements:
     *
     * - The caller must own the token or be an approved operator.
     * - `tokenId` must exist.
     *
     * Emits an {Approval} event.
     */
    function approve(address to, uint256 tokenId) external;

    /**
     * @dev Approve or remove `operator` as an operator for the caller.
     * Operators can call {transferFrom} or {safeTransferFrom}
     * for any token owned by the caller.
     *
     * Requirements:
     *
     * - The `operator` cannot be the caller.
     *
     * Emits an {ApprovalForAll} event.
     */
    function setApprovalForAll(address operator, bool _approved) external;

    /**
     * @dev Returns the account approved for `tokenId` token.
     *
     * Requirements:
     *
     * - `tokenId` must exist.
     */
    function getApproved(uint256 tokenId) external view returns (address operator);

    /**
     * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
     *
     * See {setApprovalForAll}.
     */
    function isApprovedForAll(address owner, address operator) external view returns (bool);

    // =============================================================
    //                        IERC721Metadata
    // =============================================================

    /**
     * @dev Returns the token collection name.
     */
    function name() external view returns (string memory);

    /**
     * @dev Returns the token collection symbol.
     */
    function symbol() external view returns (string memory);

    /**
     * @dev Returns the Uniform Resource Identifier (URI) for `tokenId` token.
     */
    function tokenURI(uint256 tokenId) external view returns (string memory);

    // =============================================================
    //                           IERC2309
    // =============================================================

    /**
     * @dev Emitted when tokens in `fromTokenId` to `toTokenId`
     * (inclusive) is transferred from `from` to `to`, as defined in the
     * [ERC2309](https://eips.ethereum.org/EIPS/eip-2309) standard.
     *
     * See {_mintERC2309} for more details.
     */
    event ConsecutiveTransfer(uint256 indexed fromTokenId, uint256 toTokenId, address indexed from, address indexed to);
}

File 25 of 26 : IOperatorFilterRegistry.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.13;

interface IOperatorFilterRegistry {
    function isOperatorAllowed(address registrant, address operator) external view returns (bool);
    function register(address registrant) external;
    function registerAndSubscribe(address registrant, address subscription) external;
    function registerAndCopyEntries(address registrant, address registrantToCopy) external;
    function unregister(address addr) external;
    function updateOperator(address registrant, address operator, bool filtered) external;
    function updateOperators(address registrant, address[] calldata operators, bool filtered) external;
    function updateCodeHash(address registrant, bytes32 codehash, bool filtered) external;
    function updateCodeHashes(address registrant, bytes32[] calldata codeHashes, bool filtered) external;
    function subscribe(address registrant, address registrantToSubscribe) external;
    function unsubscribe(address registrant, bool copyExistingEntries) external;
    function subscriptionOf(address addr) external returns (address registrant);
    function subscribers(address registrant) external returns (address[] memory);
    function subscriberAt(address registrant, uint256 index) external returns (address);
    function copyEntriesOf(address registrant, address registrantToCopy) external;
    function isOperatorFiltered(address registrant, address operator) external returns (bool);
    function isCodeHashOfFiltered(address registrant, address operatorWithCode) external returns (bool);
    function isCodeHashFiltered(address registrant, bytes32 codeHash) external returns (bool);
    function filteredOperators(address addr) external returns (address[] memory);
    function filteredCodeHashes(address addr) external returns (bytes32[] memory);
    function filteredOperatorAt(address registrant, uint256 index) external returns (address);
    function filteredCodeHashAt(address registrant, uint256 index) external returns (bytes32);
    function isRegistered(address addr) external returns (bool);
    function codeHashOf(address addr) external returns (bytes32);
}

File 26 of 26 : ERC20.sol
// SPDX-License-Identifier: AGPL-3.0-only
pragma solidity >=0.8.0;

/// @notice Modern and gas efficient ERC20 + EIP-2612 implementation.
/// @author Solmate (https://github.com/transmissions11/solmate/blob/main/src/tokens/ERC20.sol)
/// @author Modified from Uniswap (https://github.com/Uniswap/uniswap-v2-core/blob/master/contracts/UniswapV2ERC20.sol)
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
    /*//////////////////////////////////////////////////////////////
                                 EVENTS
    //////////////////////////////////////////////////////////////*/

    event Transfer(address indexed from, address indexed to, uint256 amount);

    event Approval(address indexed owner, address indexed spender, uint256 amount);

    /*//////////////////////////////////////////////////////////////
                            METADATA STORAGE
    //////////////////////////////////////////////////////////////*/

    string public name;

    string public symbol;

    uint8 public immutable decimals;

    /*//////////////////////////////////////////////////////////////
                              ERC20 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 public totalSupply;

    mapping(address => uint256) public balanceOf;

    mapping(address => mapping(address => uint256)) public allowance;

    /*//////////////////////////////////////////////////////////////
                            EIP-2612 STORAGE
    //////////////////////////////////////////////////////////////*/

    uint256 internal immutable INITIAL_CHAIN_ID;

    bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;

    mapping(address => uint256) public nonces;

    /*//////////////////////////////////////////////////////////////
                               CONSTRUCTOR
    //////////////////////////////////////////////////////////////*/

    constructor(
        string memory _name,
        string memory _symbol,
        uint8 _decimals
    ) {
        name = _name;
        symbol = _symbol;
        decimals = _decimals;

        INITIAL_CHAIN_ID = block.chainid;
        INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
    }

    /*//////////////////////////////////////////////////////////////
                               ERC20 LOGIC
    //////////////////////////////////////////////////////////////*/

    function approve(address spender, uint256 amount) public virtual returns (bool) {
        allowance[msg.sender][spender] = amount;

        emit Approval(msg.sender, spender, amount);

        return true;
    }

    function transfer(address to, uint256 amount) public virtual returns (bool) {
        balanceOf[msg.sender] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(msg.sender, to, amount);

        return true;
    }

    function transferFrom(
        address from,
        address to,
        uint256 amount
    ) public virtual returns (bool) {
        uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.

        if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;

        balanceOf[from] -= amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(from, to, amount);

        return true;
    }

    /*//////////////////////////////////////////////////////////////
                             EIP-2612 LOGIC
    //////////////////////////////////////////////////////////////*/

    function permit(
        address owner,
        address spender,
        uint256 value,
        uint256 deadline,
        uint8 v,
        bytes32 r,
        bytes32 s
    ) public virtual {
        require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");

        // Unchecked because the only math done is incrementing
        // the owner's nonce which cannot realistically overflow.
        unchecked {
            address recoveredAddress = ecrecover(
                keccak256(
                    abi.encodePacked(
                        "\x19\x01",
                        DOMAIN_SEPARATOR(),
                        keccak256(
                            abi.encode(
                                keccak256(
                                    "Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
                                ),
                                owner,
                                spender,
                                value,
                                nonces[owner]++,
                                deadline
                            )
                        )
                    )
                ),
                v,
                r,
                s
            );

            require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");

            allowance[recoveredAddress][spender] = value;
        }

        emit Approval(owner, spender, value);
    }

    function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
        return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
    }

    function computeDomainSeparator() internal view virtual returns (bytes32) {
        return
            keccak256(
                abi.encode(
                    keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
                    keccak256(bytes(name)),
                    keccak256("1"),
                    block.chainid,
                    address(this)
                )
            );
    }

    /*//////////////////////////////////////////////////////////////
                        INTERNAL MINT/BURN LOGIC
    //////////////////////////////////////////////////////////////*/

    function _mint(address to, uint256 amount) internal virtual {
        totalSupply += amount;

        // Cannot overflow because the sum of all user
        // balances can't exceed the max uint256 value.
        unchecked {
            balanceOf[to] += amount;
        }

        emit Transfer(address(0), to, amount);
    }

    function _burn(address from, uint256 amount) internal virtual {
        balanceOf[from] -= amount;

        // Cannot underflow because a user's balance
        // will never be larger than the total supply.
        unchecked {
            totalSupply -= amount;
        }

        emit Transfer(from, address(0), amount);
    }
}

Settings
{
  "optimizer": {
    "enabled": true,
    "runs": 200
  },
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  },
  "libraries": {}
}

Contract ABI

[{"inputs":[],"name":"ApprovalCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"ApprovalQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"ApproveToCaller","type":"error"},{"inputs":[],"name":"BalanceQueryForZeroAddress","type":"error"},{"inputs":[],"name":"MintERC2309QuantityExceedsLimit","type":"error"},{"inputs":[],"name":"MintToZeroAddress","type":"error"},{"inputs":[],"name":"MintZeroQuantity","type":"error"},{"inputs":[{"internalType":"address","name":"operator","type":"address"}],"name":"OperatorNotAllowed","type":"error"},{"inputs":[],"name":"OwnerQueryForNonexistentToken","type":"error"},{"inputs":[],"name":"OwnershipNotInitializedForExtraData","type":"error"},{"inputs":[],"name":"TransferCallerNotOwnerNorApproved","type":"error"},{"inputs":[],"name":"TransferFromIncorrectOwner","type":"error"},{"inputs":[],"name":"TransferToNonERC721ReceiverImplementer","type":"error"},{"inputs":[],"name":"TransferToZeroAddress","type":"error"},{"inputs":[],"name":"URIQueryForNonexistentToken","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"approved","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"operator","type":"address"},{"indexed":false,"internalType":"bool","name":"approved","type":"bool"}],"name":"ApprovalForAll","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"uint256","name":"fromTokenId","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"toTokenId","type":"uint256"},{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"}],"name":"ConsecutiveTransfer","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint8","name":"version","type":"uint8"}],"name":"Initialized","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"tokenId_","type":"uint256"}],"name":"Minted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":true,"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_TOKENS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newCap","type":"uint256"}],"name":"adjustCap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"approve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"baseURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"contractVersion","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint32[]","name":"percentAllocations","type":"uint32[]"},{"internalType":"uint32","name":"distributorFee","type":"uint32"}],"name":"createSplit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"withdrawETH","type":"uint256"},{"internalType":"contract ERC20[]","name":"tokens","type":"address[]"},{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint32[]","name":"percentAllocations","type":"uint32[]"},{"internalType":"uint32","name":"distributorFee","type":"uint32"},{"internalType":"address","name":"distributorAddress","type":"address"}],"name":"distributeAndWithdraw","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"contract ERC20","name":"token","type":"address"},{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint32[]","name":"percentAllocations","type":"uint32[]"},{"internalType":"uint32","name":"distributorFee","type":"uint32"},{"internalType":"address","name":"distributorAddress","type":"address"}],"name":"distributeERC20","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address[]","name":"accounts","type":"address[]"},{"internalType":"uint32[]","name":"percentAllocations","type":"uint32[]"},{"internalType":"uint32","name":"distributorFee","type":"uint32"},{"internalType":"address","name":"distributorAddress","type":"address"}],"name":"distributeETH","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"flipSaleState","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"getApproved","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"hasAdjustableCap","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"_owner","type":"address"},{"components":[{"internalType":"string","name":"name","type":"string"},{"internalType":"string","name":"symbol","type":"string"},{"internalType":"bool","name":"hasAdjustableCap","type":"bool"},{"internalType":"bool","name":"isSoulbound","type":"bool"},{"internalType":"uint256","name":"maxTokens","type":"uint256"},{"internalType":"uint256","name":"tokenPrice","type":"uint256"},{"internalType":"uint256","name":"maxTokenPurchase","type":"uint256"},{"internalType":"bytes32","name":"presaleMerkleRoot","type":"bytes32"},{"internalType":"uint256","name":"presaleStart","type":"uint256"},{"internalType":"uint256","name":"presaleEnd","type":"uint256"},{"internalType":"uint256","name":"saleStart","type":"uint256"},{"internalType":"uint256","name":"saleEnd","type":"uint256"},{"internalType":"uint256","name":"royaltyBPS","type":"uint256"},{"internalType":"address","name":"payoutAddress","type":"address"}],"internalType":"struct EditionConfig","name":"_editionConfig","type":"tuple"},{"components":[{"internalType":"string","name":"contractURI","type":"string"},{"internalType":"string","name":"metadataURI","type":"string"},{"internalType":"bytes","name":"metadataRendererInit","type":"bytes"},{"internalType":"address","name":"parentIP","type":"address"}],"internalType":"struct MetadataConfig","name":"_metadataConfig","type":"tuple"},{"components":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint88","name":"minBalance","type":"uint88"},{"internalType":"enum SaleType","name":"saleType","type":"uint8"}],"internalType":"struct TokenGateConfig","name":"_tokenGateConfig","type":"tuple"},{"internalType":"address","name":"_metadataRenderer","type":"address"},{"internalType":"address","name":"_splitMain","type":"address"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"operator","type":"address"}],"name":"isApprovedForAll","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"isSoulbound","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxTokenPurchase","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadataRenderer","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"numberOfTokens","type":"uint256"}],"name":"mint","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address[]","name":"recipients","type":"address[]"}],"name":"mintAirdrop","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"quantity","type":"uint256"},{"internalType":"uint256","name":"maxQuantity","type":"uint256"},{"internalType":"uint256","name":"pricePerToken","type":"uint256"},{"internalType":"bytes32[]","name":"merkleProof","type":"bytes32[]"}],"name":"mintPresale","outputs":[],"stateMutability":"payable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"operatorFilterRegistry","outputs":[{"internalType":"contract IOperatorFilterRegistry","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"ownerOf","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"parentIP","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"payoutAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"presaleEnd","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"presaleMerkleRoot","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"presaleStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"numReserved","type":"uint256"}],"name":"reserveDCNT","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"royaltyBPS","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"uint256","name":"salePrice","type":"uint256"}],"name":"royaltyInfo","outputs":[{"internalType":"address","name":"receiver","type":"address"},{"internalType":"uint256","name":"royaltyAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"},{"internalType":"bytes","name":"_data","type":"bytes"}],"name":"safeTransferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"saleEnd","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"saleIsActive","outputs":[{"internalType":"bool","name":"_saleIsActive","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"saleIsPaused","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"saleStart","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"operator","type":"address"},{"internalType":"bool","name":"approved","type":"bool"}],"name":"setApprovalForAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"uri","type":"string"}],"name":"setBaseURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"uri","type":"string"}],"name":"setContractURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_metadataRenderer","type":"address"}],"name":"setMetadataRenderer","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"_payoutAddress","type":"address"}],"name":"setPayoutAddress","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"_presaleMerkleRoot","type":"bytes32"}],"name":"setPresaleMerkleRoot","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"splitMain","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"splitWallet","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenGateConfig","outputs":[{"internalType":"address","name":"tokenAddress","type":"address"},{"internalType":"uint88","name":"minBalance","type":"uint88"},{"internalType":"enum SaleType","name":"saleType","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tokenPrice","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"tokenURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"tokenId","type":"uint256"}],"name":"transferFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"transferETH","type":"uint256"},{"internalType":"contract ERC20[]","name":"tokens","type":"address[]"}],"name":"transferToSplit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"enable","type":"bool"},{"internalType":"address","name":"operatorFilter","type":"address"}],"name":"updateOperatorFilter","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newStart","type":"uint256"},{"internalType":"uint256","name":"newEnd","type":"uint256"}],"name":"updatePresaleStartEnd","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"newStart","type":"uint256"},{"internalType":"uint256","name":"newEnd","type":"uint256"}],"name":"updateSaleStartEnd","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"withdraw","outputs":[],"stateMutability":"nonpayable","type":"function"}]

[ Download: CSV Export  ]
[ Download: CSV Export  ]

A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.